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Frequency and polarization effects in stabilization
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Quantitative results are presented for stabilization of atoms against ionization by strong laser fields

over a wide range of frequencies for circular and linear polarization. With circular polarization, stabili-
zation occurs for all frequencies. At high frequency (co & 1 a.u. ), the stabilization intensity is predicted

by the occurrence of photon thresholds. This mechanism gives excellent numerical agreement both with

present calculations and the results of Pont and Gavrila [Phys. Rev. Lett. 65, 2362 (1990)]. A different

mechanism operates for co&1 a.u. Linear polarization difFers strongly from circular polarization in

many respects.

PACS number(s): 32.80.Rm, 32.90.+a, 42.50.Hz

I. INTRODUCTION

Investigations using numerical methods [1,2], tech-
niques based on the Kramers-Henneberger transforma-
tion [3], Floquet techniques [4], or quantum interference
effects [5] have explored the stabilization phenomenon,
where beyond a certain field intensity, an atom becomes
increasingly resistant to photoionization. The emphasis
has been on high-frequency fields, co&1. (Atomic units
are used throughout. } A classical argument [6] suggests
that high frequencies are essential.

The primary results of the present paper are that sta-
bilization with circular polarization occurs at all frequen-
cies, a very successful predictive explanation is found for
the stabilization point for co 1, and important
differences are found between linear and circular polar-
ization. This paper represents the first application of
Keldysh-like methods to the high-frequency domain.

Stabilization occurs at such high intensity that most
techniques encounter significant computational obstacles.
The method used here is designed to circumvent most
such difficulties. It also has no frequency limitations.
The method used is the strong-field approximation (SFA)
[7—10] applied to arbitrary frequencies. A brief review of
the SFA is given to show the power of the technique and
how it allows one to evade the most onerous problems of
strong-field calculations.

II. CALCULATIONAL METHOD

The probability amplitude that a state 4;, which has
evolved under the combined effects of the atom and laser
from an initial undisturbed bound state N; into some oth-
er laser-field-free final state 4f (corresponding to mea-
surement in a field-free region of the final products of the
ionization), is given by the overlap Sf; =lim, „(4f,%;).
This leads to the exact expression

(S —1)f;= i fdt(@f,HI+; ), —

where HI is the interaction Hamiltonian of the laser field.
Equation (1) poses the severe problem that 4,. must fully
include both atomic and laser influences. For most

methods, the basic problem of strong-field physics is to
find an accurate nonperturbative way to describe 4;. An
alternative approach —the key to the SFA—is to replace
Eq. (1) by the exactly equivalent time-reversed S matrix

(S —1)f;= i fdt—(+f,HI@; ) .

Now the bulk of the atomic information is in 4;, which is
accurately known. One need not, and should not, consid-
er how this state is altered by the strong field. The bur-
den of describing the electron in combined laser and
atomic fields is shifted to the final state, where an ionized
electron has its behavior dominated by the laser field for
sufficiently strong fields. When the potential energy of
the detached electron in the laser field dominates the
atomic binding energy, the electron state can be
effectively approximated by a Volkov state. The situation
may be likened to the elementary problem of the first-
order perturbation calculation of ionization of an atom
by a single, very energetic photon. If the ionized electron
is energetic as compared to the binding energy, then
there is no need to consider the Coulomb influence on the
final state —a free-particle assumption for the final elec-
tron works well. In the strong-field case, if the laser field
dominates the Coulomb field in the final state, then most
ionized electrons are very energetic because the above-
threshold ionization (ATI) phenomenon is well
developed, and the Coulomb influence may be neglected
in the final state.

The time-reversed S matrix has no inherent frequency
limitations. Applicability of this formalism to a variety
of atomic states has been verified by matching [11]high-
field photoionization experiments [12] very successfully
with no adjustable parameters. This can be regarded as a
check of the SFA at low frequencies. [Earlier attempts to
match experimental results against the Keldysh-Faisal-
Reiss (KFR) [7,13,14] method did not use appropriate
atomic information and/or did not refer to experiments
at large z, .] A check of the SFA at high frequencies is
provided by the present work, where excellent qualitative
and quantitative agreement is obtained with the high-
frequency stabilization results of Ref. [3].

In all cases considered here, stabilization is found
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within the intensity domain z, ) 1 and zf &1, where

z& —=2U /Es (U is the ponderomotive potential, Es is
the binding energy), and zf ——2U /mc . The condition
z& &1 means that the ionized electron behavior is dom-
inated by the laser field. It is the only condition required
for applicability of the SFA. (Note that z, = 1/y, where

y is the Keldysh parameter. ) The condition zf & 1 means
that stabilization occurs in the nonrelativistic domain, in
which case the SFA is analytically the same as what has
been called the KFR [7,13,14] method. The designation
SFA is preferred here, because it bespeaks extension to
the relativistic domain [9,10], it is not limited to the hy-
drogen atom nor to tunneling (as is the Keldysh method
in its usual application), and its formal basis employs the
time-reversed S matrix, which carries implications for ap-
plicability to all frequencies (not present in the direct-
time S matrix, high-frequency-limited basis of Ref. [14]).

The SFA is an S-matrix method that concentrates on
asymptotic conditions, so it provides physical interpreta-
tions rather different from other techniques. Despite the
analytical simplicity of the SFA, a great deal of physics is
subsumed in the S matrix. A consequence is that the
SFA is computer intensive when large numbers of pho-
tons are involved in the ionization. The tunneling ap-
proximation as employed in the Keldysh method [13]
affords great simplification, but is not used here for
reasons given below.

III. STABILIZATION WITH CIRCULAR
POLARIZATION

The KFR result for the photoionization transition rate
for 1Shydrogen is
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FIG. 1. Lifetime (in fs) as a function of intensity (a.u. ) for the
photoionization of ground-state hydrogen by a circularly polar-
ized field. The labels on the curves give the frequency in atomic
units.

100

barely satisfied at co=1, and amply satisfied at other fre-
quencies. This assures applicability of the SFA. The fre-
quency co = 1 represents a division between sharply
different types of behavior. The essential element appears
to be that photoionization for co) 1 is always a single-
photon process at low intensity, and does not require two
or more photons until relatively high intensities are
reached. (Note that co= 1 means that the photon energy
is twice the binding energy of ground-state hydrogen. )

where z = U~ /co; no = [z +Ez /co], and the curly brackets
indicate the smallest integer containing the number in-

side; for circular polarization J„ is the ordinary Bessel
function J„(z'~ P), where P=2(n —z Es/co)' sin8—(8
is the angle from the propagation direction of the laser);
and for linear polarization J„ is the generalized Bessel
function [7] J„(z' a, —z/2), where a=8'~ (n —z

Es/co)' cos8 (8 is—the angle from the polarization
direction of the laser).

Figure 1 shows the outcome of Eq. (3) in a circularly
polarized laser field for frequencies from co=1/32 to 8.
Stabilization occurs for the entire frequency range. At
the higher frequencies, co =2 and 8, good numerical
correspondence is found with the high-frequency method
of Pont and Gavrila [3] at low intensity, at high intensity,
and for the intensity at which stabilization occurs. (See
Fig. 1 of Ref. [3].) The primary difference is that the
present results show structure in the rate just beyond the
stabilization point, not found in Ref. [3].

Important properties of stabilization with circular po-
larization are exhibited in Fig. 2. Figure 2 shows the in-
tensity at which stabilization occurs plotted against fre-
quency, with the intensity measured by the z, parameter.
The stabilization intensity itself is always at z, ) 1, just
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FIG. 2. Location of the stabilization point, i.e., the intensity
for which maximum rate or minimum lifetime occurs, expressed
in terms of the intensity parameter zl plotted against the fre-

quency. (The parameter zl is defined as twice the ponderomo-
tive potential divided by the binding energy. ) Results are for
ionization of ground-state hydrogen by circularly polarized ra-
diation, as in Fig. 1, with additional frequencies. Calculations
by the SFA method are shown by the plus signs, results of Pont
and Gavrila [3] are shown by the crosses, and the smooth curve
is the approximation of Eq. (4).
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FIG. 3. Location of photon thresholds as they relate to a high-frequency (co=8) and a low-frequency (co=1/8) case from Fig. 1.
The apexes of the triangles point to the thresholds. The thresholds refer to the intensity at which the minimum required number of
photons indexes upward by unity due to an increase in the ponderomotive potential of the detached electron.

Above co= 1, stabilization occurs at about the same inten-
sity as suppression of the lowest-order process due to the
necessity for supplying "jitter" energy to the free electron
(i.e., the interaction energy of the detached electron with
the laser field). This threshold is at

z& =2(co/Es —1) (4)

in general, or z, =2(2' —1) for ground-state hydrogen.
Included in Fig. 2 are results from Pont and Gavrila [3].
Equation (4) does very well for co & 1, both for the results
of Pont and Gavrila as well as the present SFA calcula-
tions, as shown in Fig. 2. For this high-frequency
domain, the two sets of computations are nearly identi-
cal.

Figure 3 shows one high-frequency and one low-
frequency example from Fig. 1. Indicated near the bot-
tom of the figure are the thresholds for indexing upward
of the minimum photon numbers for the process. For
high frequency, this indexing from 1 to 2 to 3 to. . . is ac-
companied each time by sharp structure in the lifetime
curve, of which the first feature lies close to the minimum
lifetime. For low frequencies, the minimum low-intensity
order is greater than 1, and no observable structure ac-
companies successive photon thresholds. This behavior
reinforces the conclusion from Fig. 2 that co & 1 and co & 1

are fundamentally difFerent for stabilization. Equation (4)
has no predictive value for stabilization for co & 1.

Insight into this major change in stabilization behavior
at co=1 comes from the following. The number of pho-
tons of a laser beam available in a volume the size of the
undisturbed atom is n =4m.p/3, where p is photon densi-
ty (the atomic radius is taken to be the Bohr radius). The

minimum number of photons required for ionization is
no= [z+Ez/co] &z. The condition (photons available)
& (photons required) gives 4n p/3 & z. But z can be writ-
ten in terms of photon density as z =p/H2, so the -pho-
ton availability" condition becomes co& (3/4m. )'~ =0.5.
This is of the order of magnitude co=1, so that when co is
smaller than this value, the photons required for ioniza-
tion of the atom are not to be found in the immediate
atomic volume, but must be obtained from more distant
parts of the laser beam. This is one way to view the ris-
ing z& requirement as co diminishes, so evident in Fig. 2.

IV. STABILIZATION WITH LINEAR POLARIZATION

Linear- and circular-polarization lifetimes are com-
pared in Fig. 4(a) for co= 1 and in Fig. 4(b) for co =8. The
circular results correspond to Fig. 1. Both of these fre-
quencies may be viewed as high, since they represent
single-photon processes at low intensity. Circular and
linear lifetimes are coincident at low intensity (a well-
known situation), are similar near the stabilization point,
and become contrasting at higher intensities. The most
prominent difference is the sharp oscillation of the linear
polarization case, especially for co=8. The first few oscil-
lations after the stabilization point (maximum rate) corre-
spond to photon thresholds, where the lowest photon or-
der becomes kinematically forbidden because of the in-
creasing demands of the ponderomotive potential. This
is no longer true for subsequent oscillations. Averaged
over oscillations, both circular and linear lifetimes show
an asymptotic linear increase on this log-log plot, but
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tion case, which goes to an intensity corresponding to
zf =1, where relativistic effects occur [9,10]. The linear
calculation, beyond the terminus shown, exceeds the
capabilities of the modern mainframe used. For co ~ 1, no
tunneling or low-frequency approximation is applicable.
However, linear polarization results are omitted for the
co 32

and —,
' cases given in Fig. 1 for circular polariza-

tion. The reason is that the pretunneling asymptotic gen-
eralized Bessel function results of Ref. [7], while useful
and accurate from z, 1 to beyond the stabilization in-

tensity, begin to fail at higher intensities. The essential
point is that the high-intensity failure of these asymptotic
forms means that the tunneling approximation fails as
well, since the asymptotic generalized functions give rise
to tunneling forms as a limiting case [7].

V. REMARKS
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FIG. 4. Comparison of ionization lifetimes due to circularly
and linearly polarized fields. Circular polarization results are
from Fig. 1. (a) Frequency =1, (b) frequency =8.

with a much stronger increase for circular than for linear
polarization. The frequency-independent asymptotic
slope is about 1.8 for circular polarization and 0.5 for
linear polarization.

The absence of certain linear-polarization results from
this paper is instructive. Figure 4 does not carry the
linear-polarization results as far as the circular polariza-

Experiments to observe the stabilization phenomenon
are difficult to design. One problem is the depletion of
un-ionized atoms in the target gas as they are subjected
to the large ionization rates in the prestabilization part of
a laser pulse. Another problem is that when the stabiliza-
tion regime is reached in the core of a laser pulse, it is
surrounded by a very large volume of the pulse character-
ized by prestabilization intensities, where the ionization
yield can swamp the output from the poststabilization
core. Subtle solutions to this problem may be found, but
the present results suggest a straightforward possible ap-
proach. The problem of premature depletion can be ad-
dressed by using an environment with low overall rates.
This means low frequency, as Fig. 1 shows. Dominance
of the poststabilization-core region of a laser pulse by the
more voluminous prestabilization outer region can be re-
lieved by using circular polarization, which has more
prominent stabilization behavior than linear polarization,
as shown by Fig. 4. Further investigation using realistic
laser pulses is required.
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