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State-dependent cross sections and rate coefficients for the charge-transfer process
N**+H-—N3"(2s3)+H™ for I =s,p,d in the collision-energy range from 0.1 eV to 8 keV are present-
ed. A close-coupled quantum-mechanical method is employed, and it is argued that the molecular-state
expansion method without translation factors is a valid low-energy approximation for charge-transfer
processes. We show that the method does not suffer from the electron-origin problem. The spin-coupled
valence-bond method is used to construct both ab initio potential curves and adiabatic coupling ele-
ments. The calculated cross sections exhibit variations with energy, which we propose are a manifesta-
tion of Stueckelberg oscillations. The cross sections are compared with measured total cross sections for
electron capture by N** ions in collisions with hydrogen. Agreement is excellent in the collision-energy
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range from 4.1 to 182 eV/amu.

PACS number(s): 34.70.+¢
I. INTRODUCTION

Charge transfer of multiply charged ions is important
in determining the ionization distribution in laboratory
and astrophysical plasmas produced by near thermal ion-
izing sources, and the resulting emission lines are valu-
able diagnostic probes of the neutral components of the
plasma.

Theoretical investigations of the state-dependent direct
charge-transfer processes

N4t (2s)+H—->N3"(3s3))+H™ (1)

for [ =s,p,d were undertaken by Feickert et al. [1] using
a coupled-channel quantum-mechanical method. They
obtained cross sections and rate coefficients (1) for gas
temperatures in the range between 30 to 10° K. Cross
sections for the total charge-transfer process

Nt "+H-N*"+H" )

were measured by Huq, Havener, and Phaneuf [2] using a
merged-beam apparatus for collision energies from 1.2 to
982 eV/amu.

In this study we calculate the cross sections and rate
coefficients for the process (1) in the center-of-mass
collision-energy range from 0.1 eV to 8 keV using a fully
quantum-mechanical method. We improve the calcula-
tion of Ref. [1] by performing a full ab initio calculation
of the potential curves and coupling elements for states of
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the NH** molecular ion. We insure that the potentials
tend at large distances to the polarization form so that
the low-energy behavior of the cross sections is correctly
predicted. The spin-coupled valence-bond (SCVB)
method is used to calculate adiabatic coupling elements.
The adiabatic potentials and the coupling elements are
then used to construct diabatic potential curves and dia-
batic coupling elements. At low energies, rotational cou-
pling to the II states may be ignored and we restrict the
investigation to charge transfer involving the singlet'S
states of the NH** ion. In Sec. III we review the scatter-
ing theory used in the present calculation. The results
and discussion are presented in Sec. IV. Unless otherwise
stated, atomic units are used throughout.

II. SCVB CALCULATIONS

The spin-coupled valence-bond or SCVB approach to
electronic structure is a powerful ab initio technique that
provides accurate, compact descriptions of ground- and
excited-state potential-energy surfaces. The single-
configuration spin-coupled approach has been applied to
a very wide range of chemical problems and has provided
important insight into the structure and bonding in whole
series of molecular systems. Multiconfiguration SCVB
calculations have concentrated mostly on diatomic and
triatomic species. Previous studies of charge-transfer sys-
tems and multiply charged ions include, among many
others, the CH*>" and CLi*" systems [3] and the H,0*"
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cation [4]. A number of reviews of the SCVB approach
are available [5], including a detailed survey of represen-
tative recent applications [6].

The spin-coupled wave function for an N-electron sys-
tem is based on a single spatial configuration with one
singly occupied orbital for each electron. In general, the
N orbitals ¢,,¢,, . . ., ¢y are all distinct and nonorthogo-
nal. The spin-coupled wave function consists of an an-
tisymmetrized product of this single spatial configuration
and a linear combination of the complete set of N-
electron spin functions {©%.,k = 5 f&} corre-
sponding to total spin S (and prOJectlon M). The spin-
coupled wave function is thus an eigenfunction of both § g2
and §,. For a four-electron system with no net spin
(S =0), the dimension of the spin space is f&=2.

The spin-coupled wave function for NH*" takes the
form

ss
Uy = 3 csi(NDV2A(16,6364095;1) » (3)
k=1

in which A4 is the antisymmetrizing operator and the cg,
which reflect the relative importance of the different
modes of spin coupling, may be termed spin-coupling
coefficients. Each of the orbitals was expanded in a basis
set {X,},

= X CupXp > 4)
p=1

without any restrictions on the form of the orbitals or on
the overlaps between them. The basis set used in the
present work for N-H consists of (12s7p3d /5s2p1d)
Gaussian-type  orbitals (GTO’s) contracted to
[6s4p3d /3s2p1d]. Spherical GTQO’s were used (5 d com-
ponents), resulting in a total of 47 basis functions. This
basis set, which is listed in Table i, is of triple-{-valence
quality, augmented with diffuse functions and polariza-
tion functions. The c,, in Eq. (4) and the cg; in Eq. (3)
were fully optimized simultaneously by means of a
powerful procedure that utilizes the second derivatives of
the energy with respect to the variational parameters.
Further details of the computational techniques are avail-
able in the review articles cited above.

For all geometries considered, the converged spin-
coupled orbitals for the lowest singlet state of NH** were
found to possess pure o symmetry and could be charac-
terized as

6, =N3**(1s), ¢,=N3*(1s"),
¢ =N3*(25), ¢,~N3>*(2s').

At convergence, each of the spin-coupled orbitals
satisfies an equation that can be cast in the form

ﬁzﬁ¢u=£#¢u ’ (5)

where the Hermitian operators ﬁff(u=l,2,. ..N) are
constructed from N —1 electron quantities in which oc-
cupied orbital ¢, is missing. Each operator generates a
complete set or stack of orthonormal solutions, which we
denote ¢L” (i=1,2,...,m). The orbitals ¢L” correspond

3847

TABLE I. Exponents a and contraction coefficients k; for
the GTO basis set used in the SCVB calculations.

Nitrogen Hydrogen
Type k, a; Type k; a;

s 0.000 760 13520. s 0.025374 33.64
0.006 076 1999. 0.189 684 5.058
0.032 847 440.0 0.852933 1.147
0.132396 120.9 s 1.0 0.3211
0.393261 38.47 s 1.0 0.1013
0.546 339 13.46 p 1.0 1.0

s 0.252036 13.46 P 1.0 0.3
0.779 385 4.993 d 1.0 0.3

s 1.0 1.5690

s 1.0 0.5800

s 1.0 0.1923

s 1.0 0.05

p 0.016916 35.91
0.102 200 8.480
0.338 134 2.706
0.669 281 0.9921

p 1.0 0.3727

p 1.0 0.1346

p 1.0 0.06

d 1.0 1.8

d 1.0 0.6

d 1.0 0.2

to the motion of one electron in the field of the other
N —1 electrons. In general, orbitals in different stacks
are not orthogonal to one another. One solution in each
stack, usually ¢“), coincides with the occupied orbital ¢,,.
The remaining orbitals are termed virtual orbitals and
provide excellent first approximations to excited states.

Wave functions for excited states, as well as an im-
proved description of the ground state, may be obtained
by means of a nonorthogonal configuration-interaction
calculation involving the spin-coupled configuration and
typically 10?-10° excited configurations. These excited
configurations are generated by replacing one, two, or
more occupied orbitals by virtual orbitals from their
respective stacks. Such replacements are termed vertical
excitations. The final multiconfiguration wave functions,
known as spin-coupled valence-bond or SCVB wave func-
tions, take the form

Your= 3 esliy

iy k

iy (N2

(i) (i, (lN

X A", k) - (6)

Each spatial configuration may generate more than one
valence-bond (VB) structure, on account of the different
modes of spin coupling labeled by the index k. The
coefficients cg (i,...iy) for each state, and the corre-
sponding total energies, are determined by constructing
the matrix of the Hamiltonian and the overlap matrix
over the chosen set of structures, and solving the usual
secular problem.

Excited spin-coupled configurations for NH*t were
generated by means of single and double replacements of
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orbitals ¢; and ¢, by virtual orbitals taken from their
own stacks. In addition to these vertical excitations,
configurations were included in which one orbital is dou-
bly occupied. The chosen set of virtual orbitals consists
of 50,3, 18 virtuals from stack 3 and of 60,3, 18 virtu-
als from stack 4. This gives rise to a total of 135 spatial
configurations (241 VB structures) of =" symmetry.

The eight lowest roots were extracted from the SCVB
calculations; the calculated total energies are reported in
Table II. Asymptotic energies for these eight states are
compared with experimental data in Table III. The
SCVB values were obtained by removing the Coulombic
repulsion in the N** +H™ states from the corresponding
SCVB energies for a nuclear separation of 30 bohr.
These eight states span a range of more than 60 eV. The
asymptotes relevant to the charge-transfer process are
N**(2s)+H(1s) and the three N3*(2s3/)+H™" channels.
It is clear from Table III that these asymptotic splittings
are reproduced fairly well. The main limitation of the
current SCVB calculations is the quality of the modest
GTO basis set rather than the need to include further vir-
tual orbitals and excited configurations. Asymptotically,
the N**"(2s)+H potential behaves as —32/R*, close to
the exact value —36/R*.

Matrix elements of 3/0R were calculated from these
compact SCVB wave functions by numerical

differentiation. This required separate SCVB calculations
for nuclear separations of R —& and R +§ in order to
generate wave functions W,(r/R —§8) and ®,(r|R +9),
where the index i labels the different states. The overlap
integrals between GTO’s calculated for the nuclear sepa-
ration R were then used to form the quantity

(W,(r|R —8)|¥;(r|R+8))
28

(7

This simple central difference approximation to
(W¥,;|0/0R N’j ) does not take full account of the changes
in the basis functions with R. Calculations that included
this term also suggest that its contribution is small, at
least for NH*", but that its inclusion can make this pro-
cedure numerically unstable and very sensitive to the
choice of §. One criterion for the consistency of the nu-
merical differentiation employed here is the equality

o o)t

which is typically satisfied to at least four significant
figures. The values of (¥,|3/dR|¥;) obtained by means
of Eq. (7) are not very sensitive to the value of § and,
indeed, the optimum value of § remains constant over a

9

R w,.> , (8)

TABLE II. Potential-energy curves (adiabatic) from SCVB calculations for the eight lowest 'S states of NH*".

R (bohr) Energy (hartree)
(1) () (3) (4) (5) (6) (7 (8)
2.00 —49.758436 —49.244874 —48.823818 —48.538674 —48.206061 —47.838140 —47.785531 -47.666 169
3.00 —50.191980 —49.607899 —49.309605 —49.060428 —48.772188 —48.382073 —48.309475 —48.197111
3.50 —50.327942 —49.731397 —49.447343 —49.204263 —48.858200 —48.472863 —48.463826 —48.357601
3.75 —50.383281 —49.783215 —49.503137 —49.262041 —48.881990 —48.531890 —48.497557 —48.421375
4.00 —50.432023 —49.829514 —49.552142 —49.312788 —48.897886 —48.588196 —48.527604 —48.470781
4.25 —50.475245 —49.870911 —49.595502 —49.357726 —48.908315 —48.638350 —48.567358 —48.499308
4.50 —50.513824 —49.908037 —49.634160 —49.397795 —48915180 —48.682937 —48.611729 —48.515979
4.75 —50.548455 —49.941495 —49.668813 —49.433700 —48.919838 —48.722367 —48.653732 —48.552024
5.00 —50.579702 —49.971786 —49.700042 —49.466045 —48.923350 —48.756930 —48.691443 —48.589630
5.25 —50.608030 —49.999304 —49.728348 —49.495423 —48.926660 —48.786893 —48.724627 —48.622835
5.50 —50.633756 —50.024555 —49.754240 —49.522755 —48930700 —48.812349 —48.753020 —48.652099
5.75 —50.657359 —50.047614 —49.777984 —49.546827 —48.935530 —48.834055 —48.777794 —48.678489
6.00 —50.679031 —50.068968 —49.799593 —49.569716 —48.942276 —48.852337 —48.798222 —48.702282
6.25 —50.699013 —50.088571 —49.819233 —49.591400 —48.951359 —48.868261 —48.813854 —48.723017
6.50 —50.717422 —50.106648 —49.837841 —49.610664 —48.961951 —48.882899 —48.825304 —48.742687
6.75 —50.734472 —50.123434 —49.855018 —49.628237 —48973529 —48.897075 —48.832724 —48.760557
7.00 —50.750312 —50.139057 —49.870915 —49.644409 —48.985509 —48.910956 —48.837143 —48.776834
7.25 —50.765062 —50.153623 —49.885640 —49.659275 —48.997469 —48.924423 —48.839623 —48.791684
7.50 —50.778664 —50.167227 —49.898627 —49.668971 —49.009082 —48.937425 —48.841022 —48.8043834
7.75 —50.791697 —50.179953 —49.912485 —49.686001 —49.020460 —48.949846 —48.841748 —48.817129
8.00 —50.803766 —50.191884 —49.924561 —49.698184 —49.031253 —48.961527 —48.842716 —48.827876
8.25 —50.815095 —50.203155 —49.935829 —49.709332 —49.041544 —48.972577 —48.847040 —48.833929
8.50 —50.825778 —50.213854 —49.946459 —49.720432 —49.051364 —48983031 —48.855517 —48.835030
8.75 —50.835838 —50.223950 —49.957088 —49.730275 —49.060665 —48.993012 —48.864824 —48.834550
9.00 —50.845352 —50.233634 —49.966475 —49.739551 —49.069553 —49.002366 —48.873971 —48.834028
9.50 —50.862881 —50.251299 —49.983926 —49.757189 —49.086070 —49.019667 —48.891170 —48.832655
10.00 —50.878684 —50.267094 —49.999791 —49.773685 —49.101101 —49.035267 —48.906838 —48.831497
15.00 —50.978513 —50.366786 —50.099034 —49.871038 —49.198366 —49.134199 —49.005873 —48.828497
20.00 —51.028500 —50.416690 —50.148944 —49.921039 —49.247942 —49.183824 —49.055645 —48.828120
30.00 —51.078496 —50.466644 —50.198895 —49.971039 —49.297787 —49.233599 —49.105511 —48.827960
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TABLE III. Asymptotic energies (in eV) of the eight lowest
3" states of NH*".

Asymptote Calculation Experiment
N3t (2s%!1S)+H” —63.962 —63.855
N3*(2s2p;'P)+H™" —47.312 —47.651
N3*(2p%'D)+H” —40.027 —40.436
Nt (2p%'S)+H?* —33.826 —34.673
N3*(2s3s;'S)+H* —15.506 —15.642
N**(2s3p;'P)+H" —13.759 —13.700
N3*(2s3d;'D)+H" —10.274 —10.646
N**(2s)+H(1s) 0.0) (0.0)

wide range of R so that the calculations are straightfor-
ward.

As a test of the central difference approximation to
(W¥;|3/0R l\lf ) embodied in Eq. (7) calculations were
carried out for the states of the NHe>" system treated by
Bacchus-Montabonel [7], who used an alternative method
that is based on the perturbation of a multiconfiguration
wave function selected by an iterative process. The two
sets of calculations employed the same basis sets and
were carried out at the same nuclear separations. Except
in regions of avoided crossings not considered in the per-
turbation methods, the potential curves and the nuclear
coupling matrix elements are in excellent agreement. The
matrix elements of /3R computed for the NH** system
using the SCVB wave functions are reported in Table IV.

TABLE IV. Matrix elements of /98R for NH**.

R (bohr) A43 A42 A,“

4.00 —0.0845
4.25 —0.1041
4.50 —0.1297
4.75 —0.1643
5.00 —0.2106 —0.0195
5.25 —0.2707 —0.0649
5.50 —0.3389 —0.1690
5.75 —0.3964 —0.2926
6.00 —0.4158 —0.4183
6.25 —0.3773 —0.4894
6.50 —0.3191 —0.4906 —0.0125
6.75 —0.2630 —0.4131 —0.0457
7.00 —0.1932 —0.3105 —0.0396
7.25 —0.1473 —0.2286 —0.0963
7.50 —0.1256 —0.1635 —0.1582
7.75 —0.1097 —0.1286 —0.5055
8.00 —0.0895 —0.0959 —1.4072
8.10 —2.0018
8.15 —2.1027
8.20 —0.0839 —0.0669 —1.9783
8.25 —0.0805 —1.6992
8.30 —0.0813 —0.0566 —1.4187
8.50 —0.0699 —0.6761
8.75 —0.0702 —0.0393 —0.2818
9.00 —0.0617 —0.0269 —0.1484
9.50 —0.0510 —0.0204 —0.0484

10.00 —0.0438 —0.0187 —0.0215
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III. SCATTERING FORMALISM

In a space-fixed coordinate system, the nonrelativistic
Hamiltonian for the NH*" system is

_____ 2 1 —1 il
HR, Ry == V& " 2pp, VRT3 z'
+ 2 V1(|R1—r'1|)+V2(lR2"r:|)
i=1
+ V(IR =R+ VY, , 9)

where R,R, are the coordinates of the nitrogen and hy-
drogen nuclei, respectively, and r; are the electronic
coordinates. The summations are over all N electronic
coordinates V| and V, are the electron-nuclear interac-
tion terms for the nitrogen and hydrogen nuclei, respec-
tively, Vy is the internuclear repulsion, and V,, is the
electron-electron repulsion term. It is convenient to in-
troduce a new set of coordinates {R . ,R,r;} related to
the space-fixed coordinates by

N
MR +M,R,+ 3 1;
i =1
I'lc.m.= M : ’

R=R,—R,,

(10

r,=r;—mR;—(1—7m)R,,

N

where M =M, +M,+ ¥ , and 7 is a parameter that
i=1

determines the choice of origin for the electronic coordi-

nates along the internuclear axis. Inserting Eq. (10) and

Ml
VRIZVVRc,m._vR_ 2 nV’i )

i=1

MZ
Ve, =1 Ve tVRT 3 -0V,
V.=>_v, +v,,
WM Rem i
into Eq. (9), we get
HR,, Rr)=H, +Hgeln)+Vym+V, , (11)

where H_. is the kinetic-energy operator for the
center-of-mass motion and

=__1 2
Hyg(n) oM, [VR+17,~§1 v,[]
1 N
o, [TV S
(12)
Val(n)= 2‘,[V(\R(1-n)+rl)+V2 IR —r;])]

i=1
+Vy(IR]), (13)
are the kinetic energy and electrostatic interaction Ham-

iltonians, respectively. For the particular value
n=n,=M,/(M,+M,), the origin of the electron coor-
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dinates is located at the center of mass of the two nuclei.
For this choice of the origin, the kinetic-energy cross
terms in Eq. (12) vanish. It is useful to express Hgg(n)
for arbitrary 7 in terms of Hyg(n=17,). We get

Hyg(n)= UTHKE(nO)U

7t 1 o2 1 2
= _—— U_
v 2u Vi 2AM, +M,) [Elvr,]
N
-3 v, (14)

where

U=exp(n' 3 V,-R)

i=1

is a translation operator, u=M M, /(M ,+M,) is the re-
duced mass of the nuclei, and 9'=%—m,. In deriving Eq.
(14) we made use of

U'VRU=Vg+ 3 7'V,, [V,,U]=0. (15)

i=1
In the same manner, we get
V() =U"Vy(no)U . (16)

We factor out the center-of-mass motion, and seek eigen-
functions of the Hamiltonian

H(p)=U" —ivi U+H,(n), an
2
where
1
=1 2 _ 2
H4(n) ZEIV,’ 2M,+ ;) [lglv, ] +Vyin)
+V (18)

is the adiabatic Hamiltonian. We use the quantal
perturbed-stationary-state (PSS) approximation

Y(R,r;(n))= Y F,(R)¢, (R,r;(7)), (19)
¥

where the ¢, are orthogonal eigenstates of the adiabatic
Hamiltonian

Ho4(md,=e,(R)$, (20

to find the scattering solutions. In it, the sum over y is
restricted to a subset of the complete adiabatic set {4, }.
We also refer to these states as channel states since each
#, correlates to an approximate atomic state in the
asymptotic region.

The adiabatic eigenstates defined in Eq. (20) describe
asymptotic states where the electron is coupled to the
motion of the nuclei. They do not correlate to true atom-
ic asymptotic states in which the electrons are coupled to
the motion of the center of mass of the individual atoms.
Electron translation factors [8] are often introduced to
address this problem. However, for low-energy collisions
of the type considered here, ansatz (19) is a valid approxi-
mation. We formulate below the PSS theory so that the

invariance of the resulting scattering wave equation with
respect to origin translation is explicitly demonstrated.

The eigenvalue ¢,(R) is the Born-Oppenheimer poten-
tial for the state y and the eigenstates ¢, are
parametrized by the orientation of the internuclear axis,
the origin parameter 7, and internuclear distance. The
PSS equations may be obtained by requiring that

S[(VIH(n)|¥)—E(¥Y|V)]=0, 2D

where 8 is an arbitrary variation of the set {F,(R)} and
E is the collision energy, the bracket notation signifying
integration over all coordinates. We express the adiabat-
ic eigenstates for arbitrary 7 in terms of the adiabatic
states defined for =1, (nuclear center of mass):

6, (R,r,(n)=U"6(R,r,(ny)) , (22)

where we have used Egs. (15), (16), and (18). Using Eq.
(22) in Eq. (19), expression (21) becomes

5 [fd3R (F'[Vy—i A(R)?F—2uF [¥(R)—E JF]

=0, (23)

where F Tand F are row and column matrices, respective-
ly, and the yth entry to F is the wave function FY(R).
The square matrices A and V are defined below. Carry-
ing out the variation we obtain the set of coupled equa-
tions [9]

A)F(R)+V(R)F(R)=EF(R) , (24)

[AR)],;=i [d’r, - - d’ryd}(R,1,(n)U 'V
XU¢;(R,r,, (1))
=i [d’r, - d’ry¢F(R,1,,(n0))

XVgd;(R,r,,(10)),

[V(R)];=8,&(R)+ 3 A Ay
_— iy = <. 2‘LL
k#j

are vector and scalar potentials, and [ is the unit matrix.
The potentials given in (25) are independent of ' and the
Schrodinger equation (24) and the S matrix, and do not
depend on the choice of electronic coordinate origin
along the internuclear axis.

We may solve Eq. (24) for F(R); but it is more con-
venient to introduce a new amplitude G =W F, where W
is a unitary matrix. If F is a solution to Eq. (24), then G
is also a solution with the vector and scalar potentials A
and V replaced by

A=WAW '+iwv,w',
V=wyw . (26)

If the field strength tensor [9] associated with A vanishes
at all R, then a transformation matrix W can be found so
that the vector potential A’ also vanishes for all R. This
is the case for which A does not possess angular com-
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ponents, and is a function _A_(R)=f{ A(R) of the internu-

clear distance only. For it, we construct W by solving
aw
dR

with the boundary condition lim R — o W;; —8;;¢;. Us-
ing Egs. (27) and (26), we obtain

+ A, W=0 27

;—;gvig(RHZ'(R)g(R):Ec_;(R) : (28)
in which ¥’ is the diabatic potential [10] and its off-
diagonal matrix elements are responsible for driving
collision-induced atomic transitions. We solve for G by
introducing a partial-wave decomposition

g (R)

2 Y,.(R), (29)

G,(R)=3

Lm

where Y, are the spherical harmonics. Inserting Eq.
(29) into Eq. (28), we get the radial coupled equations

d> 1U+1)

R)gm +2uEg!
dR?  2uR? 87" +2ukgy

!
v 2 2 Uy
7

=0 ,
(30)

o (RZEWY WL,

The radial functions satisfy the scattering boundary con-
ditions
m 1 :
lim g7 (R)— ——= = 8, ik, R)+KL m(k, R)
>
k,=V2ulE—¢, ()],

where j;, and 7, are, respectively, the regular and irregu-
lar Bessel-Ricatti functions [11] for neutral channels, and
the regular and irregular Coulomb functions [11] for the
Coulomb channels. K ;',r’ =K'is a real symmetric matrix
and the S matrix is given by

(3D

(32)

The cross section for the system to undergo an inelastic
transition from atomic state i to j is

oli—j)= k22(21+1ls’| : 33

IV. RESULTS AND DISCUSSION

The Born-Oppenheimer potentials for the exothermic
channels of '3 symmetry separating to N> and H,
which lie below doubly excited 2p 3! states and the singly
excited 254/ states, are illustrated in Fig. 1 and listed in
Table II. Capture into the states separating to N3 (2p3/)
involves a two-electron transition. The interaction with
the entrance channel is correspondingly weak and cap-
ture leading to the doubly excited ions makes only a small
contribution to the total charge-transfer cross sections.
Capture into the states separating to N> (2s4/) involves
a one-electron transition, but the avoided crossings occur

at large internuclear distances around 75a and the cap-
ture probability is negligible. Because we are primarily
interested in the cross sections for charge transfer at low
collision energies, we restrict the expansion basis in the
scattering equations to the 'X7T states that have the
separated-atom limits N**(2s)+H, N37(2s3d)+H™,
N3*"(2s3p)+HT™, and N3*(25s3s)+H™'. The remainder
of the adiabatic states whose potential curves are shown
in Fig. 1 but are not included in expansion (19) contribute
at collision energies higher than the ones of interest here.
States with IT symmetry are not included in (19) since the
radial adiabatic coupling between X states is the predom-
inant charge-transfer mechanism at lower collision ener-
gies. We set the label ¥ =4 for the neutral N** +H chan-
nel, and y=3,2,1 for the Coulomb channels
N3*(3d)+H™, N3*(3p)+H™, and N3T(3s)+HT', re-
spectively.

In the adiabatic picture the scattering equations are
given by Eq. (23). In this picture, the charge-transfer
transitions are driven by the off-diagonal elements of the
vector potential matrix A. The higher-order term pro-
portional to 1/2u in the scalar potential matrix ¥ is small
and is neglected. Because we are dealing with adiabatic
states of 2 symmetry, the adiabatic vector coupling ma-
trix has nonvanishing radial components that are func-
tions of the internuclear distance only, i.e., A= RA (R).
In Fig. 2 we plot the matrix coupling elements A4,;(R),
A4 (R), and A4, (R), where the subscripts refer to the
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FIG. 1. Adiabatic '=" potential curves for the NH** system
as function of the internuclear distance R. The states are la-
beled by nin’l’, the electronic configuration of the N3 jon.
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channel indices and

9

Aij(R)=<¢i 3R

where the angle brackets signify integration over all elec-
tronic coordinates. In Fig. 2, A4, (R) is the dominant
matrix element. It has a narrow Gaussian profile cen-
tered at R =8.1 bohr, a region near a strong avoided
crossing (see Fig. 1) of the adiabatic potential-energy
curves for the N**(3d)+H™ and N*" +H states. The
A4 (R) and A4 (R) functions have similar but broader
and shallower Gaussian shapes centered at R =~6.2 and
6.0 bohr, respectively. The peaks correspond to weak
avoided crossings (not discernible in Fig. 1) between the
N**+H and the N**(2s3p)+H ™", N*"(253s)+H" adia-
batic potential curves. The couplings 4;,, 43, and 4,,
do not contribute to the direct charge-transfer process in
first order and so we do not include them in our approxi-
mation. We use the fact that A is a Hermitian matrix to
find the remaining matrix elements.

It is possible to solve the adiabatic equations (24) for
the S matrix, but it is more convenient to work in the dia-
batic picture. In this picture the scattering equations are
given by Eq. (28), and the charge-transfer transitions are
driven by the off-diagonal matrix elements of the diabatic
potential ¥’. We calculated the diabatic potential matrix
by first solving Eq. (27) for the transformation matrix W,

0.0 [N T ‘\._.'\ T . ,/l::z
o\ ot T
.\. ' ./ /l
4,1\.\ \ /./ / /
N/
0.5 N2 -
; 10 ~
o
£
a
3
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I
1 [ | | |
4 5 6 7 9 10
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FIG. 2. Radial adiabatic matrix elements A4;(R) as a func-
tion of the internuclear distance R. The subscripts refer to the
channels assignment given in the text.
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FIG. 3. Diabatic 'S* potentials for the NH** system as a

function of the internuclear distance R. The labels correspond
to the asymptotic atomic limits of the diabatic potentials.

and then using the transformation law (26). The diagonal
elements of the diabatic potential matrix are illustrated in
Fig. 3. In the molecular region the diabatic and adiabatic
curves differ significantly. The avoided crossings in the
adiabatic picture are real crossings in the diabatic pic-
ture. In the asymptotic region, at large R the adiabatic
and diabatic potential curves are identical and approach
the asymptotic atomic energies. The off-diagonal ele-
ments of the diabatic potential matrix are shown in Fig.
4. Unlike the adiabatic coupling matrix elements, the di-
abatic couplings are not localized and do not display a
Gaussian profile. Instead, they exhibit broad features
throughout the molecular region. We reduce the diabatic
Schrodinger equation (28) to a set of radial equations (30),
which we solve using an implementation of the
logarithm-derivative method of Johnson [12].

The cross sections for the three state-selective charge-
transfer transitions are illustrated in Fig. 5. At low col-
lision energies the N*"+H->N3*(3d)+H™ charge-
transfer cross section [0(4—3)] is predominant, and in
the collision-energy range between 0.1 and 10 eV, the
cross sections for charge transfer into the 3p and 3s states

Diabatic Coupling (a.u.)

Rla.u)

FIG. 4. Diabatic off-diagonal coupling curves for the NH*"
system as a function of the internuclear distance R. Subscripts
refer to the channel index given in the text.
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FIG. 5. State-dependent charge-transfer cross sections

o(i—j), where i,j, represent the initial and final channel index,
respectively, given in the text. E is the collision energy in the
center-of-mass frame in units of eV.

of N3* are negligible. At 0.1 eV, 0(4—3) has the value
52X107" cm?, and as the collision energy increases,
0(4—3) decreases. In the entire energy range the cross
sections exhibit strong oscillatory behavior superimposed
on a general monotonic trend. We interpret these struc-
tures as a type of Stueckelberg oscillation [13].

Wave phenomena such as rainbow scattering, and glo-
ry and Stuekelberg oscillations have been observed in the
measurements of the elastic and inelastic differential
cross sections for charge transfer in various systems [14].
Stuekelberg oscillations are associated with the rapid
variation of the differential cross section with respect to
the scattering angle. When the differential cross section
is angle integrated, the averaging effect usually results in
a total cross section that varies smoothly with collision
energy. However, oscillations in the total charge-transfer
cross sections with respect to the collision energy have
been observed in inelastic asymmetric ion-atom collisions
at high energies [15].

Within the two-state approximation the cross section
for charge transfer from channel 0 to 1 may be expressed
by the general formula [16]

0 47k, QI+1)y?
0! kg I(k0+k1X%)2

Sinz( T ), T = 8‘[1_ 65) )

(35)

where k,, and k| are the wave numbers for the entrance
and exit channels, respectively, Y, is the mixing parame-
ter [16], and 8¢, and 8! are coupled-channel phase shifts
[16]. Olson [13] used an analytic stationary-phase pro-
cedure and a semiclassical approximation for the phase
shifts. He showed that Stuekelberg oscillations persist in
the angle-averaged total cross sections, and identified
these features in the experimental measurements of Perel,
Vernon, and Daley [15].

We have used the semiclassical approximation for the
phase shift 7, in a two-state approximation to o(4—3)
shown in Fig. 5. Because we are concerned here with

low-energy collisions, the high-energy analytic approxi-
mation of Olson is not valid here. We evaluated all semi-
classical phase shifts numerically and were able to repro-
duce all the local peaks in o(4— 3) illustrated Fig. 5. We
conclude that the structures in 0(4—3) are a manifesta-
tion of the Stueckelberg oscillations. Although we have
been successful in reproducing the oscillatory structure
within the semiclassical approximation, the absolute
values of the cross section are not predicted accurately in
this approximation. A complete detailed description of
the semiclassical calculation will be presented elsewhere.

At collision energies near 200 eV, o(4—2) increases
rapidly and is equal to o(4—3) at 290 eV, with a value of
1.1X1071 cm? At energies between 0.2 and 2 keV,
charge transfer into the N*>*(3p) state dominates.

The qualitative features of these cross sections may be
understood from the diabatic potential curves shown in
Fig. 3. We view charge transfer occurring because the
N** +H potential curve, in which the ion and the hydro-
gen atom initially approach, crosses the potential curve
of a molecular state that correlates to one of the
N3*"+H™ atomic states. During the approach, the sys-
tem makes a transition at the crossing and exits into one
of the N** +H™ repulsive Coulomb curves. In Fig. 3 the
first crossing occurs near R =28 bohr, where the potential
N**+H curve crosses the N**(3d)+H™ curve. At low
collision energies the approaching nitrogen ion and hy-
drogen atom do not have enough energy at the larger im-
pact parameters to penetrate the small R region. There-
fore, states whose potential curves cross at larger internu-
clear distances are more accessible to the colliding sys-
tems and charge transfer into them is favored. This argu-
ment explains the large cross section, at low energies, into
the N3*(3d) state. At higher collision energies the col-
liding system samples the regions with smaller R, and
charge transfer into states with crossings at smaller R be-
come significant. This simplified picture is consistent
with the detailed quantum-mechanical calculations of the
cross sections illustrated in Fig. 5.

We have carried out calculations only for the singlet
states of the quasimolecule. We expect that at intermedi-
ate energies the singlet and triplet cross sections are not
sensitive to small differences in the singlet and triplet
molecular curves. In Fig. 6 we present the sum of the
charge-transfer cross sections into the N>¥(2s3/) states
and compare them to the total charge-transfer cross sec-
tions measured by Huq, Havener, and Phaneuf [2]. The
agreement is close between energies of 4.1 and 182
eV/amu. The close agreement suggests that the singlet
and triplet cross sections are indeed similar and that cap-
ture into N3*(2s3/) is the dominant charge-transfer
mechanism. The total cross section has a local maximum
at 70 eV/amu. At 70 eV/amu the cross sections for cap-
ture into N>*(3d) and N**(3p) are similar, with values
of 1.4X 107 1% and 8.44 X 107 1® cm?, respectively.

At velocities below 4.1 eV/amu differences occur be-
tween the measured and total singlet cross sections.
Some of the discrepancy is due to the greater sensitivity
of the predictions to the molecular parameters at low en-
ergies and the failure of our assumption that the singlet
and triplet cross sections are comparable. However, we



3854 B. ZYGELMAN et al.

Cross Section (10°'¢ cm?)

N L I L L
0.01 0.1 1 10 100 1000
Energy (eV/iamu)

FIG. 6. Total calculated singlet-state charge-transfer cross
section N*"+H—3,_ N’"(3)+H" (open circles). Total
measured cross section for process N**"+H—-N3"+H" from
Ref. [2] (filled triangles). E is the collision energy.

do not believe all of the discrepancy can be attributed to
defects in the theoretical approach at low energies. The
theory makes the strong prediction that the cross section
will ultimately rise rapidly at low energies as the long-
range polarization attraction causes trajectories to pass
through the crossing region. In contrast the measured
cross section appears to be diminishing toward low ener-
gies. At energies above 500 eV/amu, additional channels
begin to play a major role and our theoretical predictions
become uncertain.

In Table V we present the calculated rate coefficient
corresponding to a Maxwellian distribution for the pro-
cess (1) in the range of gas temperatures from 10* to 10’
K. We compare our calculated rates to those given in
Ref. [2]. At low temperatures the two rates are compara-
ble. At these energies, charge transfer into the N**(3d)
state is the dominant one and our cross sections are in
rough agreement with the ones obtained by Hug,
Havener, and Phaneuf. At higher temperatures the rate
coefficients given here are significantly larger than those
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TABLE V. Calculated rate coefficients for the singlet

charge-transfer process (1).
units of 10~° cm®/s.

The rate coefficients are given in

T (K) Rate Rate (from Ref. [2])
1x10* 5.4 3.8

3x10* 8.5 54

1X10° 14 8.2

3X10° 22

6X10° 32

1X10° 42

3X10° 83

1x10’ 170

reported in Ref. [2]. The behavior of the state-dependent
cross sections as a function of the collision energy differ
for the two calculations. In our calculation the cross sec-
tion for charge transfer into the N>"(3p) state becomes
comparable with the cross section into the N**(3d) state
at around 200 eV, whereas in Ref. [2], this occurs at a
much lower energy (around 20 eV).

The N3*(3d) state radiates preferentially to the
N3*(2p) state, giving rise to emission lines near 28.35 nm
but there is a weak transition to the N**(3p) state with a
branching ratio of 2X 10~ 2 at a wavelength of 405.8 nm.
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