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Accurate screened @ED calculations in high-Z many-electron ions
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We describe a practical, rigorous, QED procedure for performing accurate calculations of the
screened self-energy for high-Z ions based on a realistic local atomic potential. Using a basis-set
algorithm, we show that the procedure involves a rapidly convergent partial-wave expansion that,
in contrast to previous methods, requires explicit computation of only the first few partial waves.
We apply the method to the 28-2yzyq transition of Li-like U, the 38-3p3yq transition of Na-like Pt,
and the 4s-4y~y2 transition in Cu-like Bi. When combined with calculations of the screened Uehling
vacuum-polarization term and earlier correlation calculations, the results agree with experiment to
within several tenths of an ev.

PACS number(s): 31.20.Tz, 12.20.Ds, 31.30.Jv

I. INTRODUCTION

While the evaluation of the radiative self-energy in
high-Z ions has been definitively solved for point-nucleus
hydrogenic ions [1—3], the evaluation of the self-energy,
and QED corrections in general, for many-electron ions
remains an outstanding problem in theoretical atomic
physics. Yet interest in high-Z ions has grown consid-
erably in recent years as experimental methods permit
the study of higher charge states with greater precision.
For example, a measurement of the resonance transition
in Li-like U by Schweppe et aL [4] has achieved a preci-
sion of 0.09 eV (0.2% of the Lamb shift), and comparable
precision has been obtained in Na-like Pt by Cowan et al.
[5] and in Cu-like Th by Seely et al. [6]. In addition to
providing data for modeling hot laboratory or astrophys-
ical plasmas, these systems offer the possibility of mak-
ing precision studies of a relativistic many-body system,
bound by electromagnetism, in a regime in which radia
tive corrections are on a par with the electron-electron
Coulomb interaction for determining the structure.

On the theoretical side, Johnson, Blundell, and
Sapirstein [7—10] have recently applied relativistic many-
body perturbation theory (RMBPT) to calculate highly
converged correlation and Breit corrections for high-Z
Li-like, Na-like, and Cu-like systems. By comparing with
experiment, these authors inferred the QED effects omit-
ted in their RMBPT calculations, finding them to be
slightly smaller than those expected for hydrogenic ions,
that is, corresponding to a reduced or "screened" nuclear
charge. While several algorithms are available for esti-
mating phenomenologically these screened QED effects
(see for example Ref. [11]),a true test of QED requires
an ab initio approach. The Feynman diagrams for the
leading QED effects are shown in Fig. l. In this paper
we describe in detail a practical procedure for evaluating
the largest and most difficult to calculate QED effect, the
self-energy, in a realistic atomic potential.

While the formula for the bound-state self-energy and
the general renormalization procedure have long been un-
derstood, the numerical evaluation for high Z has proved

a hard problem. The early, largely analytical methods

applied to hydrogen fail at moderate Z because it is no

longer valid to expand in the parameter Zn that mea-

sures the strength of the nuclear Coulomb potential; what
is needed instead is a direct numerical evaluation of the
Feynman diagram. The first such correct calculation we

believe was by Desiderio and Johnson [12] using a method
suggested by Brown, Langer, and Schaefer [13].With an
improved algorithm, Mohr [1,2] then solved the problem
definitively for states in point-nucleus hydrogenic ions

with principal quantum numbers n = 1 and n = 2; this
work has recently been extended to n = 3—5 by Mohr

and Kim [3].
A principal numerical problem in both these ap-

proaches, however, is a rather slowly convergent partial-
wave expansion with asymptotic form 1/L2. Mohr cal-

culated very precise results by introducing special func-

tions specific to the point-nucleus Coulomb problem, and

was able to extend the partial-wave expansion to an L
value of several thousand. However, his numerical ap-

proach does not generalize immediately to an arbitrary
potential. Recently, Indelicato and Mohr [14] have con-

sidered the linear effect on the Coulomb self-energy of
a small additional screening potential. This approach

may be expected to lose accuracy at low or intermedi-

ate Z, or for systems with more than a few electrons,

(a)

FIG. 1. Feynman diagrams for the lowest-order bound-

state self-energy (a) and vacuum polarization (b). Double

lines represent propagation in the external potential V(r).
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where the screening potential is not small compared to
the nuclear Coulomb potential. Also the method cannot
account for a finite nuclear charge distribution. A com-
plete calculation of the self-energy for excited states in

a non-Coulomb potential was recently given by Cheng,
Johnson, and Sapirstein [15] using the original Brown et
al. algorithm with improved numerical techniques and
computing power. They were able to account for the
bulk of the screening of the Lamb shift in selected I i-

like, Na-like, and Cu-like systems, though with a numer-
ical precision worse than the best experimental precision
for high Z.

Here we describe an alternative approach to the prob-
lem of computing the self-energy in a non-Coulomb po-
tential that we believe has important computational ad-
vantages. Our procedure is based partly on a recent
suggestion by Snyderman [16], the essence of which is

shown in Fig. 2. As in the early treatment of Baranger,
Bethe, and Feynman [17], the electron propagator is ex-
panded in terms of the total external potential V(r) =
V„„,(r) + V„,„(r), obtaining divergent zero- and one-
potential terms, and a finite many-potential term. The
divergences of the former two terms cancel against each
other and the mass counterterm, leaving finite residues.
While Baranger, Bethe, and Feynman extracted the
physical self-energy through order o.(Zo)smc2, Snyder-
man has suggested a numerical evaluation to all orders
in Zn and 1n(Zn). He has given analytical expressions
for the finite parts of the zero- and one-potential terms in

the form of one- and three-dimensional momentum-space
integrals, respectively; we here apply these expressions
directly. For the many-potential term, we introduce a
basis-set algorithm, which we use to examine the partial-
wave expansion of this term. We find a relatively rapid
convergence, roughly as I/Ls, that permits accurate eval-
uation of the self-energy with L & 9 for a single state;
we find that even fewer partial waves are required for the
self-energy of a transition. It follows that the slower 1/L2
convergence of the earlier methods is associated with the
finite part of the one-potential term, which is here eval-
uated in momentum space. This is an important obser-
vation for self-energy calculations, because with such low
partial waves suEcing, it is as easy to evaluate the self-
energy for an arbitrary potential as it is for a Coulomb
potential.

The first results of the method have already been pre-
sented in a Rapid Communication [18] with Snyderman.
There we showed that the procedure gives precise agree-

ment with the point-nucleus 1s self-energies of Mohr [].].
The present paper explains some of the details of that
work, together with the extension to nonhydrogenic sys-
tems and a discussion of the finite-nuclear-size effect on
the self-energy.

The paper is organized as follows. In Sec. II we outline
the formalism with emphasis on the basis-set algorithm
for the many-potential term. We describe the most im-
portant numerical details in Sec. III. In the following
section, we give three illustrative calculations for Li-like,
Na-like, and Cu-like ions, which enable us to compare
both to previous screening calculations and to experi-
ment. For the latter purposes we calculate also screening
corrections to the Uehling term of the vacuum polariza-
tion. In the final section we discuss prospects for improv-
ing the accuracy further, and for evaluating higher-order
@ED terms.

II. FORMALISM

EsE —— dr 1 dr2 4A (r2) ~(~A r2 r 1)4A (rl )

—6m dr QA(r)QA(r),

We shall assume the electron-electron interaction to
be approximated in the first instance by a suitable cen-
tral potential V„,„(r). By using a Furry representation of
@ED in the total potential V (r) = V„«(r) +V„,„(r),one
can then develop a systematic perturbative expansion
around V(r) that contains in a consistent way both the
correlation effects considered in the RMBPT approach
and the residual @ED effects [19]. We consider here the
leading one-photon radiative corrections in such an ap-
proach, and require, therefore, that the electron wave
functions and propagators refer to the potential V(r).

The screening potential V„,„(r) should ideally be some
form of numerically generated self-consistent potential.
For the method to be presented here to be fully consis-
tent, however, Vs«„(r) must be a local potential. This
restriction rules out direct use of a Dirac-Fock potential,
but can admit local approximations to a Dirac-Fock po-
tential. We in fact use the direct part of the Dirac-Fock
potential in Sec. IV.

The radiative self-energy level shift of a single-particle
state A with energy e'A is given in the Furry picture by
the real part of [17,20]

where 6m is the free-electron mass shift, and g(e; r2, rq)
is the bound-state self-energy operator

+ n,

FIG. 2. Decomposition of the bound-state self-energy into
(a) zero-, (b) one-, and (c) many-potential terms. Single
lines represent free-electron propagators, double lines bound-
electron propagators; solid lines terminated by a cross repre-
sent the binding potential V(r).

Eked

ppG(E —cd; r2, ry)p D" (d; r2, ry).
—OO

(2)

The quantities D""(u;r2, r)) and G(r;r r2&) here are
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mixed-representation photon and bound-electron prop-
agators that are discussed further below. To isolate and
cancel the divergences appearing in (1), we follow the
procedure of Refs. [16] and [17], which we sketch as fol-

lows. The bound-electron propagator G is expanded in
terms of the binding potential according to Fig. 2. In-
serting this form for | into (1) and (2), and converting
to momentum space, gives

ESE= 3 Ap~ &A p Ap + 3 3 AP2Ap, &A)P2 &A)P1 Apl v P2 Pl

+EMp —bm s QA(p)QA(p).
dp

(3)

This decomposition isolates the divergences in the free-
electron self-energy Biol, the free-electron vertex func-

tion A„, and the mass counterterm bm, while the resid-(o)

ual many-potential term EMp (developed below) is fi-
nite. Note that the one-potential term involves the
Fourier transform of the local binding potential V~(r) =
(V(r), 0). The divergences can be displayed formally by
means of the standard identities to O(o,) [21]

Zi &(p) = 6m+ (Qp„—mc )(1 —Z2 ') + Zfi„(p), (4)

~."&(",.) =..(Z —I)+~„",.'.(",.)

(p"~ -mc')4(p) =
(2 ), V~V"(P —tI)4(a) (6)

and the free-electron Ward identity Zl ——Z2, however,
these divergences cancel each other, and the final expres-
sion for the self-energy is given by a sum of three finite
terms

Upon substitution into (3), the first term in (4) cancels
the mass counterterm, leaving terms dependent on the di-
vergent renormalization constants Zl and Z2. By virtue
of the Fourier transform of the Dirac equation,

EsE =
s CA(p)~fi~ (sA~ P) PA(p) +

(27r)s 2 VA(P2)Ap fi~(sA& P2I sA& Pl) PA(pl) V (P2 Pl) + EMP

(7)

The finite parts of the self-energy and vertex functions,

Zfi„(p) and A„ fi„(p2, pl), are gauge dependent and de-(o) (o)

pend also on the regularization scheme, but the sum (7)
is gauge invariant and free of regularization ambiguities.
In this work we use the explicit Feynman-gauge expres-

I

I

sions for the zero- and one-potential terms derived by
Snyderman [16] using dimensional regularization, with
slight generalization to an arbitrary potential.

We now turn to the many-potential term shown in
Fig. 3. The configuration-space Feynman rules give

@MP =2
27r

drld»drsdr4 D""(ur; rl, r4)QA(rl)p„K(sA —u; rl, r2)

xpoV(»)t (sA —~, r2, rs)1oV(rs)K(sA —~, rs, r4)p QA(r4),

where K(s; r2, rl) is the free-electron propagator. In the
Feynman gauge used here, the photon propagator is [22]

gpvD" (u; r2, rl) = exp(i'm +ib ~» —rl~ /c),
EA —(0 A

where b is an in6nitesimal positive quantity, and where
the sign of the square root is chosen such that the argu-
ment to the exponential has a negative real part. For the
free- and bound-electron propagators we use the eigen-
function representation,

Q) a"w
A

r3

E, —0)A

r4

~ - 0-(»)4-(»)s;»&»
A

E' —E' + 2Cl

(10) FIG. 3. Many-potential term. The energy arguments in

Eq. (8) are given by energy conservation at each vertex.
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imagining the atom to be confined to a very large but

Gnite cavity so that the spectrum of the Dirac Hamil-

tonian is discrete. Here and later, greek subscripts a,

P, . . . , refer to states of the free electron, and italic sub-
scripts i, j, . . . , to states in the binding potential V(r)
The sign of ib in the denominator is positive for the
positive-energy branch of the spectrum (including the
discrete bound states), and negative for the negative-
energy branch. Substituting (10) and (11) into (8) gives

. (&P[(~„),(~„),D~"(~; 12)[~w)(n[v~i)(qV~P)
&MP =& 'I

2vr (sg —u —sp)(sg —~ —s,)(sg —~ —s )
cx,P, i

(12)

where for notational simplicity we have left implicit the infinitesimal imaginary parts in the denominators. To reduce
this expression to a form suitable for computation, we must perform the angular integrals analytically. We therefore
express the free and bound single-particle states in spherical form,

(13)

and use the spherical expansion for the outgoing-wave Green's function [23],

exp(ik ~rz —rq~) = ik ) (2L+ 1)jL, (kr&)hz (kr&) C (rq) C (rz), (14)

to derive a multipole expansion for the frequency-dependent photon interaction having the structure

(ab~(ap)g(cl~)2D""((d; 12)~cd) = ) Jg(abed)RI, (4/;abed).
L=O

(17)

Here Jr, (abed) gives the usual magnetic-substate dependence associated with a scalar two-body operator,

~i(~&«) =).(-I)' """'+" "'I( L l f
(16)rn rnl, —m, p q

—mq mr, my ) '—

while RL, (~;abed) is a frequency-dependent generalized Slater integral. An expression for Rl, (u; abed) in Feynman
gauge is given in Appendix A. After substituting (15) into (12), we perform the sums over magnetic substates with
standard graphical techniques [24], finding

Rl, (u; AQUA) V,Vp&Mp & g &(i
(2jQ + 1) (~Q ~ ~p) (~Q 4) &j)(&Q ~ s(y)fL~ )AP pfLs

where the Dirac angular quantum number z = z
~p = z, . The symbol b(j;,jA, L) is unity if the three
angular momenta satisfy a triangular condition, and zero
otherwise. The matrix element of the potential is given
by

V,q = dr V(r) [g (r)A(r) + f,(r) fb(r)]
0

(18) A
x x x

The poles and cuts for the photon-frequency integral
in (17) are shown in Fig. 4. The photon propagator con-
tributes cuts that pinch the origin, while the free- and
bound-electron propagators contribute branch cuts (or
poles in a cavity) on either side of the imaginary axis.
The bound-electron propagator also gives a set of poles
that crosses the imaginary axis, with one pole i = A ly-
ing on the imaginary axis, and poles from states of lower
energy than A to the right of this axis. To perform the
u integral numerically, we rotate the contour anticlock-
wise about u = 0 to the imaginary axis, obtaining a
principal-value integral, pole terms from states of lower

CR

FIG. 4. Photon frequency-plane singularities for the
many-potential term. Solid lines: photon-propagator branch
cuts. Wavy lines: multiple branch cuts of free- and bound-
electron propagators. Crosses: discrete poles of bound-
electron propagator. The contour CR is rotated anticlockwise
to give CI plus pole terms C~.
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energy than A, and a half-pole term from A itself,

EMP = Epv + —,'Ep, ). + ) . Ep').
i (r, (eA)

The principal-value integral from the negative imaginary
axis is the complex conjugate of that from the positive
imaginary axis. Thus

1
Epv = ——Re )

7t

, ( l)—~" ~'+~ . Ri, (iu; APnA)V, V~@
~) I)

(2j / + 1) (s/ —i~ —~p)(s/ —i~ —~g)(s/ —i~ —~ )
'

L=O ~n ) +p)&i
(20)

Iy(. )) ) I )(
(s~ l4J —s~)

(21)

which can also be regarded as the solution to an inhomo-
geneous Dirac equation

(sg —iLd —hr)) Iy, (i~)) = V Ii) .

The principal-value term can then be evaluated as

(22)

1
Epv = ——Re )

vr

( 1)jA j;+L—
d~ ) A(j, , jg, L)

2j~ + 1

) .Rr, (i~; AP, P,A)

(sg —2(d —sz )

(23)

The pole term from a state i with s, ( sg follows from
(17) and (21) to be

A convenient way to organize the calculation of
the principal-value term is to introduce a frequency-
dependent effective basis state P, (iu),

where w = sg s, —Thi.s expression can be simplified with
the identity Ig, (s& —s, )) = Ii), which follows from con-
sidering the difference between the eigenvalue equation
for Ii) and Eq. (22) with iu = sg —s, . The replacement
of P, (u) by i in (24) shows that the pole terms of the
many-potential term are identical to those for the whole
self-energy discussed in Ref. [13]. The half-pole term for
i = A is obtained by taking one-half the above formula.
A state i degenerate with A would also contribute a half-
pole term, although this possibility would only occur in
practice when V(r) is a pure Coulomb potential, a case
not considered explicitly here.

The self-energy for an excited state as defined by (1) is
complex, with the imaginary part representing minus one
half the one-photon decay rate of the excited state in a
hydrogenic ion. In the present formalism, this imaginary

part enters entirely through the pole terms Epp&& ~ The
level shift considered here is given by the real part of the
self-energy.

We also evaluate the leading part of the vacuum polar-
ization, the Uehling term, by taking the atomic expecta-
tion value of the Uehling potential U(r) [25, 26],

( 1)3&—jr+I
E~',~„=) b, (j,,j~, L) 2jz+ 1

xRr, (~; AP, (~)P, (cu)A),

Evp = dr )t)A(r)AU(r)VA(r),

(24) where

(25)

U(r) = —— dr' p(r') dt t —1
1 0 exp( —2ct Ir —r I)

3t2 3t4 ) Ir —r'I
+ (26)

with p(r ) the charge distribution responsible for the to-
tal binding potential V(r). Since p(r') here is spherically
symmetric, only the L = 0 term contributes in a multi-
pole expansion of the form (14), and we find

U(r) = —— dr' (4vrr' )p(r')

x —2ct jo(i2ctr&) ho (i2ctr&)

(27)

]

A similar treatment of screening corrections to the
Uehling term has been given by Cheng, Johnson, and
Sapirstein [15] and Indelicato and Lindroth [27].

III. NUMERICAL DETAILS

We use Gaussian integration to evaluate the zero- and
one-potential terms, and for the t integration in the
Uehling potential. While the integration of the zero-
potential term and the Uehling potential is straightfor-
ward, the one-potential term requires some care. This
latter term has the structure [16]

dIP2I dIP~ I

1
d~ 4'&(IP~I), f (II 2I, IP) I, ~)4~(IP). I),

P2 —Pi
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involving integration over the magnitudes of the vectors

pi and p2 and the cosine of the angle between them, z =
cosei2. The integrand contains an integrable Coulomb
singularity when pi ——p2, as well as a smooth function

f(~p2[, ~pi~, z). The Coulomb singularity is readily han-
dled by the set of variable transformations given in Ap-
pendix B; with this scheme we obtain six-figure accuracy
with about 40—50 Gaussian points in each of the three di-
mensions. The function f (~p2~, ~pi ~, z), however, involves
an extra integration over a Feynman parameter z (so
that the whole integral is effectively four-dimensional),
the integrand of which contains spikes near the end of
the integration range at x = 0 and x = 1. We there-
fore split the z integral into three parts, using Gauss-
ian integration for each.

An additional complication is that the integrand of the
zero- and one-potential terms contains the Fourier trans-
form of the atomic wave function, the "radial" part of
which involves a spherical Bessel transform of the form

«r'il. (» )f~(r)
0

(29)

where f~ (r) is a radial configuration-space wave function.
For an arbitrary binding potential V(r), we must evalu-
ate these transforms numerically. We start from the nu-
merical configuration-space wave function and evaluate
the transform by a direct point-by-point integration algo-
rithm, reproducing the norm with an accuracy of at least
1 part in 103. We test the algorithm against the known
analytic Coulomb transforms at each momentum point,
finding satisfactory agreement of at least one part in 10
for typical atomic values of momentum p, worsening to
about one part in 104 for the large values p 100mc
that make a small contribution to the integrals. We can
further test the accuracy of our integration and Fourier-
transform algorithms by considering the following test
integrals:

(30)

dP1 dP2 — p(p2 —pi)
(2 )3 (2 )3 QZ(P2)yo

~p p ~2
g&(Pi) = (V)

(31)

where p(q) is the Fourier transform of the charge den-
sity that generates V(r). When evaluated with the same
Gaussian points and momentum-space wave functions as
the zero- and one-potential terms, the left-hand sides of
the above equations equal (V) to within at worst a few
parts in 10 . From these tests we conclude that the accu-
racy of the zero- and one-potential terms is much better
than that of the many-potential term discussed below.

The many-potential term is the most computationally
expensive part of the calculation. The basic numerical
tool we use to evaluate it is a relativistic finite basis set
constructed from B splines [28]. In this method, we first
confine the atom to a cavity of large radius, so that the
spectrum of states is explicitly discrete as implied in Eqs.
(10) and (11). We choose the cavity radius to be suffi-

ciently large so as not to affect the numerical value of
the self-energy at the required level. For Z = 70—90, we
use a radius of 2—3ao. The small and large components
of the radial Dirac wave function for a given angular mo-
mentum e are then expanded in terms of M piecewise
polynomial or B-spline functions B,(r) [29]

M

I
=). I

*
I B'(r) (32)

Following Ref. [28], the expansion coefficients are de-
termined by minimizing the Dirac action, leading to a
2M x 2M linear eigenvalue problem. The 2M solutions
of this problem define a pseudospectrum, M states of
which approximate the bound states and positive-energy
continuum, and the remaining M the negative-energy
continuum, of the unconfined particle. The lowest-lying
states in the positive-energy branch of the pseudospec-
trum accurately reproduce the lowest-lying bound-state
eigenfunctions and energies. Detailed tests of the accu-
racy and completeness of basis sets of this type are given
in Ref. [28].

To implement the formulas for the many-potential
term given earlier we need two separate basis sets, one
for a free electron, and one for an electron in a potential
V(r) The .free basis set is used to construct the effective
basis functions P, (ice) from (21), a procedure essentially
equivalent to solving the inhomogeneous Dirac equation
(22) with the finite-element technique. The basis set in
the potential V(r) is used to sum over i in (23). Our
justification for this latter use of the basis set is princi-
pally empirical. As far as we can tell, Epv converges to
a well-defined limit as the number of basis functions M
is increased, and this limit agrees closely with self-energy
results obtained using Green's-function techniques (see,
for example, the close agreement with Mohr for 1s states
reported in Ref. [18]). We note that both negative- and
positive-energy basis states are important numerically.
In our final calculations we use M = 70 basis states per
e value for a 1s self-energy, and about M = 110 for ex-
cited states. Empirically, we find that greater accuracy is
obtained if the two separate basis sets have difFerent num-
bers of states, with Mi ) Mr„, , in practice we choose
M~ ——Mg„, + 20.

In the present work, the photon-frequency (u) inte-
gral extends to a far greater upper limit (of order 10—
100mc2 for 1s states) than is necessary for analogous
loop integrals in the relativistic correlation calculations
to which the basis-set technique has so far been ap-
plied. We therefore improve the high-energy represen-
tation of the basis set by placing a large number of the
"knot" points that define the B splines [29] close to the
origin. We use an exponential distribution of knots,
r, = a(exp[h(i —1)] —I), with the first nonzero knot
point at distances of order 10 ao. For the free-electron
basis set, we further improve accuracy by enforcing the
boundary condition at the origin directly, rather than
variationally as done in Ref. [28]. Our basis set does
not work so well for the point-nucleus problem, because
the Coulomb singularity in the wave function is not well
represented by B splines. A point-nucleus calculation re-
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quires knot points at even smaller radii, and generally
more basis functions, than a finite-nucleus calculation of
similar accuracy. We in fact find it more convenient to
extrapolate a sequence of finite-nucleus calculations to
zero nuclear size, as done previously [18].

We organize the calculation of the principal-value in-
tegral Epv as indicated in Eq. (23), with the outermost
loop over the angular momentum e in the electron prop-
agator. We group the values of K corresponding to an
orbital angular momentum t [that is It = l, —(t + 1) for

t ) 0], and use Gaussian integration to perform the ~
integral for each t, with a convenient transformation to
map the infinite integration range to a finite one. About
15—20 Gaussian points then sufBce for the accuracies ob-
tained here. A special problem occurs when a state j
appears in the sum over i in (23) that is nearly degener-
ate with the external state A, as can happen at high Z
for states that would be degenerate for a Coulomb po-
tential (e.g. , j = 2pq~z for A = 2sq~z), and at low Z for
states separated only by fine structure (e.g. , j = 2pq~2

TABLE I. Self-energy of excited states of hydrogenlike Hg (Z = 80), after extrapolation to zero nuclear size following the
procedure of Ref. [18]. Pole terms have been added on to the appropriate L-wave contribution (e.g. , a 2s pole term to the
L = 0 result). Units are rydbergs.

Term

Zero potential

One potential

271/2
—17.177

10.400

2@3/2
-15.122

9.279

Self-energy
3s

—8.660

6.357

3px/a
—9.381

6.292

373/2
—8.657

5.841

Many potential
L=0
L=1
L=2
L= 3
L=4
L=5
L=6
L=7
L=8
L=9

Extrap. L = 10 —oo
Total many potential

Total
Other'

0.136
6.307
0.340
0.111
0.048
0.025
0.014
0.009
0.006
0.004
0.015(2)
7.015(2)

0.238(2)
0.2386(4)

0.479
5.155
0.319
0.107
0.047
0.025
0.015
0.009
0.006
0.004
0.015(2)
6.181(2)

0.338(2)
0.3383(5)

2.502
0.319
0.117
0.055
0.031
0.019
0.012
0.008
0.006
0.004
0.019(2)
3.093(2)

0.789(2)
0.78879(4)

0.074
2.695
0.218
0.080
0.039
0.022
0.014
0.009
0.006
0.005
0.018(2)
3.182(2)

0.093(2)
0.09319(4)

0.187
2.350
0.205
0.076
0.037
0.021
0.013
0.009
0.006
0.005
0.019(2)
2.930(2)

0.114(2)
0.11401(4)

Zero potential

One potential

383/Q
—9.223

6.216

385/2
—8.985

6.099

4s
-5.708

4.266

—6.029

4.263

4u3/~
—5.688

4.038

Many potential
L=0
L=1
L=2
L=3
L=4
L= 5
L=6
L= 7
L=8
L= 9

L= 10 —oo
Total many potential

Total
Other

0.037
0.222
2.387
0.191
0.066
0.032
0.018
0.011
0.007
0.005
0.019(2)
2.996(2)

-0.012(2)
—0.01047(4)

0.042
0.234
2.289
0.186
0.065
0.031
0.018
0.011
0.007
0.005
0.020(2)
2.909(2)

0.022(2)
b

1.379
0.200
0.076
0.038
0.022
0.014
0.009
0.007
0.005
0.004
0.018(2)
1.771(2)

0.330(2)
0.32995(2)

0.051
1.470
0.142
0.054
0.028
0.016
0.011
0.007
0.005
0.004
0.020(2)
1.808(2)

0.043(2)
0.04194(2)

0.099
1.326
0.135
0.052
0.027
0.016
0.010
0.007
0.005
0.004
0.019(2)
1.701(2)

0.051(2)
0.05019(2)

Mohr [2], and Mohr and Kim [3].
Not previously calculated.
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for A = 2psyq). In each case we find it better to separate
the nearby state from the integrand, schematically,

+pv= ~F~ +
' (~')

(33)

and integrate the two parts separately using different sets
of Gaussian points.

After truncating the r sum at some I „, typically
t = 9, we extrapolate the t sum to infinity by fitting
the partial-wave contributions to a polynomial in I/l,

=1 Gy Gg
Erv(t) = —ao + —+ —+ ' ' ')L" l lz (34)

Some typical partial-wave summations are shown in Ta-
ble I. The terms for l = 7—9 follow quite closely a 1jls de-
pendence (n = 3 in the above). By considering fits with
n = 2, 3, and 4, and with varying numbers of terms in-
cluded, we find about a 10% variation in the extrapolated
sum for l = 10—oo. This forms the leading numerical er-
ror in the calculation of the self-energy of a single state.
While it is certainly possible to calculate to higher L, or
to construct more sophisticated and accurate extrapola-
tion schemes, we note that the error we can obtain in
this way is already comparable to or better than typical
experimental errors. For example, for Z = 80 we find
an error of about 0.02 eV [18], while the most accurate
experiments for Z ) 70 also have a claimed accuracy of
no better than about 0.02 eV [6]. Moreover, most ex-
perimental results of interest involve transitions between
states with the same principal quantum number. In that
case, the high-t part of the sum cancels very closely be-
tween the two states, and the self-energy of the transition
is essentially free of the extrapolation error. In Table II
we show the l convergence for a transition in Na-like Pt

Term

Zero potential

One potential

—97.40

72.55

Self-energy

373/2 303/2-38

—96.95 0.452

67.05 —5.499

Many potential
L=0
L=1
L= 2
L=3
L=4
L=5
I =6
L=7
L =8
L=9

L= 10 —oo
Total many potential

26.85
3.18
1.14
0.53
0.29
0.18
0.12
0.08
0.06
0.04
0.17

32.64(6)

1.83
25.20
2.05
0.74
0.36
0.21
0.13
0.09
0.06
0.04
0.18

30.89(6)

—25.012
22.020
0.911
0.208
0.066
0.027
0.012
0.006
0.004
0.002
0.006

-1.749(3)

Total self-energy 7.79(6) 0.99(6) -6.796(3)

TABLE II. Screened self-energy calculation in Na-like Pt
(Z = 78). Units are eV.

with a suboptimal basis set with M = 90. The quoted
numerical error is the difFerence with the same calculation
with M = 70, and is mostly basis-set truncation error.
We see that not only the extrapolation error, but also
most of the basis-set truncation error cancels systemat-
ically in the transition. From test calculations such as
this, we find we can readily control the numerical error
in the self-energy for these transitions to be & 0.003 eV.

IV. APPLICATIONS

To illustrate the above procedure we consider three re-
cent measurements on high-Z one-valence-electron sys-
tems: the 2s-2p1yq transition of Li-like U measured by
Schweppe et aL [4], the 3s-3psyz transition in Na-like Pt
measured by Cowan et aL [5], and the 4s-4pr j 2 transition
in Cu-like Bi measured by Seely et aL [6]. The correla-
tion, nuclear-finite-size, and Breit corrections to these
transitions have previously been calculated by Johnson,
Blundell, and Sapirstein [7—10] using RMBPT. The lead-
ing /ED effects omitted in that work have been esti-
mated phenomenologically by several authors [11,30—32],
and only recently calculated in a rigorous /ED approach
by Indelicato and Mohr for Li-like U [14], and by Cheng,
Johnson, and Sapirstein [15] for Li-like U and Na-like Pt.
Here we show the results of our procedure compared both
to the screened @ED calculations of these authors, and
to experiment.

The algorithm presented above can be applied to cal-
culate two types of screening efFect on the self-energy
in these transitions: the screening of the valence self-
energy by the mean potential of the core electrons, and
the change in the total self-energy of the core electrons as
they adjust to the different valence electrons of the tran-
sition, The screening of the valence self-energy represents
a direct application of our formalism requiring only the
specification of a suitable local screening potential. We
choose the direct part of the V+ ~ Dirac-Fock potential,

VDr~;, (r) = ) (2j, +1)J dr' (g, (r')+ j, (r')],
c (core)

(35)

where g, and f, are radial eigenstates in the full V+
Dirac-Fock potential. The screening corrections we con-
sider in this way are given in the linear approximation
by the Feynman diagrams in Fig. 5. With this choice
of screening potential, these diagrams are effective1y ab-
sorbed into the lowest-order diagrams in Fig. 1, together
with a higher-order set of diagrams that are nonlinear in
the screening potential.

We should in principal recalculate the RMBPT corre-
lation in this new potential. As Cheng, Johnson, and
Sapirstein have shown, however, the highly converged
correlation calculation is nearly independent of the choice
of potential (as it would be exactly in the nonrelativis-
tic limit), and we can take the Dirac-Fock correlation of
Johnson, Blundell, and Sapirstein [7—9] with negligible
error for our present purposes.

We calculate the second screening effect, the change of
the core self-energy in the transition, by evaluating the
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c TABLE III. Self-energy and Uehling terms for the 2s and
2p&~2 states in hydrogenlike U {2= 92) with a finite nucleus.
Units are eV.

(a) (c)

Term

Zero potential —252.87

Energy
2Pl/2

—293.26

2py/2-2s

—40.39

FIG. 5. Typical leading screening corrections to {a) and
{b)the valence self-energy, and {c)and {d) the valence vacuum
polarization. v, valence state; c, core state.

self-energy for each core state c in the state-dependent
screening potential Vc(r),

V, (r) =) n. ) 1 2 (d" (~.'—(")+ f.'(")] (36)

Here the sum over a extends over all orbitals occupied
in the atom, including the valence state v, with n the
occupation number of the orbital. We take n„= 1,
n = 2jo+1 for a core orbital a g c, and n, = 2j, for the
core orbital c under consideration. The potential V, (r)
thus difFers from VDF g;, (r) by the addition of the spher-
ically averaged potential of the valence electron, and the
removal of the potential due to the core electron c itself,
which would otherwise give a spurious self-interaction.
We take as the contribution to the transition energy for
V ~ tD

&&SE,core = ) (2gc + 1) &SE (C) &SE (C)
c (core)

(37)

where Es{El(c) is the self-energy of c with a valence elec-
tron v present. The leading Feynman diagrams for this
"core-relaxation" efFect are shown in Fig. 6. In the linear
approximation of this figure, the core terms in the poten-
tial (36) cancel identically in the transition (37) leaving
only the effect of the valence potential. Our method in-
cludes this lowest-order term, plus an approximation to
a higher-order set of terms in which cross terms between
the valence and core parts of the screening potential en-
ter.

We also calculate the screened Uehling term from (25)
and (27) for both the valence and the core using a pro-
cedure analogous to that described above for the self-
energy. To complete the calculation of the lowest-order
vacuum polarization, we add the small Wichmann-Kroll
(WK) terms by scaling the hydrogenic values tabulated
by Johnson and Soff [33] or by Soff and Mohr [34]. We
assume here that the WK terms scale in the same way
as the Uehling term.

We now turn to the 28~g2-2p~y~ transition of Li-like
U. Our first step is to consider the self-energy of this
transition for a hydrogenie ion with a finite nucleus,
modeled by a Fermi distribution with an rms radius

(r~) = 5.863 fm [35]. The zero-, one-, and many-~ Z/2

potential terms are shown in Table III. Comparing with
the point-nucleus result of Mohr [2], —56.670 eV, we in-
fer a finite-size correction to the hydrogenic self-energy of

One potential 193.21 173.69 -19.52

Many potential
L=0
L=1
L= 2
L= 3
L=4
L= 5
L=6
L=7
L=8
L= 9

L = 10 —oo
Total many potential

107.89
10.51
3.40
1.40
0.69
0.38
0.23
0.15
0.10
0.07
0.24

125.05(6)

0.57
118.67

5.85
1.94
0.84
0.43
0.24
0.15
0.10
0.07
0.24

129.10{6)

—107.31
108.16

2.45
0.54
0.15
0.05
0.02
0.00
0.00
0.00
0.00
4.05{1)

Total SE
Uehling

65.39{6)
—16.46

9.52(6) —55.87{1)
—2.91 13.56

FIG. 6. Typical leading Feynman diagrams for the "core-
relaxation" contribution to the self-energy.

0.80(1) eV, which is therefore experimentally observable
(about 9 experimental standard deviations). This value
for the finite-nuclear-size correction lies about halfway
between the results of Johnson and Soff [33], 1.0(1) eV,
and of Cheng, Johnson, and Sapirstein [15], 0.6(2) eV,
broadly agreeing with both within one to two experimen-
tal standard deviations. We note that in another calcu-
lation of the finite-size correction to the self-energy, for
the ls self-energy in hydrogenlike Hg, we disagree with
Johnson and Soff, finding 1.13(6) eV compared to their
value 1.63(15) eV. However, in this case we agree with
an unpublished result of Cheng, Johnson, and Sapirstein
[36].

As a second step, we consider in Table IV the screened
valence self-energy in Li-like U. We find —54.09(1) eV for
the transition. Comparing with our finite-nucleus hydro-
genic value, —55.87(1) eV, we infer a "valence screening"
correction of 1.77(1) eV for the transition. This value
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Term

Zero potential —246.78

One potential 188.62

Energy
2@1/2

—284.55

169.01

2P1/2-2S

—37.77

—19.61

Many potential
L=O
L=1
L=2
L=3
L=4
L= 5
L= 6
L=7
L=8
L=9

L= 10 —oo
Total many potential

104.26
10.14
3.26
1.35
0.66
0.37
0.22
0.14
0.09
0.07
0.24

120.80(6)

0.83
113.74

5.65
1.87
0.80
0.41
0.24
0.15
0.10
0.07
0.23

124.09(6)

—103.43
103.60

2.39
0.52
0.14
0.04
0.01
0.00
0.00
0.00
0.00
3.28(1)

Total SE
Uehling

62.64(6)
-15.73

8 54(6) —54.09(1)
—2.61 13.12

TABLE IV. Screened self-energy and Uehling terms for

the 2s and 2p&~2 states in lithiumlike U (Z = 92) with a finite

nucleus. Units are eV.

agrees well with that of Cheng, Johnson, and Sapirstein
[15], 1.88(20) eV, but disagrees by five experimental stan-
dard deviations with the value 2.24 eV found by Indeli-
cato and Mohr [14]. Perhaps this discrepancy is due to
these authors' linear treatment of the screening potential,
as opposed to our all-order treatment, but this seems un-
likely since the screening correction is only —

3%%uo of the
total self-energy. To examine this discrepancy further, we
have separated the screening eKect for the transition into
individual contributions from the 2s and 2piyz states,
finding —2.75(2) eV and —0.97(2) eV, respectively, com-
pared to —2.88 eV and —0.64 eV of Indelicato and Mohr.
The bulk of the discrepancy thus lies in the 2piyz value.

Note that the hydrogenic calculations that we have
used above to extract finite-size and screening corrections
cancel identically upon adding together all contributions.
The final result is controlled entirely by the calculation
in Table IV.

A complete tabulation of all efFects for this transition
is given in Table V. The RMBPT value is that of Blun-
dell, Johnson, and Sapirstein [10], and includes a gross
nuclear-finite-size correction based on the nuclear param-
eters of Zumbro et aL [35]. Our nuclear recoil correction
difFers slightly from the value —0.03 eV given in Ref. [10],
because we construct the nuclear kinetic energy operator

TABLE V. Summary of correlation, @ED, and nuclear effects for the 2s and 2pq~2 states in
lithiumlike U (Z = 92). The values are our calculations unless stated explicitly otherwise. SE,
self-energy; Uehl. , Uehling; FS, nuclear-finite-size correction; HO, two-loop radiative corrections.
Units are eV.

EQ'ect

RMBPT
Nucl. recoil
Nucl. polarization

2@1/2

Energy
2@1/2-2S

322.41
—0.08(8)

0.18(5)

Other

Pt. nuc. hyd. SE'
SE-FS
Valence screening (SE)
Core relaxation (SE)
Total self-energy

Pt. nuc. hyd. Uehl. d

Uehl. -FS
Valence screening (Uehl. )
Core relaxation (Uehl. )
Wichmann-K roll~

Total vac. pol.

66.30
-0.98(6)
—2.75(2)

—17.31
0.85
0.73

0.79

9.63
—0.12(5)
—0.97(2)

—3.00
0.09
0.29

0.18

—56.67
0.80(1)
1.77(1)
0.23(1)

—53.87(2)

14.31
—0.76
—0 44
—0.08
—0.60
12.44

1.0(1),8 0.6(2)'
2.24, 1.88(20)'

0.27'

—0.76
—0.44'

HO" —0.02(4) —0.02(1) 0.01(4)

Total @ED

Total theory
Experiment'

' From Ref. [10].
From Ref. [37].' Reference [2].
From Ref. [33].' Reference [15].

-41.43(4)
281.08(10)
280.59(9)

Reference [14].
s From Refs. [33) and [34] with scaling (see text).
" From Refs. [33] and [38].
' Reference [4].
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TABLE VI. Correlation and screened /ED effects for
transitions in Na-like Pt and Cu-like Bi. For acronyms, see
the caption to Table V. Units are eV.

Effect

RMBPT

Na-like Pt
3p3gg-3s

658.76b

Energy
Cu-like Bi
4@1/2-4s

122.84'

SE(valence)
SE(core)

Self-energy

—6.80
0.07(1)

-6.73(1)

—2.63
0.01

—2.62

Uehl. (valence)
Uehl. (core)

WK
Vacuum polarization

1.50
—0.02
—0.06

1.43

0.54
0.00

—0.02
0.52

HO' 0.00 0.00

Total @ED —5.30(1) —2.11

Total
Experiment

653.45(1)
653.44(7)

120.73
120.90(2)

Includes nuclear recoil term.
Reference [8].' Reference [9].
References [33] and [34] with scaling (see text).' References [33] and [38] with 1/n scaling.

from the momentum operator p = —iV instead of the
operator p = cn used in that reference. Owing to the
uncertainty in relativistic corrections to nuclear recoil, we
assign an error equal to the value of the term. The nu-

clear polarization term has been evaluated by Plunien et
aL [37]. The "core-relaxation" contribution to the self-

energy is a two-experimental-standard-deviation effect,
and agrees quite well with the estimate of Indelicato and
Mohr [14]. The Wichmann-Kroll terms include a very
small —3% estimate of screening, in analogy with the
screening to the Uehling term. The "higher-order" {HO)
term consists of the second-order radiative corrections for
the hydrogenic ion, evaluated to leading order in Zn. We
modify the value tabulated in Ref. [33] to incorporate the
more accurate evaluation of the order o,z(Zn) vacuum-
polarization (or Kallen-Sabry) terms by Beier and Soff
[38] and Indelicato and Desclaux [32]. The error esti-
mate for the HO terms reflects uncertainty in corrections
of higher order in Za, and is in accordance with Ref. [33].

We present an analysis of the Na-like and Cu-like tran-
sitions in Table VI. In these multishell ions, the major-
ity of the small core-relaxation contribution to the self-
energy, about 90%, comes from the 1s states. We find
a rather large screening effect on the self-energy, about
20% for the Na-like, and 45% for the Cu-like transition.
The Na-like screened self-energy agrees well with that of
Cheng, Johnson, and Sapirstein [15], —6.83(10) eV. We
also find very good agreement with the phenomenological
/ED calculations described by Kim et aL [11],who give

—5.29 eV for the total @ED in the Na-like transition, and—2.12 eV for the Cu-like transition.

V. DISCUSSION AND CONCLUSIONS

What we have presented in this paper is a practi-
cal procedure for performing calculations of the self-
energy for high-Z ions in a numerically specified, non-
Coulombic, local potential. For transitions in systems
with Z & 70, the method readily achieves accuracies of
better than 0.01 eV, while the typical experimental pre-
cision is & 0.02 eV in this region. As such, the method
represents one solution to the problem of understanding
both nuclear-finite-size and screening corrections to the
self-energy in high-Z ions in a rigorous /ED framework.

The crucial difference between this method and earlier
ones is the separate treatment of the one-potential term.
We have shown that the removal of the one-potential
term from the configuration-space part of the calculation
accelerates the convergence of the partial-wave expan-
sion, and that if one considers the transition directly, only
a few partial waves need be summed exphcitly. This sim-
plicity permits an accurate evaluation of the self-energy
for an arbitrary local potential having no special analytic
properties.

As noted earlier [18], the cancellation of large, spu-
rious, gauge-dependent terms between the zero-, one-,
and many-potential terms reduces the accuracy of the
algorithm, particularly at low Z or for states with high
angular momentum. Here we have avoided this prob-
lem partly by making use of systematic cancellations of
the spurious terms between two states in a transition,
achieving high accuracy with relatively few basis func-
tions. For precise calculations at low Z, however, it may
be desirable to improve the algorithm itself, rather than
refine the numerical techniques. Such an improvement
may result by using either the Fried-Yennie [39, 16] or
Coulomb gauge in which the spurious terms are absent.
Our preliminary calculations of the many-potential term
in Coulomb gauge not only follow the physical Z4 scaling,
but suggest an additional useful feature, that the many-
potential term is a small fraction of the total self-energy.

Now that accurate calculations of the one-photon self-
energy and vacuum polarization are possible in realis-
tic potentials at high Z, the focus of attention shifts
to the uncalculated @ED effects in two-photon dia-
grams. Probably most important among these are the ex-
change variants of the basic screening diagrams (Fig. 7),
and certain terms from the box and crossed-box dia-
grams {Fig.8) that have been omitted from the RMBPT
work. Specifically, these omitted terms involve effects in
which negative-energy states enter the internal electron
propagators, a correct treatment of retardation terms
from these diagrams, and the two-transverse-photon-
exchanged terms. We believe that basis-set techniques,
similar to those used for the many-potential term in the
present work, will prove useful in this work.

Turning now to the results for Li-like U, the agreement
we find between theory and experiment is acceptable,
since the omitted terms discussed above are expected to
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FIG. 7. Sample exchange variants of the valence screening
diagrams.

FIG. 8. Box and crossed-box diagrams.

enter at this level. We expect that inclusion of these
terms should bring theory and experiment into agreement
at the 0.1 eV level. To understand the transition energy
to better than this will require a better understanding of
relativistic corrections to the nuclear recoil term in many-
electron systems. The recoil term for the transition is
dominated by the mass-polarization efFect, which is not
present for one-electron systems. Also entering at this
level are two-loop radiative corrections, so far known only
to leading order in Zo;. In analogy to the one-photon
self-energy, it is possible that some of these corrections
become nonperturbative in Zo; at high Z. Finally, one
will have to examine critically the error present in the
estimate of nuclear polanzation.

The agreement with experiment found in Na-like Pt is
good, but may be fortuitous pending a more careful study
of the omitted two-photon terms. The agreement in Cu-
like Bi is rather poor, however. The Na-like and Cu-like
results seem inconsistent because if the omitted terms
are small in the Na-like transition, they are unlikely to
account for the discrepancy in the Cu-like transition. In
their recent systematic study of Cu-like ions involving a
smoothed fit to the difference of theory and experiment,
Kim et at. [11]concluded that the measured value for Cu-
like Bi is probably too high. Their predicted transition
energy of 120.73 eV is in excellent agreement with our
theory.

In summary, we believe that accurate screened self-
energy and vacuum-polarization calculations of the type
described in this paper are sufficient to account for the
/ED contributions to the structure of high-Z ions to
a few tenths of an eV. Inclusion of a few well-defined
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APPENDIX A: FEYNMAN-GAUGE PHOTON
INTERACTION MATRIX ELEMENT

We infer the form for the generalized Slater integral
RL, (u; abed) from Appendix B of Ref. [7]. Replacing the
frequency-independent radial Green's function ri&/r&+
by the frequency-dependent one,

gr, (u; r, r') = i —(2L+ 1)jL, (err&/c)hL, (ur&/c),
C

(Al)

in Eqs. (Bll) and (B12) of that reference, we obtain

higher-order terms should improve the theory further.
Note added in proof. We have recently learned that

Mohr and Soff [40] have calculated the 2p1i2-2s self-
energy for H-like U with two finite nuclear models: a
spherical shell and a uniformly charged sphere. Their re-
sults agree closely with our value given in Table III when
they use the same rms nuclear radius. Another calcula-
tion by Cheng, Johnson, and Sapirstein [41] also agrees
closely.

OO OO

Rr, (u; abed) = (—1) CL, (ac)CL, (bd) dx dy gr, (~; x, y)W«(x)Wba(y)
0 0

L+y OO OO

+ dx dy gL+1(~i xi y)Qac(x)Qbd(y)+ 0 Q

OO OO

+ dx dy gL, 1(~;x, y)P, (x)Pbp(y)
Q 0

+( 1) + Cl. ( —ac)C1,( bd—) — dx dy gl. (~; x, y)V, (x)Vbg(y).1+1 o o
(A2)
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Here

) =U.,(x) —
~

'V.,(

(z)= fI (z) I+I I ( )

&-(x) = y-(x) f.(x) —f-(x)q.(x),
V, (x) = q, (x)f,(x) + f (x)y, (x),
~-(z) = g. (x)9.(x) + f.(*)f.(*)

(A4)

(A5)

(A6)

(A7)

The quantity CL, (ab) = (Ka C rcb) is a reduced matrix
element of C, while CL, (—ab) is Cl, (ab) with tc replaced
by —K .

Note that the above formula applies when the sign of
the square root in (9) is positive, which is appropriate
for real, positive values of u (generally, above the branch
cuts in the upper-half plane in Fig. 4). For the other
branch, one must reverse the sign of v in the right-hand
side of (A2).

APPENDIX 8: INTEGRATION SCHEME
FOR ONE-POTENTIAL TERM

OO OO 1

I = dyl dz —f (pg, p2, z), (Bl)
0 0 q2

where pq = Ip&l~ p2 = Ip&l~ a«q2 = Ipt —p2[2 = pi +
pz —2plp2z. With the change of variables

dS2

v = — ln(q ),
2plp2

&=Pl +12)
9 =Pl P»

(B2)

(B3)
(B4)

and use of the symmetry of the integral under y ~ —y,
the integral becomes

We consider here the numerical evaluation of the inte-
gral

Umin =

Vmax =

d2: Gg

1
ln(z),

Plu2
1

ln(y).
P S7

'Umax

dv f[, , z(x, y, v) [,
t'x+y x —y

)
(B5)

(B6)

(B7)

(B8)

This expression still contains a logarithmic singularity in
the y integration as y —+ 0, which we remove with the
further substitution

s = yln(y/x) —y,

for y in the range 0 & y & zj10. Having transformed the
expression into this form, we use Gauss-Legendre inte-
gration with the infinite z integration mapped to a finite
range by an inverse-tangent substitution.

' Present address: DRFMC/LIAA, Centre d'Etudes Nucl.
de Grenoble, B.P. 85X, 38041 Grenoble CEDEX, Prance.
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