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Charge transfer of N + with atomic hydrogen
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State-dependent cross sections and rate coe5cients for the charge-transfer process
N ++H~N'+(2s3l)+H+ for I =s,p, d in the collision-energy range from 0.1 eV to 8 keV are present-

ed. A close-coupled quantum-mechanical method is employed, and it is argued that the molecular-state

expansion method without translation factors is a valid low-energy approximation for charge-transfer

processes. %'e show that the method does not suffer from the electron-origin problem. The spin-coupled
valence-bond method is used to construct both ab initio potential curves and adiabatic coupling ele-

ments. The calculated cross sections exhibit variations with energy, which we propose are a manifesta-

tion of Stueckelberg oscillations. The cross sections are compared with measured total cross sections for
electron capture by N ions in collisions with hydrogen. Agreement is excellent in the collision-energy

range from 4.1 to 182 eV/amu.

PACS number(s): 34.70.+e

I. INTRODUCTION

Charge transfer of multiply charged ions is important
in determining the ionization distribution in laboratory
and astrophysical plasmas produced by near thermal ion-
izing sources, and the resulting emission lines are valu-
able diagnostic probes of the neutral components of the
plasma.

Theoretical investigations of the state-dependent direct
charge-transfer processes

N +(2s)+H~N +(3s3!)+H+

for 1 =s,p, d were undertaken by Feickert et al. [1] using
a coupled-channel quantum-mechanical method. They
obtained cross sections and rate coefficients (1) for gas
temperatures in the range between 30 to 10 K. Cross
sections for the total charge-transfer process

N4++H N'++H+

were measured by Huq, Havener, and Phaneuf [2] using a
merged-beam apparatus for collision energies from 1.2 to
982 eV/amu.

In this study we calculate the cross sections and rate
coefficients for the process (1) in the center-of-mass
collision-energy range from 0.1 eV to 8 keV using a fully
quantum-mechanical method. We improve the calcula-
tion of Ref. [1] by performing a full ab initio calculation
of the potential curves and coupling elements for states of

the NH + molecular ion. We insure that the potentials
tend at large distances to the polarization form so that
the 1ow-energy behavior of the cross sections is correctly
predicted. The spin-coupled valence-bond (SCVB)
method is used to calculate adiabatic coupling elements.
The adiabatic potentials and the coupling elements are
then used to construct diabatic potential curves and dia-
batic coupling elements. At low energies, rotationa1 cou-
pling to the H states may be ignored and we restrict the
investigation to charge transfer involving the singlet'X
states of the NH ion. In Sec. III we review the scatter-
ing theory used in the present calculation. The results
and discussion are presented in Sec. IV. Unless otherwise
stated, atomic units are used throughout.

II. SCVB CALCULATIONS

The spin-coupled valence-bond or SCVB approach to
electronic structure is a powerful ab initio technique that
provides accurate, compact descriptions of ground- and
excited-state potential-energy surfaces. The single-
configuration spin-coupled approach has been applied to
a very wide range of chemical problems and has provided
important insight into the structure and bonding in whole
series of molecular systems. Multiconfiguration SCVB
calculations have concentrated mostly on diatomic and
triatomic species. Previous studies of charge-transfer sys-
tems and multiply charged ions include, among many
others, the CH3+ and CLi systems [3] and the HzO +
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fN

esM = y cs„(X!)'"A(y,y,(t,y,esM.„),
k=1

(3)

in which A is the antisymmetrizing operator and the cd,
which reflect the relative importance of the different
modes of spin coupling, may be termed spin-coupling
coeScients. Each of the orbitals was expanded in a basis

cation [4]. A number of reviews of the SCVB approach
are available [5], including a detailed survey of represen-
tative recent applications [6].

The spin-coupled wave function for an ¹lectron sys-
tem is based on a single spatial configuration with one
singly occupied orbital for each electron. In general, the
N orbitals P„P2,. . . , P~ are all distinct and nonorthogo-
nal. The spin-coupled wave function consists of an an-
tisymmetrized product of this single spatial configuration
and a linear combination of the complete set of N-
electron spin functions [esM. kk =1,2, . . . , fs ] corre-
sponding to total spin S (and projection M). The spin-

A.2coupled wave function is thus an eigenfunction of both S
and Sz. For a four-electron system with no net spin
(S =0), the dimension of the spin space is fs =2.

The spin-coupled wave function for NH + takes the
form

Type

d
d
d

Nitrogen
k,

0.000 760
0.006 076
0.032 847
0.132 396
0.393 261
0.546 339
0.252 036
0.779 385

1.0
1.0
1.0
1.0

0.016916
0.102 200
0.338 134
0.669 281

1.0
1.0
1.0
1.0
1.0
1.0

a;

13520.
1999.
440.0
120.9
38.47
13.46
13.46
4.993
1.5690
0.5800
0.1923
0.05
35.91
8.480
2.706

0.9921
0.3727
0.1346
0.06
1.8
0.6
0.2

Type

s
s

d

Hydrogen
k;

0.025 374
0.189684
0.852 933

1.0
1.0
1.0
1.0
1.0

a;

33.64
5.058
1.147

0.3211
0.1013

1.0
0.3
0.3

TABLE I. Exponents a and contraction coefficients k; for
the GTO basis set used in the SCVB calculations.

=pc
p=1

(4)

without any restrictions on the form of the orbitals or on
the overlaps between them. The basis set used in the
present work for N-H consists of (12s7p3d/Ss2pld)
Gaussian-type orbitals (GTO's) contracted to
[6s4p3d/3s2p ld]. Spherical GTO's were used (5 d com-
ponents), resulting in a total of 47 basis functions. This
basis set, which is listed in Table i, is of triple-g-valence
quality, augmented with diffuse functions and polariza-
tion functions. The c„~in Eq. (4) and the csk in Eq. (3)
were fully optimized simultaneously by means of a
powerful procedure that utilizes the second derivatives of
the energy with respect to the variational parameters.
Further details of the computational techniques are avail-
able in the review articles cited above.

For all geometries considered, the converged spin-
coupled orbitals for the lowest singlet state of NH + were
found to possess pure 0. symmetry and could be charac-
terized as

to the motion of one electron in the field of the other
N —1 electrons. In general, orbitals in different stacks
are not orthogonal to one another. One solution in each
stack, usually P„"',coincides with the occupied orbital P„.
The remaining orbitals are termed virtual orbitals and
provide excellent first approximations to excited states.

Wave functions for excited states, as well as an im-
proved description of the ground state, may be obtained
by means of a nonorthogonal configuration-interaction
calculation involving the spin-coupled configuration and
typically 10 —10 excited configurations. These excited
configurations are generated by replacing one, two, or
more occupied orbitals by virtual orbitals from their
respective stacks. Such replacements are termed vertical
excitations. The final rnulticonfiguration wave functions,
known as spin-coupled valence-bond or SCVB wave func-
tions, take the form

SM
= g g csk(ii iw)(N!)

P, =N +(ls), $2=N +(ls'),

$3=N +(2s), $4=N +(2s') .

i
l iN k

(il ) (i2) (iN )xw(y, y, . y e, .„). (6)

At convergence, each of the spin-coupled orbitals
satisfies an equation that can be cast in the form

(5)

where the Hermitian operators P„'(p=1,2, . . .N) are
constructed from N —1 electron quantities in which oc-
cupied orbital P„is missing. Each operator generates a
complete set or stack of orthonormal solutions, which we
denote P„"(i = 1,2, . . . , m ). The orbitals P„"correspond

Each spatial configuration may generate more than one
valence-bond (VB) structure, on account of the different
modes of spin coupling labeled by the index k. The
coefficients csk (i &. . .i+ ) for each state, and the corre-
sponding total energies, are determined by constructing
the matrix of the Hamiltonian and the overlap matrix
over the chosen set of structures, and solving the usual
secular problem.

Excited spin-coupled configurations for NH + were
generated by means of single and double replacements of
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orbitals P3 and P4 by virtual orbitals taken from their
own stacks. In addition to these vertical excitations,
configurations were included in which one orbital is dou-
bly occupied. The chosen set of virtual orbitals consists
of 50., 3', 15 virtuals from stack 3 and of 6o. , 3~, 16 virtu-
als from stack 4. This gives rise to a total of 135 spatial
configurations (241 VB structures) of 'X+ symmetry.

The eight lowest roots were extracted from the SCVB
calculations; the calculated total energies are reported in
Table II. Asymptotic energies for these eight states are
compared with experimental data in Table II.'-. The
SCVB values were obtained by removing the Coulombic
repulsion in the N ++H+ states from the corresponding
SCVB energies for a nuclear separation of 30 bohr.
These eight states span a range of more than 60 eV. The
asymptotes relevant to the charge-transfer process are
N +(2s)+H(ls) and the three N +(2s31)+H+ channels.
It is clear from Table III that these asymptotic splittings
are reproduced fairly well. The main limitation of the
current SCVB calculations is the quality of the modest
GTO basis set rather than the need to include further vir-
tual orbitals and excited configurations. Asymptotically,
the N +(2s)+H potential behaves as —32/R, close to
the exact value —36/R .

Matrix elements of 8/BR were calculated from these
compact SCVB wave functions by numerical

differentiation. This required separate SCVB calculations
for nuclear separations of R —5 and R+5 in order to
generate wave functions %, (r/R —6) and 4&;(r~R +5),
where the index i labels the different states. The overlap
integrals between GTO's calculated for the nuclear sepa-
ration R were then used to form the quantity

(+, (r R —6)l+, (rlR+5))
26

(7)

This simple central difference approximation to
( 0'; ~B/BR ~%, ) does not take full account of the changes
in the basis functions with R. Calculations that included
this term also suggest that its contribution is small, at
least for NH +, but that its inclusion can make this pro-
cedure numerically unstable and very sensitive to the
choice of 6. One criterion for the consistency of the nu-
merical differentiation employed here is the equality

a = a
BR ~ i BR

which is typically satisfied to at least four significant
figures. The values of (4;~8/BR ~'0, ) obtained by means
of Eq. (7) are not very sensitive to the value of 5 and,
indeed, the optimum value of 5 remains constant over a

R (bohr)

TABLE II. Potential-energy curves (adiabatic) from SCVB calculations for the eight lowest 'X states of NH +.

Energy (hartree)

2.00
3.00
3.50
3.75
4.00
4.25
4.50
4.75
5.00
5.25
5.50
5.75
6.00
6.25
6.50
6.75
7.00
7.25
7.50
7.75
8.00
8.25
8.50
8.75
9.00
9.50

10.00
15.00
20.00
30.00

—49.758 436
—50.191 980
—50.327 942
—50.383 281
—50.432 023
—50.475 245
—50.513 824
—50.548 455
—50.579 702
—50.608 030
—50.633 756
—50.657 359
—50.679 031
—50.699 013
—50.717 422
—50.734 472
—50.750 312
—50.765 062
—50.778 664
—50.791 697
—50.803 766
—50.815 095
—50.825 778
—50.835 838
—50.845 352
—50.862 881
—50.878 684
—50.978 513
—51.028 500
—51.078 496

(2)

—49.244 874
—49.607 899
—49.731 397
—49.783 215
—49.829 514
—49.870 911
—49.908 037
—49.941 495
—49.971 786
—49.999 304
—50.024 555
—50.047 614
—50.068 968
—50.088 571
—50.106648
—50.123 434
—50.139057
—50.153 623
—50.167 227
—50.179 953
—50.191 884
—50.203 155
—50.213 854
—50.223 950
—50.233 634
—50.251 299
—50.267 094
—50.366 786
—50.416 690
—50.466 644

(3)

—48.823 818
—49.309 605
—49.447 343
—49.503 137
—49.552 142
—49.595 502
—49.634 160
—49.668 813
—49.700 042
—49.728 348
—49.754 240
—49.777 984
—49.799 593
—49.819 233
—49.837 841
—49.855 018
—49.870 915
—49.885 640
—49.898 627
—49.912485
—49.924 561
—49.935 829
—49.946 459
—49.957 088
—49.966 475
—49.983 926
—49.999 791
—50.099034
—50.148 944
—50.198 895

(4)

—48 ~ 538 674
—49.060 428
—49.204 263
—49.262 041
—49.312 788
—49.357 726
—49.397 795
—49.433 700
—49.466 045
—49.495 423
—49.522 755
—49.546 827
—49.569 716
—49.591 400
—49.610664
—49.628 237
—49.644 409
—49.659 275
—49.668 971
—49.686 001
—49.698 184
—49.709 332
—49.720 432
—49.730 275
—49.739 551
—49.757 189
—49.773 685
—49.871 038
—49.921 039
—49.971 039

(5)

—48.206 061
—48.772 188
—48.858 200
—48.881 990
—48.897 886
—48.908 315
—48.915 180
—48.919838
—48.923 350
—48.926 660
—48.930 700
—48.935 530
—48.942 276
—48.951 359
—48.961 951
—48.973 529
—48.985 509
—48.997 469
—49.009 082
—49.020 460
—49.031 253
—49.041 544
—49.051 364
—49.060 665
—49.069 553
—49.086 070
—49.101 101
—49.198 366
—49.247 942
—49.297 787

(6)

—47.838 140
—48.382 073
—48.472 863
—48.531 890
—48.588 196
—48.638 350
—48.682 937
—48.722 367
—48.756 930
—48.786 893
—48.812 349
—48.834 055
—48.852 337
—48.868 261
—48.882 899
—48.897 075
—48.910956
—48.924 423
—48.937 425
—48.949 846
—48.961 527
—48.972 577
—48.983 031
—48.993 012
—49.002 366
—49.019667
—49.035 267
—49.134 199
—49.183 824
—49.233 599

(7)

—47.785 531
—48 ~ 309 475
—48.463 826
—48.497 557
—48.527 604
—48.567 358
—48.611 729
—48.653 732
—48.691 443
—48.724 627
—48.753 020
—48.777 794
—48.798 222
—48.813 854
—48.825 304
—48.832 724
—48.837 143
—48.839 623
—48.841 022
—48.841 748
—48.842 716
—48.847 040
—48.855 517
—48.864 824
—48.873 971
—48.891 170
—48.906 838
—49.005 873
—49.055 645
—49.105 511

(8)

-47.666 169
—48.197 111
—48.357 601
—48.421 375
—48.470 781
—48.499 308
—48.515 979
—48.552 024
—48.589 630
—48.622 835
—48.652 099
—48.678 489
—48.702 282
—48.723 017
—48.742 687
—48.760 557
—48.776 834
—48.791 684
—48.804 834
—48.817 129
—48.827 876
—48.833 929
—48.835 030
—48.834 550
—48.834 028
—48.832 655
—48.831 497
—48.828 497
—48.828 120
—48.827 960
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TABLE III. Asymptotic energies (in eV) of the eight lowest
'X+ states of NH +.

III. SCATTERING FORMALISM

Asymptote Calculation Experiment
In a space-fixed coordinate system, the nonrelativistic

Hamiltonian for the NH + system is

N3+(2s 2 S)+H+

N +(2s2p P)+H+
N'+(2p ~'D)+ H+
N'+(2p ~' 'S)+H+

N + (2s 3s; 'S) +H+
N'+(2s 3p P)+ H+
N'+(2s3d; 'D)+ H+

N +(2s)+H(1s)

—63.962
—47.312
—40.027
—33.826
—15.506
—13.759
—10.274

(0.0)

—63.855
—47.651
—40.436
—34.673
—15.642
—13.700
—10.646

(0.0)

TABLE IV. Matrix elements of 8/BR for NH +.

wide range of R so that the calculations are straightfor-
ward.

As a test of the central difference approximation to
(ql;IB/BR I%~) embodied in Eq. (7), calculations were
carried out for the states of the NHe + system treated by
Bacchus-Montabonel [7], who used an alternative method
that is based on the perturbation of a multiconfiguration
wave function selected by an iterative process. The two
sets of calculations employed the same basis sets and
were carried out at the same nuclear separations. Except
in regions of avoided crossings not considered in the per-
turbation methods, the potential curves and the nuclear
coupling matrix elements are in excellent agreement. The
matrix elements of 8/BR computed for the NH + system
using the SCVB wave functions are reported in Table IV.

N

H(R, R, r) = — V — V ——' g V,1 2 2M R
l 2M R~

1 2 i=1
N

+ g V, (IR, —r', I)+ V, (IR,—r,'I)

+ v„(IR,—R&l)+ v„, (9)

where R„R2are the coordinates of the nitrogen and hy-
drogen nuclei, respectively, and r,

' are the electronic
coordinates. The summations are over all N electronic
coordinates V, and V2 are the electron-nuclear interac-
tion terms for the nitrogen and hydrogen nuclei, respec-
tively, VN is the internuclear repulsion, and V„is the
electron-electron repulsion term. It is convenient to in-
troduce a new set of coordinates {R, ,R, r;] related to
the space-fixed coordinates by

N

M, R)+M2R2+ g r,'

Rc.m.

(10)
R=R2 —R1,

r, =r,' —gR, —(1—g)R2,
N

where M =M, +M2+ g, and ri is a parameter that
i=1

determines the choice of origin for the electronic coordi-
nates along the internuclear axis. Inserting Eq. (10) and

R (bohr)

4.00
4.25
4.50
4.75
5.00
5.25
5.50
5.75
6.00
6.25
6.50
6.75
7.00
7.25
7.50
7.75
8.00
8.10
8.15
8.20
8.25
8.30
8.50
8.75
9.00
9.50

10.00

A 43

—0.0845
—0.1041
—0.1297
—0.1643
—0.2106
—0.2707
—0.3389
—0.3964
—0.4158
—0.3773
—0.3191
—0.2630
—0.1932
—0.1473
—0.1256
—0.1097
—0.0895

—0.0839
—0.0805
—0.0813
—0.0699
—0.0702
—0.0617
—0.0510
—0.0438

A4q

—0.0195
—0.0649
—0.1690
—0.2926
—0.4183
—0.4894
—0.4906
—0.4131
—0.3105
—0.2286
—0.1635
—0.1286
—0.0959

—0.0669

—0.0566

—0.0393
—0.0269
—0.0204
—0.0187

A4)

—0.0125
—0.0457
—0.0396
—0.0963
—0.1582
—0.5055
—1.4072
—2.0018
—2.1027
—1.9783
—1.6992
—1.4187
—0.6761
—0.2818
—0.1484
—0.0484
—0.0215

M1
VR, Vz Vz g r/V„,

i=1

M2
V~ = V„+Vg—g (1—ri)V„,

li=1

V = VR +V, ,
1

into Eq. (9), we get

H(R, , R, r;)=H, +H~E(ri)+ Vz(ri)+ V„,(11)

where H, is the kinetic-energy operator for the
center-of-mass motion and

1HxE(g)= —
2M

Vz+rl g V„
1 i=1

1 N

V~ —(1—rI) g V„——,
' g V„

2 i i=1
(12)

V~(g)= & [V)(IR(1—g)+r;I)+ V2(lqR —r;I)]

are the kinetic energy and electrostatic interaction Ham-
iltonians, respectively. For the particular value
g=qo=M, /(M, +M2), the origin of the electron coor-
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dinates is located at the center of mass of the two nuclei.
For this choice of the origin, the kinetic-energy cross
terms in Eq. (12) vanish. It is useful to express HKE(71)
for arbitrary i) in terms of HKE(g=rio) W. e get

HKE( 9) U HKE( lo)U

2p 2(M, +M~)

invariance of the resulting scattering wave equation with
respect to origin translation is explicitly demonstrated.

The eigenvalue e (R) is the Born-Oppenheimer poten-
tial for the state y and the eigenstates (()~ are
parametrized by the orientation of the internuclear axis,
the origin parameter g, and internuclear distance. The
PSS equations may be obtained by requiring that

(21)

where

1 g V2
ji=1

U=exp(ri' g V„R)

(14)
where 5 is an arbitrary variation of the set [Fr(R)] and
E is the collision energy, the bracket notation signifying
integration over all coordinates. We express the adiabat-
ic eigenstates for arbitrary g in terms of the adiabatic
states defined for i)=i)o (nuclear center of mass):

((} (R, r, (ri))=U P (R, r;(i) )), (22}

is a translation operator, p=M, Mz/(M, +M&) is the re-

duced mass of the nuclei, and g'=g —go. In deriving Eq.
(14) we made use of

where we have used Eqs. (15), (16), and (18). Using Eq.
(22) in Eq. (19), expression (21) becomes

U"ViiU=V„+ g ri'V„, [V„,U]=0.
i=1

(15} 5 fd'R [F [V —i A(R)] F—2pF [ V(R) —E]F]

=0, (23)
In the same manner, we get

VN(ri)= U V~(rio)U . (16)

We factor out the center-of-mass motion, and seek eigen-
functions of the Hamiltonian

where F and F are row and column matrices, respective-
ly, and the yth entry to F is the wave function F~(R).
The square matrices A and V are defined below. Carry-
ing out the variation we obtain the set of coupled equa-
tions [9]

H(ri) = U — V„U+H,d(ri),
1

where

(17)

where

(IV —i A) F(R)+ V(R)F(R) =EF(R)
p

(24)

H, ( di)r= —
—,
' g V„— g V„+V~(i))

1

+ V„ (18)

is the adiabatic Hamiltonian. We use the quantal
perturbed-stationary-state (PSS) approximation

%(R,r;(ri))= g F~(R)gr(R, r, (ii) },
y

(19)

where the ((lr are orthogonal eigenstates of the adiabatic
Hamiltonian

H, ( d))pi=E (R)p (20)

to find the scattering solutions. In it, the sum over y is
restricted to a subset of the complete adiabatic set [P
We also refer to these states as channel states since each

correlates to an approximate atoinic state in the
asymptotic region.

The adiabatic eigenstates defined in Eq. (20) describe

asymptotic states where the electron is coupled to the
motion of the nuclei. They do not correlate to true atom-
ic asymptotic states in which the electrons are coupled to
the motion of the center of mass of the individual atoms.
Electron translation factors [8] are often introduced to
address this problem. However, for low-energy collisions
of the type considered here, ansatz (19) is a valid approxi-
mation. We formulate below the PSS theory so that the

[ A(R)],, =i f d r, d'r~P;( Rr (r)))U V~

X UP, (R, r (ri))

=i f d r, d r~P,'(R, r (i)o))
(25)

X Vi, g, (R, r (i)o)),
A;k. AkJ

6; e;(R)+ gIJ 2p

A'= W A W '+iWV W

V'=W V W (26)

If the field strength tensor [9] associated with A vanishes
at all R, then a transformation matrix Wean be found so
that the vector potential A' also vanishes for all R. This
is the case for which A does not possess angular com-

[V(R)]; =
k4-I
k&j

are vector and scalar potentials, and I is the unit matrix.
The potentials given in (25) are independent of g' and the
Schrodinger equation (24) and the S matrix, and do not
depend on the choice of electronic coordinate origin
along the internuclear axis.

We may solve Eq. (24) for F(R); but it is more con-
venient to introduce a new amplitude 6 = W F, where W
is a unitary matrix. If F is a solution to Eq. (24), then 6
is also a solution with the vector and scalar potentials A
and V replaced by
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dW
dR

(27)

with the boundary condition lirnR —+00 W;-~5,--c;. Us-

ing Eqs. (27) and (26), we obtain

IV G(R)+ V'(R)G(R) =EG(R),R—

in which V' is the diabatic potential [10] and its off-

dia onal matrix elements are responsible for driving
collision-induced atomic transitions. We solve y1 for Gb

~ ~

introducing a partial-wave decon1position

(28)

g' (R)
Gr(R)= g Yl~(R ),

l, m

(29)

E.where YI are the spherical harmonics. Inserting q.
(29) into Eq. (28), we get the radial coupled equations

d2

dR
—2pg U (R)g™+2pEg'

2pR' '

U (R)=[LV V IV ']
=0,

(30)

The radial functions satisfy the scattering boundary con-
ditions

ponents, and is a function A(R) =RA (R) of the internu- at large internuclear distances around 75ao and the cap-
ture probability is negligible. Because we are prin1arily
interested in the cross sections for charge transfer at low
collision energies, we restrict the expansion basis in the
scattering equations to the 'X+ states that have t e

4+separated-atom limits N (2s)+ H, N ( s+ 2s3d)+H+,
N +(2s3 )+H+, and N +(2s3s)+H+. The remainders p

-ownof the adiabatic states whose potential curves are s ow
in Fig. 1 but are not included in expansion (19) contribute
at collision energies higher than the ones of interest here.
States with II symmetry are not included in (19) since the
radial adiabatic coupling between X states is the predom-
inant charge-transfer mechanism at lower collision ener-
gies. We set the label y =4 for the neutral N ++H chan-

1 d y =3 2 1 for the Coulomb channelsne, ai1
3+ +N +(3d)+H+, N +(3p)+H+, and N (3s)+H, re-

spectively.
In the adiabatic picture the scattering equations are

b E . (23). In this picture, the charge-transfer
f thetransitions are driven by the off-diagonal elements o t e

vector potential matrix A. The higher-order term pro-
portional to I/2p in the scalar potential matrix V is small
and is neglected. Because we are dealing with adiabatic
states of X symmetry, the adiabatic vector coupling ma-
trix has nonvanishing radial components that are func-
tions of the internuclear distance on y, i.e., A=RA(R).
In Fig. 2 we plot the matrix coupling elements A43(R),
A4z(R), and A4, (R), where the subscripts refer to the

~&,,,ji(k, R)+&',,, ~i(k, R

k =+2p[E —e (ao)],

where jI, and gI are, respectively, the regular and irregu-
1 B 1-Ricatti functions [11]for neutral channels, andar esse - ic
the regular and irregular Coulomb functions L &

or e
Coulomb channels. K'

~ —=K' is a real symmetric matrix
and the S matrix is given by

I+iK'
(32)I—iK'

The cross section for the system to undergo an inelastic
transition from atomic state i to j is

-48.0
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~ ~
I
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-49.5—
I
C

Lll

-48.5—
~ 1 ~

~ ~ ~

N (2s)+ H~ ~ ~

~ +y ~4

~ 2S3P

2S3$

cr(i~j)= g(21+1)~S'~;J .
k,2

(33) -50.0—
2P2P( S)

2P2P( o)1

IV. RESULTS AND DISCUSSION
-50.5—

2S2P

The Born-Oppenheimer potentials for the exothermic
channels of 'X symmetry separating to N and+3

which lie below doubly excited 2p3l states and the singly
excited 2s4l states, are illustrated in Fig. 1 and listed in
Table II. Capture into the states separating to N +(2p3l)
involves a two-electron transition. The interaction with
the entrance channel is correspondingly weak and cap-
ture leading to the doubly excited ions makes only a sn1all
contribution to the total charge-transfer cross sections.
Capture into the states separating to N +(2s41) involves
a one-electron transition, but the avoided crossings occur
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FIG. I. Adiabatic 'X+ potential curves for the NH + system
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'
function of the internuclear distance R. The states are la-

3+beled by nln'l', the electronic configuration of the N ion.
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low-energy collisions, the high-energy analytic approxi-
mation of Olson is not valid here. We evaluated all semi-
classical phase shifts numerically and were able to repro-
duce all the local peaks in o (4~3) illustrated Fig. 5. We
conclude that the structures in o(4~3) are a manifesta-
tion of the Stueckelberg oscillations. Although we have
been successful in reproducing the oscillatory structure
within the semiclassical approximation, the absolute
values of the cross section are not predicted accurately in
this approximation. A complete detailed description of
the semiclassical calculation will be presented elsewhere.

At collision energies near 200 eV, o(4~2) increases
rapidly and is equal to iT(4»3) at 290 eV, with a value of
1.1X10 ' cm . At energies between 0.2 and 2 keV,
charge transfer into the N +(3p) state dominates.

The qualitative features of these cross sections may be
understood from the diabatic potential curves shown in
Fig. 3. We view charge transfer occurring because the
N ++H potential curve, in which the ion and the hydro-
gen atom initially approach, crosses the potential curve
of a molecular state that correlates to one of the
N ++H+ atomic states. During the approach, the sys-
tem makes a transition at the crossing and exits into one
of the N ++H+ repulsive Coulomb curves. In Fig. 3 the
first crossing occurs near R =8 bohr, where the potential
N ++H curve crosses the N +(3d)+H+ curve. At low
collision energies the approaching nitrogen ion and hy-
drogen atom do not have enough energy at the larger im-

pact parameters to penetrate the small R region. There-
fore, states whose potential curves cross at larger internu-
clear distances are more accessible to the colliding sys-
tems and charge transfer into them is favored. This argu-
ment explains the large cross section, at low energies, into
the N +(3d) state. At higher collision energies the col-
liding system samples the regions with smaller R, and
charge transfer into states with crossings at smaller R be-
come significant. This simplified picture is consistent
with the detailed quantum-mechanical calculations of the
cross sections illustrated in Fig. 5.

We have carried out calculations only for the singlet
states of the quasimolecule. We expect that at intermedi-
ate energies the singlet and triplet cross sections are not
sensitive to small differences in the singlet and triplet
molecular curves. In Fig. 6 we present the sum of the
charge-transfer cross sections into the N +(2s3l) states
and compare them to the total charge-transfer cross sec-
tions measured by Huq, Havener, and Phaneuf [2]. The
agreement is close between energies of 4.1 and 182
eV/amu. The close agreement suggests that the singlet
and triplet cross sections are indeed similar and that cap-
ture into N +(2s31) is the dominant charge-transfer
mechanism. The total cross section has a local maximum
at 70 eV/amu. At 70 eV/amu the cross sections for cap-
ture into N +(3d) and N +(3p) are similar, with values
of 1.4X 10 ' and 8.44X 10 ' cm, respectively.

At velocities below 4.1 eV/amu differences occur be-
tween the measured and total singlet cross sections.
Some of the discrepancy is due to the greater sensitivity
of the predictions to the molecular parameters at low en-

ergies and the failure of our assumption that the singlet
and triplet cross sections are comparable. However, we

I 1 I I I & I I I I I I 1 I I I
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I I I I I +II
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I I I I I I I/I
10

1 i, , l

10 10 101
E(ev)

10

FIG. 5. State-dependent charge-transfer cross sections
cr(i ~j), where i,j, represent the initial and final channel index,
respectively, given in the text. E is the collision energy in the
center-of-mass frame in units of eV.

(35)

where ko, and k, are the wave numbers for the entrance
and exit channels, respectively, y& is the mixing parame-
ter [16], and 5i, and 5i are coupled-channel phase shifts
[16]. Olson [13] used an analytic stationary-phase pro-
cedure and a semiclassical approximation for the phase
shifts. He showed that Stuekelberg oscillations persist in
the angle-averaged total cross sections, and identified
these features in the experimental measurements of Perel,
Vernon, and Daley [15].

We have used the semiclassical approximation for the
phase shift ri in a two-state approximation to o (4~3)
shown in Fig. 5. Because we are concerned here with

of N + are negligible. At 0.1 eV, 0 (4~3) has the value
5.2X10 ' cm, and as the collision energy increases,
cr(4~3) decreases. In the entire energy range the cross
sections exhibit strong oscillatory behavior superimposed
on a general monotonic trend. We interpret these struc-
tures as a type of Stueckelberg oscillation [13].

Wave phenomena such as rainbow scattering, and glo-
ry and Stuekelberg oscillations have been observed in the
measurements of the elastic and inelastic differential
cross sections for charge transfer in various systems [14].
Stuekelberg oscillations are associated with the rapid
variation of the differential cross section with respect to
the scattering angle. When the differential cross section
is angle integrated, the averaging effect usually results in
a total cross section that varies smoothly with collision
energy. However, oscillations in the total charge-transfer
cross sections with respect to the collision energy have
been observed in inelastic asymmetric ion-atom collisions
at high energies [15].

Within the two-state approximation the cross section
for charge transfer from channel 0 to 1 may be expressed
by the general formula [16]

4m.k, (21+ 1)yi&oi=
k ,', sin'(r, ), r, =5i sib, — —

(ko+k, yi2)
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I I & I 1 I TABLE V. Calculated rate coefficients for the singlet
charge-transfer process (1). The rate coefficients are given in
units of 10 cm'/s.
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Ve 20—
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O

O

0 I i I I III
0,01 0.1 1 10

Energy (eV/emu)

ii

0
0

0

T (K)

1X10'
3 X10'
1X10
3 X10'
6X10'
1X10
3X10
1X10'

Rate

5.4
8.5

14
22
32
42
83

170

Rate (from Ref. [2])

3.8
5.4
8.2

FIG. 6. Total calculated singlet-state charge-transfer cross
section N +H~g&, dN +(31)+H (open circles). Total
measured cross section for process N ++H~N'++H from
Ref. [2] (filled triangles). F. is the collision energy.

do not believe all of the discrepancy can be attributed to
defects in the theoretical approach at low energies. The
theory makes the strong prediction that the cross section
will ultimately rise rapidly at low energies as the long-
range polarization attraction causes trajectories to pass
through the crossing region. In contrast the measured
cross section appears to be diminishing toward low ener-
gies. At energies above 500 eV/amu, additional channels
begin to play a major role and our theoretical predictions
become uncertain.

In Table V we present the calculated rate coefficient
corresponding to a Maxwellian distribution for the pro-
cess (1) in the range of gas temperatures from 10" to 10
K. We compare our calculated rates to those given in
Ref. [2]. At low tetnperatures the two rates are compara-
ble. At these energies, charge transfer into the N +(3d)
state is the dominant one and our cross sections are in
rough agreement with the ones obtained by Huq,
Havener, and Phaneuf. At higher temperatures the rate
coefficients given here are significantly larger than those

reported in Ref. [2]. The behavior of the state-dependent
cross sections as a function of the collision energy differ
for the two calculations. In our calculation the cross sec-
tion for charge transfer into the N +(3p) state becomes
comparable with the cross section into the N +(3d) state
at around 200 eV, whereas in Ref. [2], this occurs at a
much lower energy (around 20 eV).

The N +(3d) state radiates preferentially to the
N +(2p) state, giving rise to emission lines near 28.35 nrn

but there is a weak transition to the N +(3p) state with a
branching ratio of 2 X 10 at a wavelength of 405.8 nm.
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