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Regularities in calculated photoionization cross sections for the halogens
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The total photoionization cross sections of F, Cl, Br, and I are calculated near the ns'np thresholds.

They show excellent agreement with experiment for all of the halogens except I whose cross section is

only in fair agreement with experiment. At the 'S threshold of Cl our results agree with experiment and

with the highest of the previous calculations. These results suggest that atomic theory is now capable of
reproducing the dynamics of all the open p-shell atoms with Z & 54, at energies near the lower ionization
thresholds. We identify a type of mixing which goes beyond the usual recoupling frame transformation
and is not present in alkaline-earth atoms, nor in rare-gas atoms.

PACS number(s): 32.80.Fb, 32.80.Dz, 31.20.Di

I. INTRODUCTION

There have been a growing number of experiments
[1—4] and calculations [5—8] involving the photoioniza-
tion of neutral halogens. These species prove to be of
great interest due to their similarity to the noble-gas
atoms. They challenge theory due to their open outer p
shell but the calculations should remain tractable because
there is only one electron missing from the outermost
shell. However, previous theoretical studies have not
achieved the level of accuracy which seems possible with
the current state of the art. In fact, only Cl has been
theoretically attempted near the lower thresholds with
the sophistication necessary for a reasonable description
of the spectra. Even with this qualification, there is
disagreement between several of the previous calculations
just above the 3s 3p ('So) threshold in Cl [8(a)]. The
theoretical understanding of the halogen atoms is not sa-
tisfactory compared to that of the rare-gas atoms where
very different computational techniques agree with each
other and with experiment [9,10]. The Br spectrum is re-
markably similar to the Cl spectrum and the I spectrum
itself resembles the Br spectrum. These similarities in the
experimental spectra must indicate similarities in the
atomic dynamics.

In this paper, we describe a series of comparatively-
small-scale calculations which accurately reproduce the
experimental spectra of F, Cl, Br, and I near the ns np
ionic thresholds. This region contains prominent au-
toionizing structures due to the comparable magnitude of
the amplitudes for excitation into open and closed chan-
nels. We plan to address another interesting energy
range, below the nsnp thresholds, in subsequent work.
We utilize the eigenchannel R-matrix approach [11]
(which differs from the Wigner-Eisenbud R-matrix ap-
proach [12] in technical details) for the brute force part of
the calculation and the multichannel quantum-defect
theory (MQDT) to extend the wave functions to distances
larger than the R-matrix box radius [13]. The R-matrix
calculation is completely nonrelativistic; the wave func-
tion is LS coupled in the numerical portion of the calcu-
lation with relativistic (spin-orbit) effects incorporated in

the MQDT part of the calculation by applying the LS
to-jj frame transformation [10,13]. It has been found
necessary to go beyond this standard recoupling frame
transformation to account also for the mixing of different
LS-coupled core states which have the same total angular
momentum, J, .

II. STANDARD METHODS

Most of the techniques adopted here to describe photo-
ionization of the halogens are the same as those used for
the previous description of the alkaline earths (Be, Mg,
Ca, . . . ) [14], their negative ions [15], and atomic silicon
[16]. We will give a brief description of these techniques,
referring the reader to previous literature for more details
[14—16]. The following section describes some new
features of the code which the extra electrons force us to
use. These new features reflect the change in physical
description from atoms with a few valence electrons to
those with a few holes.

A. Eigenchannel R-matrix approach

The major numerical approximation which we use for
the description of the dynamics is the eigenchannel R-
matrix procedure [11]. This tool uses a superposition of
orthonormal basis functions in a small region of space
(called the R-matrix volume) to obtain a variational esti-
mate of the logarithmic derivative of the wave function at
a given energy. We define the R-matrix volume by r; r,
(i.e., all electrons confined to radii less than r, ) with r,
being 9 a.u. for all calculations reported here. In particu-
lar, the relevant matrix equation for the coefficients of the
basis functions, QEtj=g, y, (r)C,&(E), is

I Cp=bpACp,

where I,"=2(y,. ~(E K)~y ) —((y, ~t)lt—)n ~y )) and
A,.J

= ((y; ~yj )); the double bra-ket notation indicates in-
tegration only over the surface of the R-matrix volume
[14]. The normal derivative of gott is
t)QEttll)n =

bt3@Ft3.
—

We use the streamlined formulation [16] of the eigen-
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channel R-matrix approach which divides the basis set
into open functions (where only one of the electron orbit-
als of the many-electron basis function is nonzero at the
R-matrix boundary) and closed functions (where all of the
electron orbitals are zero at the boundary). We use only
one open (one-electron) orbital for each I due to the nu-
merical difficulties of Gram-Schmidt orthogonalizing two
open orbitals with each other and with the closed orbit-
als. Multielectron matrix elements are much easier to
evaluate when all of the different orbitals are orthogonal
to each other. We include basis functions representing
strong correlations (e.g. , nsnp, ns np nd, etc. ) as well as
scattering-type basis functions (e.g. , ns np md, ns np ms,
etc. ) in the closed portion of our basis set. On the whole,
the correlation-type basis functions seem to play a small-
er role in the halogen dynamics than they do in the dy-
namics of the alkaline earths. One exception is the F
2s2p resonance between the 'D and 'S ionization thresh-
olds.

B. The approximate Hamiltonian

The major physical approximation concerns the Ham-
iltonian H which does not refer to the full atomic system
[14—16].H is strictly nonrelativistic, not even containing
1;.s, interactions. Most importantly, H only represents
the Hamiltonian of the valence shells. The effect of the
Z —7 inner-core electrons is approximated by a screened
Coulomb potential plus a polarization potential. This
necessary simplification works well as long as the energy
of the full atomic system is smaller than the energy need-
ed to excite an inner-core electron. We feel this approxi-
mation is necessary due to the difficulty in describing the
dynamics of the inner-core electrons for large Z to
sufficient accuracy using standard independent-electron
models. The interesting part of the dynamics resulting
from the interaction between the valence electrons should
not be obscured by inaccuracies in the description of the
relatively inert inner core. Also, d- and f-type electrons
are especially sensitive to errors in the description of the
inner-core electrons which will make this approximation
absolutely crucial for the description of the transition
metals, our long-term goal. Previous experience with cal-
culations in the alkaline-earth atoms has shown that such
use of model potentials to represent the core electrons
greatly enhances both the accuracy and efficiency of the
computations [16].

The valence electron Hamiltonian in atomic units is

Hv(p, r)=p /2+ V

=p /2 —(7+ [Z —7]exp[ —aIrI

+a2r exp[ —a3r) )Ir+ V„,~(r) . (3)

C. Evaluation of multielectron matrix elements

The construction of computer code for the evaluation
of multielectron matrix elements involves a nontrivial
effort. To this end we have encoded an algorithm based
on that described in Ref. [22(a)] with the modification
that we do not try to compact the angular recoupling
beyond 6-j symbols (i.e., in our program the angular parts
of multielectron matrix elements are evaluated by sum-

ming products of 6-j coefficients). We feel that this level

has maximum efficiency because higher-j symbols are
typically calculated as sums over products of 6-j symbols
anyway. As in Ref. [22(a)] we use Fano's method [22(b)]

TABLE I. Parameters for the semiempirical potential for the
valence electrons.

Atom

Here V~,&

= —ad [1—exp[ —(r Ir, ) I ] /2r represents
the interaction of an outer electron with the inner core
due to its polarizability. The l dependence of a,' causes V
to be a nonlocal potential. We use the values of Ref. [17]
for the dipole polarizability, nd, of the inner core for each
of the halogens; they are 0.00161 for F, 0.05093 for Cl,
0.10461 for Br, and 0.3104 for I. The parameters a,' and

r, are fitted to optimize agreement between the calculated
energy levels of Hv and the experimental levels [18—20]
of the charge 6+ ion. We list our values for a,' and r, in
Table I. There is much less experimental data on these
halogen ions to fit compared to previous studies of the al-
kaline earths, which may introduce larger errors into o.;
and r, . However, we suspect that the relatively large
number of valence electrons explicitly described in the
calculation will tend to diminish the effect of errors in the
one-electron potential. The last term of H represents the
interaction of electron i with the dipole moment of the
core induced by electron j [21]. This form of the dielect-
ronic interaction has been chosen so that this term will
cancel the polarizability term in Eq. (3) when the valence
electrons are configured to have zero total dipole mo-
ment. Both terms in the potential V proportional to the
polarizability of the inner core are small but can have a
non-negligible effect, especially in I.

H= QHv(p, , r, )+ g 1/r~ F

Cl

0—4

0—4

8.854 87

5.212 29

8.755 29

16.528 51

17.020 01

20.157 75

1.0

0.3

—2 g P, ( cos0;, )[ Vp„(r, ) Vp„(r, )]' (2) Br 0
1

2 —4

7.782 13
8.177 50
7.257 00

71 ~ 53405
71.175 49
71.839 20

4.780 54
4.674 64
5.098 90

0.6
0.6
0.6

where cosO; =r, .r. /r, r . The one-electron Hamiltonian
contains the interaction of the valence electron with the
nucleus and the inner-core electrons and has the form

0
1

2 —4

5.819 97
6.299 98
6.123 30

51.927 34
52.149 89
51.84600

3.535 95
3.409 34
3.521 30

0.5
0.5
0.5
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for antisymmetrizing with respect to electrons in different
shells but do not use his "orbiton" for the evaluation of
the angular part of the matrix element. We debugged the
program for calculating the 1/r, 2 matrix element by
comparing our output with that from a similar program
[16] which was based on calculating the angular part of
the matrix element by summing products of 3-j
coefficients. We found the two methods to have compa-
rable speed for configurations with less than three shells
with nonzero angular momenta or spin. Our computer
program can evaluate multielectron matrix elements of a
symmetric two-electron operator between states having
any number of electrons and shells with up to two s, six p,
ten d, two f, or two g electrons in each shell. The mul-
tielectron one-particle operators (e.g., dipole operator,
H„, and A) are easier to evaluate.

III. APPROXIMATE IONIC WAVE FUNCTIONS

In the next subsections we describe some of the ap-
proximations which have proved to be crucial for a suc-
cessful calculation of halogen spectra which have not
been needed in previous eigenchannel R-matrix calcula-
tions. These approximations have been used with good
effect in other types of atomic calculations and represent
the drive to compactly describe multielectron and
multiconfiguration dynamics.

A. Constructing target functions

A major consideration of R-matrix calculations con-
cerns the accurate description of target-state functions.
Target states are the possible wave functions of the posi-
tive ion in the energy range of interest. For the alkaline
earths (Be, Mg, Ca, . . . ), this aspect of the computation
is trivially satisfied (when a semiempirical model poten-
tial is used) since the target function is simply an orbital
of the one-electron ionic potential [14]. For the halogens
at low energy, the target states in order of increasing en-
ergy are ns np P2, 0, D2, and So. Of course, more

2 43 1 1

effort goes into determining multielectron target func-
tions which magnifies the amount of work needed to de-
scribe the full atomic dynamics.

The halogen ion of charge 1+ can be very well de-
scribed in a Hartree-Fock formulation [5]. This
simplification is what makes the computation feasible.
However, the R-matrix procedure obtains its greatest
efficiency when the variational parameters are linear pa-
rameters (i.e., coefficients of basis functions). This forces
us to use a three-step procedure when computing the
Hartree-Fock portion of the target function.

The first step consists of solving the Hartree-Fock
equations for six interacting electrons moving in the
model potential (of the charge 7+ ion), to determine the
ns and np orbitals of the ns np core wave function. We
use the "average" equations obtained by summing the
three different I.S couplings. Next, in a second step, we
construct a local s potential and a local p potential which
give the Hartree-Fock ns and np orbitals as solutions.
The difference between the orbitals in the fitted potentials
and the Hartree-Fock orbitals is always less than a per-

cent. This discrepancy has a negligible effect since the
eigenchannel R matrix is a variational procedure, and
since these fitted potentials are only used to generate a
basis set. To distinguish this I-dependent potential from
the one discussed in Sec. II, we will call it V. Finally, in
the R-matrix calculation we use the potential V to gen-
erate the single-electron orbitals. This procedure modest-
ly complicates the single-electron portion of the Hamil-
tonian because we must now include the off-diagonal ma-
trix elements of V —V, but the savings in effort obtained
by using physically relevant basis functions vastly
outweighs this complication.

Concerning the procedure described in the preceding
paragraph, it is worth noting that the first two steps of
this algorithm are not very difficult; they require only a
minute or two of CPU time on a small workstation. Also
they are independent of the many-electron variational
calculation and thus can be implemented as a separate
program independent of any R-matrix program (i.e., V
does not depend on the total initial- nor final-state wave
function). A second point is that the d and f contribu-
tion to V are dictated by very different physical con-
siderations discussed next.

B. nd, 4f natural orbitals

The dominant core configurations ns np (L,S, ) of the
halogen ion contribute -95% of the configuration-
interaction (CI) target state. The rest of the wave func-
tion contains contributions from terms such as nsmsnp,
ns np mp, nsnp md, ns np md, ns np mf, . . . W.e
cannot use a brute force approach including, for example,
all of the different m's implied by nsnp md in the full
atomic basis function because of the huge number of one-
and two-electron excitations of the core. The full atomic
wave function is much more complicated because each of
the terms of the target is coupled to a superposition of or-
bitals representing the wave function of a highly excited
electron near the core. A small reduction in the number
of core configurations needed to describe the target state
will result in a large reduction in the number of basis
functions needed to describe the atomic state.

However, it is possible to first sum all of the md orbit-
als to make an nd orbital [5,23] which will contain the
major contribution of nsnp md and ns np md to the
target function. This idea was introduced by Lowdin and
has been implemented by Froese-Fischer. A similar pro-
cedure can be followed to obtain a 4f orbital, as well as
an (n+1)s and p. These "natural" orbitals are absolutely
crucial to the success of the calculations; the summation
which constructs the natural orbitals occurs at an initial
step of the calculation and thus we greatly reduce the
number of multielectron basis function (as well as matrix
elements) needed for convergence. By creating natural
orbitals we include the most important corrections to the
Hartree-Fock target states in the most compact, physical
way possible. We describe below the algorithm which we
used to incorporate the natural orbitals into our R-matrix
program.

The major difference between the barred and unbarred
d and f orbitals consists of the barred orbitals being
drawn to much smaller radii. At first sight this may seem
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TABLE II. Parameters for the semiempirical potential for
the natural orbitals.

Atom

0, 1

2

3,4

2.034 42
6.853 21
7.161 05

—5.365 89
23.299 75
25.040 65

3.762 26
1.51006
1.018 00

rc

1.0
1.0
1.0

paradoxical because the added localization increases the
kinetic energy of the d,f electron. However, the increase
in energy due to localization is small compared to the
lowering of the ground-state energy by maximizing the
off-diagonal 1/r, - interaction. To see how this occurs,
note that the contribution to the total energy from the ki-
netic energy of the natural orbitals is proportional to c.

(where e is the amplitude for mixing the terms containing
natural orbitals into the wave function) while the contri-
bution to the total energy from the off-diagonal 1/r, in-

teraction is proportional to e. (The splitting between two
levels increases when their off'-diagonal matrix element
increases in magnitude; therefore the lower level de-
creases in energy when the off-diagonal matrix element
increases in magnitude. } For the halogen atoms, e is a
small number due to the Hartree-Fock character of the
target states. The off-diagonal interaction can be in-
creased by pulling the nd and 4f orbitals to smaller radii
where they will have a larger overlap with the ns, np or-
bitals. The characteristics of the nd and 4f orbitals can
also be rationalized from a coupled channel picture; the
wave function only mixes in higher I components at radii
where there is already substantial amplitude for finding
an electron.

In practice, we obtain the nd and 4f orbitals recursive-
ly. %e begin by constructing a large configuration-
interaction matrix which has the target basis functions
ns np, nsmsnp, . ns np mp, nsnp md, ns np md,
ns np mf, . . . We .obtain the coefficients of each basis
function by diagonalizing this configuration-interaction
matrix for the target state. Finally, we superpose the md
and mf orbitals using these coefficients to obtain orbitals
proportional to the natural nd and 4f orbitals. We then
construct a d potential and an f potential which very
nearly give the natural orbitals as eigenstates, thus comp-
leting the determination of V. This potential has the
same form as V in Eq. (3) with 7 replaced by 2 and a,' re-

placed by c7;. The c7; which we obtained are listed in
Table II. The advantage of this recursive method is the

consequential rapid decrease of the natural orbitals'
coefficients. For example, the coefficients of the
4s4p ('D)md P basis functions of the P CI target state
of Br are 0.071, —0.061, 0.047, —0.030, 0.017 for
m =4, 5, 6, 7, 8; when we use basis functions constructed
from the natural orbitals [i.e., 4s4p ('D)md P], the
coefficients are 0.106, 0.004, —0.002, 0.001, 0.000 for
m =4, 5, 6, 7, 8. Figure 1 shows the f and 4f orbitals for
the Cl calculation. Also graphed in this figure is the 3p
orbital, which gives an indication of its large radial over-
lap with the natural orbital.

The coefficients of our configuration-interaction wave
functions for Cl+ are similar to those in Ref. [5]. For ex-

ample, the coefficients of the most important 'S
configurations which we (they) obtain are 0.183
(0.181)3p, 0.144 (0.150)3s 3p 'S, 3d 'S, and —0.095
(
—0. 101)3s 3p 'D, 3d 'D; 'S. Reference [5] does not

use configurations which contain 4f orbitals; we found
the coefficient of these configurations to be -0.05. In
Table III we give our calculated target-state energies as
well as LS-averaged experimental threshold energies [24].
The relative error in our calculation is always less than
10%. Our calculated ionization thresholds are too small

by 5 —10%, indicating that the ground state is not con-
verged as well as the target states which is not surprising
since our one-electron orbitals were developed for the tar-
get states.

IV. SPIN-ORBIT INTERACTIONS

The eigenchannel R-matrix approach provides the log-
arithmic derivative of the wave function at a given energy
at the surface of the R-matrix volume. This information
together with the value of the wave function at the sur-
face completely determines the wave function everywhere
outside of the R-matrix volume. The wave function out-
side can be written in the form

(4)

where A is the antisymmetrization operator (which has
no practical effect at r & ro since the outer electron does
not occupy the same region of space as the core elec-
trons), 4, (Q) represents the target function and the LS
coupling of the target's angular momenta with that of the
outer electron to give L and S, and K' ' is the short-

Cl

Br

0
1

2
3,4

0
1

2
3,4

0
1

2
3,4

1.539 23
1.724 25
0.740 85
0.579 00

4.944 51
5.11679
4.325 36
3.64040

4.759 81
5.144 17
4.502 57
3.867 99

—26.612 80
—28.505 27
—34.693 71
—44.035 09

27.887 10
27.771 50
12.762 76
8.037 92

33.419 64
35.332 26
16.902 31
5.931 59

2.956 85
3.575 66
2.198 70
2.553 09

2.429 00
2.338 48
1.061 01
0.657 67

2.221 07
2.158 23
1.18006
0.551 83

0.3
0.3
0.3
0.3

0.6
0.6
0.6
0.6

0.5
0.5
0.5
0.5

1.0-

0.5

0.0

—0.5—

—1.0

r(a. u. )

FIG. 1. 4f (dashed line) and 4f (dotted line) orbitals of Cl
The 3p orbital (solid line) is shown for comparison.
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TABLE III. Theoretical and experimental J-averaged
target-state energies in atomic units.

Atom 3p
Theor.

1D 3p
Expt.

1D 's

F
Cl
Br
I

0.OOOO O.O985 O.2138
0.0000 0.0563 0.1353
0.0000 0.0494 0.1238
0.0000 0.0408 0.1031

0.0000 0.0943
0.0000 0.0513
0.0000 0.0457
0.0000 0.0374

0.2038
0.1252
0.1161
0.0998

range reaction matrix [14]. Open and closed channels are
included in Eq. (4); thus the g, contain terms which are

exponentially diverging at r ~ ao. This startling property
ensures the slow energy dependence of E' ', because
K' ' only depends on the dynamics inside of the R-
matrix volume where interaction energies are large. The
physical reaction matrix which results from superposing

g; to eliminate the exponentially diverging terms has a
much more rapid energy dependence, as is familiar from
other MQDT studies.

The reaction matrix in Eq. (4) has the superscript LS to
denote that it depends on the total spin and orbital angu-
lar momenta. E' ' is a completely nonrelativistic quan-
tity. Each of the reaction matrices constitutes one block
of a larger block-diagonal total reaction matrix

o

sc = o sc"" (5)

The block-diagonal nature of E is strictly an approxima-
tion, the error (which should be small) being due to our
neglect of relativistic effects within the R-matrix volume.
The reaction matrix of Eq. (5) and the dipole transition
matrix represent all of the dynamical information needed
to describe the atomic system. These parameters quanti-
fy the degree of similarity between different atomic sys-
tems better than the photoabsorption spectra themselves.

I( contains the dynamical information appropriate
when the atomic system is best described by an LS
angular-momentum coupling. This coupling can be
represented by the ket~[(L, l, )L(S,s, )S]J), in which (a)
the total orbital angular momentum of the core, L„ is
coupled to the orbital angular momentum of the outer
electron, l„ to give the total orbital angular momentum
L; (b) the total spin of the core, S„is coupled to the spin
of the outer electron, s, =

—,', to give the total spin S; and
(c) L and S are coupled to give the total angular momen-
turn J. This coupling scheme is appropriate when the
electron is near the core, since the dominant electrostatic
and exchange interactions are diagonal in this representa-
tion. However, when the electron leaves the core the LS
dependence of these forces quickly becomes negligible
[14].

Once the electron leaves the core region, it is only
affected by a long-range Coulomb interaction which is
the same for all target states. The electron's rate of phase
accumulation depends on the target state only through
the energy difference of these states; the energy available
to the outer electron equals the total energy minus the en-
ergy of the core. The energy of the target state does not

depend on L, and S, alone but on the total angular
momentum of the core, J, . This implies that the jj angu-
lar coupling scheme is more appropriate when the elec-
tron is outside of the core region, and should be
represented by the ket ~[(L,S, )J,(l,s, )j,]J). Actually,
any angular-momentum coupling in which L,S, is cou-
pled to J, would be equally appropriate (i.e., jIC or J,J„
coupling). The reaction matrix in this jj-coupled repre-
sentation can be obtained from the LS-coupled E matrix
by a simple orthogonal transformation. The transforrna-
tion matrix

U" Is = ( [(L„S,)J, ( l,s, )j, ]J ~ [(L,l, )L (S,s, )S ]J ) (6)

is simply the projection of one type of coupling onto the
other which involves a Racah 9-j coefficient. Explicitly,

K"=UK U (7)

d~j =dLs U

This is of course an approximation which is accurate as
long as K does not appreciably vary over an energy range

comparable to the fine-structure splittings of the core.
The rotation matrix U does not depend on the strength of
relativistic effects and thus the transformations (7) and (8)
represent couplings in the K matrix of zeroth order in the
relativistic interactions. The terms omitted in Eq. (5) are
of first order. These couplings only have a strong effect
on the Rydberg levels which have an orbital frequency
comparable to or larger than the fine-structure splitting.
When the approximations embodied by Eqs. (5)—(8) hold,
the simpler LS coupling calculation which totally ignores
spin-orbit effects will reproduce the experiment if the
fine-structure splitting of the thresholds is smaller than
the experimental resolution. We use the experimentally
determined ionization threshold energies [24] when we

apply the MQDT boundary conditions with the relativis-
tic L matrix and dipole transition operator, Eqs. (7) and
(8). These threshold energies are the only experimentally
determined parameters of the neutral atom which we use
in our calculation; of course, we use the experimental en-
ergy levels of the charge 6+ ion in the determination of
the valence Hamiltonian, Eq. (3).

The transformation Eqs. (6)—(8) can be thought of as a
geometric rotation because U is the same for all of the
halogens. This type of frame transformation has been
successfully applied to the spectra of the alkaline earths
[14] and to the rare-gas atoms [9,10(a)). For the halo-
gens, as well as for atoms in all other columns of the
periodic table, there is an additional coupling whose
effect has not been previously studied. In particular, for
all atoms except those with only a single electron or hole
in the target valence shell, the 1, .s, interaction not only
splits the states having the same L,S, but different J, but
also couples the states with different L,S, but the same
J,. In the halogens this coupling mixes the ns np ( Po)
with ('So), and ( Pz) with ('D2). The coupling varies
from atom to atom because it depends on the strength of
the 1, -s, interaction as well as the energy differences be-
tween the different L,S, states. The nonadiabatic cou-
pling represented by this dynamical frame transformation
allows the Dmd S ]g2 states above the Po threshold to



F. ROBICHEAUX AND CHRIS H. GREENE 46

TABLE IV. Rotation angles (in rad) for the dynamical frame
transformation.

Atom

F
C1

Br
I

0.011
0.041
0.166
0.317

—0.011
—0.036
—0.167
—0.396

V. COMPUTATIONAL DETAILS

autoionize to the P2ed P, zz continuum (i.e., the decay
occurs through the fine-structure interaction of the P2
target state with the 'D2 target state). The 'Dmd S'
states would not autoionize if we only applied the usual
LS-to-jj frame transformation because the singlet thresh-
olds do not have a fine-structure splitting, at least in the
energy range above the Po threshold. The geometric
frame transformation has no effect on the total cross sec-
tion when none of the thresholds of the closed channels
have a fine-structure splitting. These resonances are ab-
sent from previous LS-coupled photoionization calcula-
tions, such as that of Ref. [6].

An ab initio determination of the mixing angles in the
dynamical frame transformation is very difficult due to
the contribution from the other valence electrons to the
spin-orbit coupling. To obtain the mixing angles we
take advantage of the fact that the target states are
—95% ns np which implies that the radial matrix
element in the fine-structure interaction will be the
same for all of the different states. Therefore

&ns np LJ~Vso~ns np I J&=y„&p LJ~l s~p LJ&

should be a good approximation. We now fit y„and
three LS energies to the experimental ionization energies
to obtain the two mixing angles Oo and Oz. The lower-
energy state of total angular momentum J is
~ns np PJ) cos8z+~ns np 'JJ) sin8J and the higher-
energy state is —~ns np PJ ) sin8J+ ~ns np 'JJ ) cos8J.
Table IV gives the values of OJ which we have obtained
by this method. This procedure is analogous to the
"intermediate-coupling" method of Berkowitz and Good-
man [25]. The angles they obtain are within 10% of our
values except those for Cl, which are 0.01 rad smaller in
magnitude than our values [25(a)].

The dynamical frame transformation provides a good
approximation to the dynamics as long as the K matrix
does not appreciably vary over an energy range compara-
ble to the energy splittings of the core, i.e., the P2-'D2
splitting and Po-'So sphtting. Unfortunately, near the
PJ thresholds the 'Smd and 'Sms channels are strongly,

rather than weakly, closed which causes the dynamics in
the D ' and S' final-state symmetries to vary more
quickly than at higher energies. This circumstance may
account for the unexceptional agreement between our
calculated and the experimental cross sections between
the Pz and Po thresholds in Br and I.

However, we have used the ns and np orbitals to describe
the Hartree-Fock orbitals of the ionic state which are
slightly compressed compared to the orbitals for the neu-
tral atom. This circumstance forces us to include many
basis functions which primarily represent this simple re-
laxation (i.e., functions like [nsms 'S]np', ns np mp,
etc.). We also include correlation effects in the ground-
state basis function, which necessitates many more basis
functions than for rare-gas atoms because the halogen
ground state has nonzero spin and angular momentum.
The main effects emerge from calculations with less than
50 basis functions for the ground state, but we include
many more basis functions than this in order to achieve
the maximum possible agreement between the cross sec-
tions calculated in the length and velocity gauges for I.
We did not modify our choice of basis functions for the
different atoms, although the radial orbitals differed of
course from one halogen to another. The ground state
was composed of —300 basis functions with —90
different angular configurations. The most important an-
gular configurations were ns np, ns np mp, nsmsnp,
nsnp'md, ns np mf, np md, ns np md, and np mp
All possible intermediate angular couplings are used
for each shell configuration. For example, ns np mp
means each of the three possible couplings:
[(ns 'S)(np 'S)'S]mp, [(ns 'S)(np P) P]mp, and
[(ns 'S)(np 'D)'D]mp. The disagreement between the
cross sections calculated in the length and velocity gauges
is typically less than 10%%uo for all of the halogen atoms
which gives an indication of the convergence of both the
ground-state and final-state wave functions.

There are seven different final-state LS symmetries and
15 total final-state channels which enter our calculation
(in what follows the three LS-coupled core states
ns np P, ns np 'D, and ns np 'S will be shortened to
P, 'D, and 'S, respectively): 'Dmd S, 'Sms S, 'Pms 2P,

'Pmd P 'Dmd p 'Dms D pmd D, 'Dm
'Smd D, Pmd F 'Dmd F Pms P Pmd P
Pmd D, and Pmd F. The largest basis-set sizes were
-700 for the D Anal-state symmetry and -450 for the
P final-state symmetry. For the final-state symmetries

we could decrease the basis-set size by a factor of 2 —3
and still obtain reasonable results, whereas for the
ground-state symmetry a decrease by a factor of 8 in the
basis-set size still gave adequate results. Part of the
reason for the large basis-set size was that the basis was
chosen to give converged results for I which made neces-
sary the inclusion of basis functions unnecessary for the
lighter halogens. Our results for the D' final-state sym-

metry of Cl using -450 basis functions were completely
indistinguishable from the larger calculation.

The complete calculation of the photoionization cross
section for one atom including the computation of the
ground-state wave function and LS-to-jj frame transfor-
mation required -2.5 h of CPU time on a DEC station
5000/200 computer.

VI. RESULTS

A. Cross sections

The halogen-atom ground state can be represented well
by a Hartree-Fock wave function of the type ns np P'.

Figures 2 —10 present the current theoretical calcula-
tions and the experimental results where available. In
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general there is good agreement between the two. Possi-
bly the most striking feature of these figures is the huge
difference between F (Figs. 2 and 3) and the other halo-
gens, as well as the remarkable similarity between Cl
(Figs. 4 and 5), Br (Figs. 6—8) and I (Figs. 9 and 10). The
reason for the absence of broad features in F can be
traced to the lack of overlap between a d electron and the
inner p core. These broad features in the heavier halo-
gens are 'Dmd autoionizing resonances which decay pri-
rnarily into the Pc,d continuum channels. Figure 11
shows the 2p and 3d orbitals for F and the 3p and 3d or-
bitals for Cl. Notice the much larger overlap in Cl. The
md states of F are sharper (i.e., longer lived) because
there is only a small amplitude for this d electron to get
near enough to the core to inelastically scatter. This ar-
gurnent explains why all of the nd autoionizing levels in
the first-row atoms are sharp. Similar reasoning shows
why the dipole transition strengths np ~md and np ~ms
are comparable in F, but in the heavier halogens np ~md
dominates according to the expected propensity rule for
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photoabsorption [26].
Figures 2, 4, 7, and 9 show the photoioinization cross

section for all of the halogen atoms between the P and
'D thresholds. The broad resonances are a superposition

2 eof two broad autoionizing series, Dmd P and
'Dmd D'. These resonances were misclassified in some
early studies [2) of Cl but have since been correctly
reclassified [3,27]. The sharp resonance peak at longer
wavelengths is always 'Dms D' which decays through its
coupling to the Pad D'continuum and the one at short-
er wavelengths is 'Dmd S' which decays due to the
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FIG. 4. Same as Fig. 2 but for Cl (Ref. [2]) between the P
and 'S thresholds.
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the halogens is the fact that the 'Sms S' resonant peaks
in the heavier halogens become windom resonances in F
due to their interaction with the broad 2s2p autoioniz-
ing level. This interaction facilitates their decay into the
open 'Dad S' channel which is why they are anomalous-
ly broad (especially the window resonance at 585 A). In
Fig. 12, the effect of this resonance is apparent.

There is a discrepancy in the widths of the two sharp
resonance -915 A in Cl between previous calculations
and experiment. Experiment [27] has determined the
width of these resonances to be 0.04 A while the previ-
ous calculations [28] give widths ~ 0. 1 A and in one case
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approaching the 'S threshold (Figs. 3, 5, 8, and 10). The
'Sms S' series is the sharper one at shorter wavelengths
and the 'Smd D' series is the broader except in F.

In F (Fig. 3) there is an extra peak at -600 A which
we identify as the 2s2p S' level, that has apparently not
been observed or calculated. Reference [3] estimated this
level to lie near 580—590 A. The corresponding nsnp
level in the heavier atoms lies in the discrete part of the
spectrum and is heavily mixed with the ns~np ('D)nd S
level. Our lowest S bound level in Cl is —50% 3s3p
and 50%%uo 3s 3p 3d. Another striking difference between
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Flax. 12. MQDT parameters of the 2S' final-state symmetry
for the different halogen atoms as a function of the scaled ener-
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old. (a) Mixing angle 8, (b) quantum-defect eigenvalues, and (c)
probability of inelastic scattering, Eq. (10). F (+), Cl (sI), Br
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0
~ ~ ~ 0-0.2 A (the experimental positions are -913.17 A for

the 'D4d S' resonance and -917.25 A for the 'D6s D'
resonance). Our calculations agree with the experimental
results, giving positions (widths) of 913.43 (0.02 A) and
917.68 A (0.007 A).

The calculated ionization spectra agree well with the
experimental results for all of the halogens. For Cl we
obtain the best agreement with experiment, with our re-
sults being nearly identical to the experiment. Since the
normalization of the experimental spectrum of Ref. [2]
below the 'S threshold was obtained by equating the ex-
perimental cross section at the 'S threshold to an average
of several theoretical results, we have an indirect compar-
ison with previous calculations. Our value for the cross
section at the 'S threshold agrees well with the three
highest calculations and is slightly smaller than the ex-
perimental value of 43.6 Mb obtained in Ref. [29].

Our results agree with those of Brown, Carter, and
Kelly [6] for Cl except in those instances mentioned
above where our results are closer to experiment. How-
ever, the difference between the two calculations is slight.
The only other calculations in this energy range are those
of Lamoureux and Combet Farnoux [7] for Cl which do
not include all of the important channels necessary for a
complete description of the spectra in this energy range.
For the channels they do include, their results are in
moderate agreement with ours. The other important
point of comparison is the total cross section at the 'S
threshold in Cl. Our value of the cross section is
38.5+2.0 Mb where we have used the discrepancy be-
tween our length and velocity results to estimate our er-
ror. This should be compared to the theoretical values of
25 Mb of Ref. [8], 30 Mb of Ref. [5], 35 Mb of Ref. [7], 37
Mb of Ref. [6], and 39 Mb of Ref. [30] and the experi-
mental results of 43.6+3.5 Mb of Ref. [29] which was
normalized to —,

' of the molecular cross section between

300 and 450 A. Our results are smaller than those of Ref.
[8(b)] at the 'S threshold except for F where we are in
agreement. Our values are -40 Mb for Cl, -50 Mb for
Br, and —70 Mb for I, compared to the Ref. [8(b)] values
of -60 Mb for Cl, -70 Mb for Br, and -90 Mb for I.
Combet Farnoux and Ben Amar [31] have calculated the
values of 43 Mb (31 Mb) for I at the 'S threshold in the
length (velocity) gauge. We do not know of calculations
or experiments for any of the other halogen atoms in the
energy range which we covered. Recent experimental
work [32,33] covering the energy range below the nsnp'
thresholds also shows interesting structures in the total
cross sections as well as in the photoelectron asymmetry
parameter P.

We now turn to the discrepancies between the experi-
ments and our calculations. The biggest visual error in F
is the 2s 2p 'S 3s resonance at -682. 5 A in the calcula-
tion compared to -680.7 A in the experiment which
causes a reversal in the calculated order of the two au-

0

toionizing resonances near 680 A. This discrepancy cor-
responds to an error of -0.01 in the calculated quantum
defect and an error of ——0.05 eV in the position of the
resonance relative to the ground state. Based on several
previous calculations for the alkaline-earth atoms [14],
we do not expect accuracy better than this, particularly

in view of the approximations made and in view of the er-
rors in the calculated ionic levels in Table III. The error
in the energy level is magnified by the small value of the
effective quantum number for this resonance, v-1.67.
The experimental height of this level is about —', the calcu-
lated height after convolution with the experimental reso-
lution. From the dynamical frame transformation we es-
timate that the width of this level should be -0.002 A
which would correspond to a resolved peak height of
-30000 Mb. This width implies an autoionization life-
time of order 10 " sec. Berry et al. [34] measured a
mean lifetime of (3+1)X10 ' sec for this state which is
a factor of 30 larger than what we estimated, indicating a
breakdown of the dynamical frame transformation. By a
comparison with two calculated decay rates by radiation,
they estimate that this state autoionizes approximately
three times faster than it radiates. If we use this branch-
ing ratio to correct our peak height we obtain good
agreement with the value of Ref. [1]. The discrepancies
in Br (Figs. 6 and 7) result from the broad 'Dmd P', D',
and 'Smd D' resonances being shifted too high in energy
by a quantum defect error of -0.05. This error is
perhaps slightly larger than expected. The agreement of
our I calculations with experiment is good but not great.
Certainly, a large part of the error can be traced to our
inadequate treatment of the dynamical frame transforma-
tion. Br and, especially, I are conspicuous by the inade-
quate experimental spectra of the charge 6+ ion needed
to determine the one-electron valence potential needed
for our calculations. We are uncertain about how large
an effect the errors in the valence potential can have on
the theoretical spectrum.

B. MQDT parameters

cosO sinO tanmP
&

sinO cosO 0 (9)
tanmp2

In Fig. 12(a) we plot the mixing angle and in 12(b) the
quantum defects for the different atoms. The probability
that an electron in the s channel will scatter into the d

Another measure of similarity and contrast between
the different halogens can be obtained by an examination
of the reaction (reactance) matrix, especially quantum de-
fects p and mixing angles O. Due to the large number of
final-state symmetries we will focus on these properties
for only two of the I.S symmetries, S'and P'. To facili-
tate comparison between the different atoms we will plot
the p and O versus a scaled energy e which will be zero
at the ns np 'D threshold and one at the ns np~'S
threshold.

The first symmetry we consider is the S' symmetry
which has two channels, ns np 'Sos and ns np 'Dc.d,
which will be denoted the s and d channels. The impor-
tant parameters which describe the interaction between
these channels are the mixing angle O and the quantum-
defect eigenvalues p, and p2, [13],given by

+ss +sd cosO —sin O

Kd, Edd sinO cosO
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channel (or vice versa) in one collision with the core is

P,d = sin 28sin vr(p, —p~) . (10)

This quantity is plotted in Fig. 12(c). It is easy to see
from Eq. (10) that the maximum probability for scatter-
ing from one channel to the other obtains when hp is half
integer and 0 is an odd multiple of m/4.

Figure 12 shows another striking difference between F
and the heavier halogens. Namely, there is a resonance
in F (Fig. 3) at e-0.2 (k-603 A) associated with the
2s2p S configuration. The corresponding resonances,
nsnp S, in all of the other halogens are at energies below
the ns np P threshold. The large s-d mixing in F near
the resonance indicates that it decays with nearly the
same rate into the s or d channels. The small 2p-ed over-
lap inhibits decay to the d channel which would normally
be expected to serve as the dominant escape channel.
The large s-d mixing in the S' channel in F induced by
the 2s2p resonance explains the anomalous width of the
window resonances in Fig. 3 ~ The mixing angles for the
heavier halogens cluster near 0.55m indicating very little
s-d mixing; complete mixing obtains at the angles m/4
and 3m. /4 while zero mixing obtains at the angles 0 and
n l2. There is very little s-d mixing in any of the LS sym-
metries, which accounts for the narrow widths of all of
the ms autoionizing resonances.

The quantum-defect eigenvalues in Fig. 12(b) again
show the 2s2p resonance in F. Away from this reso-
nance we can discern a trend in the quantum defects
which reflects the changing dynamics with increased Z.
Examine the p near e= —0.5. There is one quantum de-
fect, which we can associate with the s channel due to the
small mixing, which decreases by -0. 1 going from atom
to atom: F-0.3, Cl-0. 17, Br-0.07, I-O.O. The other
quantum defect, associated with the d channel, behaves
slightly more erratically: F-1.05, C1-0.95, Br-0.8,
I-0.8. The difference between the quantum defects is
roughly 0.75 for all of the atoms giving an s-d mixing
probability [Fig. 12(c)] of -5—10% for the heavier halo-
gens which is slightly larger than the s-d mixing of -3%
for the rare-gas atoms [10(b)].

To obtain a full picture of the halogens we now exam-
ine the interaction between two channels which have
outer d electrons but different LS-coupled target states.
Specifically, we will study the K (reaction-reactance) ma-
trix for the P' final-state symmetry. The general con-
clusions we draw for this symmetry also apply to the D'
final-state symmetry. The P' symmetry contains three
interacting channels: ns np Pcs, ns np Pcd, and
ns np Dcd. For the purpose of investigating the in-

2 41

teraction between two cd channels we will completely ig-
nore the rows and columns of the K matrix referring to
the cs channel. Since the cs channel interacts weakly
with the two cd channels, this deletion will not seriously
affect our study of the qualitative d-d interaction dynam-
ics. In the following paragraph, the Pcd and the 'Dcd
channels will be called the P and 'D channels. Because
we have reduced the K matrix to 2X2, we can again
probe the dynamics through the study of a mixing angle
0 and two quantum-defect eigenvalues p, and p2.

In Fig. 13 we plot the dynamical parameters j9, p, and

Pdd for the P and 'D channels. Again we see the strik-
ing similarity between the heavier halogens and their ma-
jor difference from F. It is perhaps not clear from Fig.
13(b) that the quantum defects for F are both small,-0.05 and -0.0. Inserting these values into Eq. (10), we
find that the probability for scattering from the P into
the 'D channel (and vice versa) is —1% [and in fact can
hardly be seen in Fig. 13(c)]. This observation accounts
for the very narrow 'Dnd resonance in F, i.e., the electron
must scatter from the core a large number of times before
there is appreciable amplitude for finding it in the escape
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channel. However, for the heavier halogens the dynami-
cal parameters are such that maximal decay rates obtain.
Figure 13(c) shows a probability of 60—100% for scatter-
ing from the P into the 'D channel (and vice versa). For
such a large probability the widths of the resonance be-
comes nearly equal to the spacing between the reso-
nances.

The semiempirical determination of the Cl MQDT pa-
rameters in Ref. [35] is fiawed by an error in the assign-
ment of the broad resonances below the 'D threshold to
the P' final-state symmetry only. At that time these res-
onances were thought to be composed of only one Ryd-
berg series whereas now we know them to be composed
of two series of almost the same width with slightly
different quantum defects and different final-state sym-
metries, P' and D'. With the qualification we can com-
pare the results of Ref. [35] for the mixing of what they
call the Pmd P' and 'Dmd P ' channels with our pa-
rameters plotted in Fig. 13. Their values of p, =0.31,
p2=0. 09, and 0=0.28~ compare well with our values
(near e= —1 where they did their fitting) of )tt, =0.4,
pal=0. 05, and 8=0.23m. . The operation O~m/2 —

L9 sim-

ply interchanges the labels on the eigenchannels and thus
the experimental determination of the MQDT parameters
for this final-state symmetry nearly reproduces our re-
sults even though they did not know the broad reso-
nances are the sum of 'Dmd P' and 'Dmd D' autoioniz-
ing series. However, their fitted dipole matrix elements
are quite different from our results which definitely stems
from the error in their fitted number of channels.

VII. CONCLUSIONS

We have calculated the LS-coupled E matrices and di-
pole matrix elements necessary for the calculation of the
photoionization of the halogens between their ns np
thresholds. We have analyzed these parameters to obtain
more insight into the dynamics of these atoms and the
good agreement between our calculated spectra and the
experiments give us confidence in their accuracy. The
similarity in the dynamics of the halogen atoms should be
a trait common to other open-p-shell atoms (e.g. , P, As,
and Sb) and may help in the classification of their au-
toionization spectra. We have identified a dynamical
frame transformation which will be necessary for a rela-
tivistic treatment of atoms with more than one hole or
one electron in the outer shell in the target state. For Br
and I, the discrepancy between theory and experiment
may stem in part from the inadequate state of experimen-
tal knowledge of the energy levels of the charge 6+ ions
which we need to determine the one-electron valence po-
tentials.
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