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Theoretical study of nonresonant 'He++ He - = He+ He+
charge transfer in the threshold region
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A quantum-mechanical calculation of charge-transfer cross sections for the forward (endothermic)
and backward (exothermic) collision processes 'He++ He~~'He+ He+ in the threshold energy region
has been carried out by using a two-state close-coupling treatment where the charge-transfer energy de-

fect, approximately 1.3 meV, is the isotopic term difference between the He and He binding energies.
The cross sections show numerous shape and orbiting resonances, which can be labeled with predissocia-
tion rotational and vibrational quantum numbers. From these cross sections, the forward and backward
rate coefficients have been calculated. The present results, particularly the ratio of forward and back-
ward rate coefficients, agree well with measurements of Schauer, Jefferts, and Dunn [Phys. Rev. A 42,
5332 (1990)].

PACS number(s): 34.10.+x, 34.70.+e, 34.50.—s

Recently, measurements of the rate coefficients kf and

kb for the forward (endothermic} and backward (exoth-
ermic) charge transfer processes,

kf
He++ He~~ He+ He+,

kb

were carried out by Schauer, Jefferts, and Dunn [1] at
8-80 K. Because of the different reduced electron
masses for the two isotopes, the charge-transfer collision
is slightly nonresonant, and the forward (backward} pro-
cess is endothermic (exothermic) by approximately 1.3
meV (the difference in the binding energies of He and
He). Schauer, Jefferts, and Dunn [1] also estimated

charge-transfer cross sections ob by using the Dernkov
model [2] and obtained an estimate of tr& by using de-
tailed balance. The dominant mechanism for the
charge-transfer processes of Eq. (1) is resonant transfer.
However, at very low velocities the effect of the reduced
electron-nuclear mass, which removes the energy degen-
eracy in the asymptotic region, becomes important.

We have carried out quantum-mechanical calculations
of of and o.

b by using a two-state close-coupling treat-
ment. Thorson and Delos [3] presented a rigorous ap-
proach based on the use of the molecular orbital (MO}
representation in the inner region (R (Rz) and the
modified atomic orbital (AO) representation in the outer
region (R )R0). They chose as the electronic basis func-
tions, the linear combinations of molecular orbitals
(LCMO) corresponding to the lowest X and X„MO
states in the outer R region, namely,

ttt„(r;R)= [tp (r;R) q&„(r;R)—],1

s (2b)

where q and y„are eigenfunctions of the molecular
electronic Hamiltonian, with gerade and ungerade sym-
metry, which correspond to the respective eigenvalues

ez (R ) and e„(R ). In the asymptotic limit, Pz ( r; R ) and

P„(r;R) approach the atomic orbitals that represent an
electron bound to nucleus 8 and A, respectively. [Note:
Pz(r;R) and (bz(r;R) have molecular character at finite
R and are equivalent to the respective AO only in the
asymptotic region. ] In their approach [3], a transforma-
tion between the MO and modified AO representations is
carried out at an intermediate separation R =Ro. This
method was applied by Davis and Thorson [4] in a de-
tailed study of symmetric, resonant H++H and asym-
metric, nonresonant H++D collisions below 0.1 eV.
They chose Ro to be the separation where the isotope
splitting 6 and the potential difference between gerade
and ungerade adiabatic potentials become comparable in
magnitude.

In the present study of helium charge transfer, we have
chosen an approach in which the modified AO represen-
tation Eqs. (2a) and (2b) is adopted at all internuclear sep-
arations. Since transformation between MO and
modified AO representations is independent of R, the two
approaches are formally equivalent. The total scattering
wave function %(r;R) is written in the two-state approxi-
mation as a superposition of products of the electronic
functions, (2a) and (2b), and nuclear wave functions
F„(R)and F~(R}in the form

and

Ptt(r;R) = —[tpz(r;R )+tp„(r;R )]
1

v'2 (2a)
4'(r, R)=ttptt(r, R )F~(R)+P„(r,R)F„(R) . (3)

Substitution of the total scattering wave function into the
Schrodinger equation yields coupled equations for the nu-
clear wave function,

46 3889 1992 The American Physical Society



3890 C. M. DUTTA, N. F. LANE, AND M. KIMURA 46

1
VB +h +I E—1 F(R)=0,

p

where

h„,„=(g„h+—
P ),

I„=P„— VB
1

2p

(4)

(5a)

(5b)

choice of the LCMO basis of Eqs. (2a) and (2b) causes the
off-diagonal (coupling) terms in I to vanish as indicated in
Eq. (6); the only approximation made here is to assume
that the Vz matrix elements may be replaced by their
asymptotic values. Davis and Thorson made the same as-
sumptions. With these assumptions, as discussed, these
two approaches are formally equivalent.

For the potentials V (R) and V„(R), we adopted the
lowest Xg+ and X„+ adiabatic potentials of He2+ given by
Chen, Wang, and Watson [5] as shown in Fig. 1. These
potentials have the form

where n, m = A and B. In Eq. (4), p is the reduced nu-
clear mass 3135.24 a.u. and h and I are the electronic
Hamiltonian and the isotope splitting operators, respec-
tively, given in Eqs. (5). E is the total energy of the sys-
tem, i.e., E=k~/2p+c~=k~/2p+c~, where k~/2p
and k~ /2p are the respective kinetic energies of relative
motion of the ion with respect to the neutral atom B and
3, and cz and c~ are the respective electronic energies.

The isotope splitting terms are approximated by their
asymptotic values as

&O. l~' l0 &—=[!—( )]fi..
2p

(6)

where E( ~ ) is the asymptotic value of the degenerate
molecular potential energies, viz. , E( ~ ) = es( ~ )

=e„(~). The asymptotic approximation used for deter-
mining the coupling matrix element should be very good
since, as Davis and Thorson showed, the coupling is im-
portant only at large internuclear separations where the
isotope splitting and the molecular potential energy split-
ting are comparable. (See Refs. [3] and [4] for details of
the derivation. ) Because He is more tightly bound relative
to H, this approximation should be valid.

The electronic Hamiltonian matrices can be expressed
using Eq. (2) as

and

] —
Pl R 2

—P2RV„(R)—: e ' —azR e

(10)

V (R) = V„(R)+a3e

where the parameters a
&

=7.9989, a2 = 1.219,
a3=9.555 31, P, =2.1696, P2=1.565 105, and

p3 = l. 253 921 were obtained to fit the ab initio
configuration-interaction (CI) results [6]. Since at the
ultra-low collision energies studied here, distant (large R)
collisions are expected to be important, we have modified
each of the adiabatic potentials by adding a polarization
term, which we represent by

V (R)= — 1 —exp
2R4

R
R

where a = l. 383 a.u. is the dipole polarizability of He [7],
and R, is an adjustable cutoff parameter. The choice of
R„ is somewhat arbitrary. However, we find (semiempiri-
cally) that values of R„between 4.5 and 5.5 a.u. appear to
be optimal. These R„values seem rather large, given the
tight electron distribution of He [8]. However, since
Browne believes [9] that the adiabatic CI potentials [6]

—,'[e~(R)+E„(R)] n =m
( lhI )=.

—,'[E (R)—e„(R)] num .
(7)

The two-state coupled equations for the (nuclear) scatter-
ing wave functions F„(R) and FB(R) are explicitly given

by

1 0

2p
p2 +

k~
V

2p

V V
2p

FB(R )

F„(R)

0,05

U

~ —0.00
0
CL

where V+ =
—,
'

[ V (R )+V„(R ) ] and

V (R)=E (R)—E(~),
V„(R)=E„(R)—E( ~ ) .

(9)

It is important to emphasize that Eqs. (8) do not contain
any coupling resulting from the VB term in Eq. (5b). The
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FIG. 1. Adiabatic potentials of He, + system.
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include some amount of polarization, at least at inter-
mediate separations, we consider the large R values to
be reasonable. Within this range of R, we selected three
illustrative values for the calculations described below.
Because of the attractive well in the X„potential, several
predissociation rovibrational levels lead to shape and or-
biting resonances in the cross sections at very low col-
lision energies.

By solving Eq. (8) (by carrying the solution out to
100ao) we obtained the charge-transfer cross sections for
the forward and backward processes, of and o.b, shown
in Figs. 2(a) and 2(b). As expected, sharp resonance
structures are apparent in of and o.b, particularly below
collision velocity v -0.001 a.u. The corresponding rovi-
brational levels (v, J) are shown in Fig. 2. The dips in
these cross sections around v -0.0003 a.u. are caused by
large destructive interferences among a small number of
contributing partial waves that are scattered from the g
and u potentials. (The dip was not present in the elastic-
scattering cross sections. ) The rather uniform oscilla-
tions above v -0.001 a.u. are also due to interference be-
tween scattered waves in the g and u states. For energies
well above the threshold, the charge-transfer S-matrix
elements are proportional to sin[11~ —rl'„], where r)~ and
g'„represent elastic phase shifts corresponding to the g
and u potentials, respectively. Oscillations as a function
of I do not wash out in the partial wave sum at low ener-
gies, resulting in coherent oscillations in the cross sec-
tions. For energies decreasing to the threshold value
( —1.3 meV), crf drops sharply (vanishing at threshold),
while o.

b increases. Since we only included energetically
open channels in the calculations, we do not observe
Feshbach resonances [4]. The cross sections at velocities
less than -0.0006 a.u. are found to be somewhat sensi-
tive to the cutoff parameter R . The cross sections are
also sensitive to variations in V —V„. A truly ab initio
treatment of this collision problem will require an accu-
rate determination of the molecular potentials.

In Fig. 3 the theoretical forward and backward rate
coefficients kf and kb for R„=4.5, 5.0, and 5.5 a.u. , cal-
culated by integrating the product of velocity v, o (v), and
f (v) from 0 to oo [where f(U) is the Maxwell-Boltzman
velocity distribution] are compared with the measure-
ments by Schauer et al. [1] for temperatures from 8 to 80
K. The rate coefficients are found to be sensitive to R at
low temperatures below 40 K, although they rapidly con-
verge above this temperature. The minimum in kb at
10—20 K is the combined effect of the sharp increase of
o.

b with decreasing velocity and the falloff of the
Maxwell-Boltzman function. For the exact resonant
cases, He+- He or He+- He, the resonant charge-
transfer cross sections possess maxima in the very low en-
ergy region and remain nearly constant at much lower
energies, as shown explicitly by us [10] for the H+-H and
He2+-He.

In Fig. 4, we show the natural logarithm of the ratio
kb/kf as a function of the inverse temperature. This plot
is significant since in the case of the Boltzman distribu-
tion, the slope of the curve is expected to yield the iso-
tope energy splitting, i.e., 1.3 meV. Figure 4 shows that

the slope is rather insensitive to R, having the values
0.1302, 0.1304, and 0.1337 meV for R„=4.5, 5.0, and 5.5
a.u. , respectively.
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FIG. 2. Charge-transfer cross section for (a) forward and (b)
backward processes with R„=5.0 a.u. . When R„ is varied be-
tween 4.5 and 5.5 a.u. , the peak positions shift slightly. Howev-
er, the features are essentially the same. Vibrational and rota-
tional quantum numbers (v,J) of the peaks are the following: In
(a), (1) 22, 4; (2) 21, 6; (3) 20, 7; (4) 19, 11; (5) 19, 12; (6) 18, 15; (7)
18, 16; (8) 17, 17; (9) 17, 19; (10) 17, 20; (11) 16, 22; (12) 16, 23;
(13) 15,25; (14) 14, 26; (15) 14, 28; (16) 13, 29; (17) 13, 30.
Among them, (4), (6), (9), (11), (14) and (15) are shape reso-
nances, while the others are orbiting resonances. In (b), (1) 20,
7; (2) 19, 11; (3) 19, 12; (4) 18, 15; (5) 18, 16; (6) 17, 17; (7) 17, 19;
(8) 17, 20; (9) 16, 22; (10) 16, 23; (11) 15,25; (12) 14, 26; (13) 14,
28; (14) 13, 29; (15) 13, 30. Here (2), (4), (7), (9), (12), and (13) are
shape resonances, while the others are orbiting resonances.
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FIG. 3. Rate coefficients for kf and kz. Solid line, calculated

kf, dashed line, calculated kb; o, forward process, (experiment

[1]); A, backward process (experiment [1]). The lines A, 8, and

C represent R, =4.5, 5.0, and 5.5 a.u. , respectively.

FIG. 4. van't Hoff plot, i.e., logarithm of ratio of kb!kf vs.

inverse temperature. The lines A, B, and C represent R, =4.5,

5.0, and 5.5 a.u. , respectively. Symbols represent experimental

values [1].

In summary, the present quantum-mechanical two-

state, close-coupling calculations give rate coefficients kf
and kb for the nonresonant charge-exchange processes

discussed here that are in fairly good agreement with re-

cent measurements. The calculated ratios kblkf are in

very good agreement with the measurements except at
the lowest temperature measured.

This work was supported in part by the U.S. Depart-
ment of Energy, Office of Energy Research, Office of
Health and Environmental Research, under Contract No.

W-31-109-Eng-38 (M.K.), by the Office of Basic Energy
Sciences, Division of Chemical Sciences; and by the
Robert A. Welch Foundation (C.M.D. and N.F.L.). The
computations were carried out at the National Energy
Research Supercomputer Center facilities in Livermore.
The authors appreciate having access to the experiments
of Dr. G. H. Dunn and his colleagues prior to publica-
tion. One of the authors (C.M.D.) thanks Dr. W. R.
Thorson for discussions concerning the approach used in

Ref. [4]. We also thank Dr. N. Shitnakura for providing

a computer program for rovibrational level calculations.

[1] M. M. Schauer, S. R. Jefferts, and G. H. Dunn, Phys. Rev.

A 42, 5332 (1990).
[2] Yu N. Demkov, Zh. Eksp. Teor. Fiz. 45, 195 (1963) [Sov.

Phys. —JETP 18, 138 (1964)].
[3] W. R. Thorson and J. B. Delos, Phys. Rev. A 18, 135

(1978).
[4] J. P. Davis and W. R. Thorson, Can. J. Phys. 56, 996

(1978).
[5] J. C. Y. Chen, C.-S. Wang, and K. M. Watson, Phys. Rev.

A 1, 1150 (1970).
[6] J. C. Browne, J. Chem. Phys. 45, 2707 (1966);J. C. Browne

and F. A. Matsen, Phys. Rev. 136, A1227 (1964); B. K.
Gupta and F. A. Matsen, J. Chem. Phys. 47, 4860 (1967).

[7] A. A. Radzig and B. M. Smirnov, Reference Data on

A toms, Molecu les, and Ions (Springer-Verlag, Berlin,

1980)~

[8] In electron-He scattering, for example, values of R„be-
tween 1 and 2 a.u. give good agreement with measured

cross section. See, for example, J. O' Connell and N. F.
Lane, Phys. Rev. A 27, 1893 (1983).

[9]J. C. Browne (private communication).

[10] M. Kimura and N. F. Lane, Phys. Rev. A 34, 421 (1986).


