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Exchange energy of alkali-metal dimer cations calculated from the atomic polarizability
with the Holstein-Herring method
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A formula relating the dipole polarizability and the exchange energy is derived for alkali-metal dimer

cations. The theory is based on the fact that the unsymmetrized polarized wave function gives both the

polarizability and the exchange energy through the Holstein-Herring integral. The results are seen to be

remarkably accurate for large interatomic distances.

PACS number(s): 35.10.Di, 71.70.Gm

I. INTRODUCTION

The difference between the symmetrical (gerade) and
antisymmetrical (ungerade) energy levels of a homonu-
clear molecule, which degenerate into a single atomic en-

ergy level when the internuclear distance becomes very
large, is defined as the exchange energy. The exchange
energy is of fundamental importance for understanding
not only interatomic potentials, but also charge-exchange
processes as well as the theory of magnetism. With ordi-
nary quantum-chemistry methods, these energy levels are
calculated separately and the exchange energy is obtained
from the difference of two large numbers, resulting in a
large relative error. The computational effort is usually
very large, and results can be found in numerical form
only. Even with modern methodology, it is still very
difficult to obtain results of high accuracy, especially at
large internuclear distances.

An alternative approach is to use the method of Hol-
stein [1]and Herring [2], who expressed the exchange en-

ergy as a surface integral of the flux of the localized wave
function of the electron. This method is straightforward
for a one-electron system, but can be generalized to deal
with more than one electron. If E and E„are the
eigenenergies corresponding to the gerade g and

ungerade g„eigenstates of the molecular system, respec-
tively, the exchange energy defined as hE =E„—E can
be written for a molecular ion in the asymptotic region as

asymptotic exchange energy can be expressed in an ana-
lytic form [2].

Recently, we have shown [3] that, in the asymptotic re-

gion, the required localized wave function in Herring's
theory can be approximated by the polarized wave func-
tion obtained from the ordinary unsymmetrized
Rayleigh-Schrodinger (RS) perturbation theory. Since
the polarized wave functions are directly related to polar-
izabilities, this work suggests that it may be possible to
express the exchange energy in terms of the polarizabili-
ty.

In the present paper, we derive a simple formula for
the asymptotic exchange energy of the H2+ molecular ion
and the alkali-metal dimer cations based on an earlier cal-
culation by Bardsley et al. [4]. In the present study, we
show how the only undetermined parameter of their ex-
pression can be related to the dipole polarizability. This
leads to an asymptotic formula relating the exchange en-

ergy to the dipole polarizability of the isolated atoms. In
the case of H2+, the result is exact. For alkali-metal di-

mer ions, for which the exact atomic wave functions are
not available, our results agree well with the best recently
available ab in''tio calculations, indicating that the present
method is efficient and remarkably accurate. Atomic
units are used throughout this paper.

II. HOLSTEIN-HERRING THEORY
FOR ALKALI-METAL DIMER IONS

b E= 2f 4—,V@,.d s,
where

—(Q +Q„)1

v'2 (2)

is the localized wave function centered around the nu-

cleus a. The surface integral is over the median plane M
at halfway between the nuclei. This formulation is ap-
pealing because it derives from the physical picture that
the exchange energy is the energy of the electron oscillat-
ing between the two nuclei [1,3]. Moreover, it enables
one to use atomic wave functions to calculate the molecu-
lar exchange energy. In the case of Hz, the exact

In this section we will give a short review of the calcu-
lation of Bardsley et al. [4], who applied the theory of
Holstein to the alkali-metal dimer ions.

The electronic structure of the alkali-metal dimer ions
is approximated by assuming that they consist of two
positively charged inert cores (nuclei and inner electrons)
and one valence electron. In the coordinate system
shown in Fig. l, the vectors r, and rb denote the position
of the electron with respect to the cores at a and b. The
interatomic distance is given by R. Since we are using
the Born-Oppenheimer approximation, the calculated en-

ergies will have only a parametric dependence on R. M is
the median plane between and a and b.
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B. Calculation of the exchange energy

In the calculation of the exchange energy from Eq. (1),
it is necessary to have an expression for the localized
wave function @,. As Herring [2] showed, @, can be ap-
proximated by the atomic wave function y„which
satisfies the equation

——'()' + V (r ) ——+—+E' y =0,1 1 1

2 Rrb
(6)

FIG. 1. Coordinates of the electron e and ion cores a and b
used in the present model calculation of the exchange energy.
M is the median plane located halfway between the cores.

on the left-hand side of M, i.e., in the half space contain-
ing atom a. The terms I/r& and 1/R account for the per-
turbation produced by the ion core at b, and e' is the new
energy of the perturbed atoin. Bardsley et al. [4] used
the WKB approach and expressed g, as

y, (r, ) =go(r, )e (7)

A. Approximation for the atomic wave function

In order to calculate the exchange energy from the flux
of the electrons, the atomic wave functions need to be ap-
proximated. For the hydrogen atom, the wave function
is, of course, exact. For the alkali-metal atoms, we will
assume that the spatial part of the wave function can be
written as a product of the wave functions for the
positive-ion core and the valence electron. The difference
between the orbital energies of the core and valence elec-
tron is relatively high for the alkali metals (e.g. , 62. 1 eV
for lithium between the 2s and a ls electron), and so this
is a reasonable assumption. According to Koopmann's
theorem, the ionization energy c. is the orbital energy of
the outer electron. Thus the wave function of the valence
electron $0 has to be a solution of the equation

[ ——,'V + Vo(r)+E)fo(r)=0, (3)

$0(r)= —I++ r' ~ 'e
v'4~ r (4)

It can be shown by direct substitution that this is indeed
a solution of Eq. (3) if terms of order O(1/r ) are
neglected. Moreover, it is found that

where Vo(r) is the effective potential of the core, as deter-
mined, for example, from a Hartree-Fock self-consistent-
field calculation. An explicit form of $0 can be derived in
the long-range asymptotic region, where Vo(r)= —I/r.
In this region, i}'jo can be approximated by a generalized s
orbital [4]:

S2= 1

PR
R +r, +rb R +rb —r,

ln + ln
2R

1 rb+R —r, COSH,+ ——1 ln
2R

r, R+r, +rb—ln
p3R 2R R +rq r, —

R
R +rb rg

R
R+rb+r,

Note that S, and S2 become zero if either r, approaches
zero or as R approaches infinity, so that in these cases
y, (r, ) reduces to $0(r, ) of Eq. (4). Substituting Eq. (7)
for 4, and performing the surface integral (1), the ex-
change energy is found to be [4]

1/P

b,F.(R) =m.R — fo
4 2 R
e 2

1+ 1 3 —1
p'R 2p

+0 1

R
(10)

The first two terms of the exchange energy are uniquely
determined, provided that the wave function go and pa-
rameter p of the single atom are known.

where S, and S2 are successively higher orders of 1/R.
They found

r, r, +rb —R cOSO,
S) =———ln

P R R(1—cos8, )

P=&2e, p =— 1 1

2P' P III. DEPENDENCE OF THE EXCHANGE
ENERGY ON THE ATOMIC POLARIZABILITY

Thus p and p are both determined by the ionization ener-
gy e. The amplitude of go(r), q, is however not deter-
mined by this procedure. Note that q cannot be simply
calculated by setting (go~1to) =1, since Eq. (4) is not a
valid wave function at small distances, where the effect of
the finite size of the core cannot be neglected.

The only unknown parameter in the calculation of the
exchange energy by Eq. (10) is the amplitude q of the
one-electron wave function $0 Bardsley et al.. [4] sug-
gested different methods for the derivation of q, all based
on a fit to an atomic self-consistent-field (SCF) calculation
or a pseudopotential calculation. The method we are go-
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ing to present here will relate q to the atomic polarizabili-
ty, which is a straightforward way of treating the prob-
lem, and no fitting will be required.

Recently, we have shown [3) that the localized wave
function y, can be calculated from unsymmetrized
Rayleigh-Schrodinger perturbation theory. Thus g, can
be expanded as

field of the ion at b can be calculated by the variation
principle.

The Hamiltonian of the system with the leading term
of Eq. (13) is given by

1 1H= ——V ——+Ez .2

2 r

y, =Po( r, )+g, (r, ) + lt z(r, )+ . The trial function
(1 1)

where the g„(r, ) are the nth order perturbed wave func-
tions. These wave functions g„are governed by the
hierarchy of the perturbation equations

(Ho Eo)go=0 (n =0),
(Ho Eo)fi+(V ei)A=O (n =1), (12)

oo I
V= —g, , PI(cos8},

R I+1 (13)

where PI( cos8) is the Legendre polynomial.
It is clear from Eq. (12) that all higher-order perturbed

wave functions depend on the zeroth-order wave func-
tion. If Po can be determined only up to a constant, then
all higher orders g„can only be determined up to that
same constant. Thus, if this constant is determined for
any order of l(„, it is determined for all. We observe that
if the first-order wave function g, of Eq. (11) is expressed
in a multipole expansion, the leading term is exactly the
polarized wave function due to the perturbation of a con-
stant field, the second term is the polarized wave function
due to a constant field gradient dE/dR, etc. Therefore

g, must be related to the dipole polarizability ad. It
turns out that the amplitude of P, can, in fact, be deter-
mined directly from the dipole polarizability. Then, us-

ing the relationship between Po and P„we can also deter-
mine the amplitude of go. Quantitatively, this can be
seen as follows.

The leading term of Eq. (13) is

(Ho Eo)q„+(V &/)it'„—i= y &ky„ /, (n —2),
k=2

where E„+,=(g„lVlgo). Furthermore, the perturbing
potential in the asymptotic region is replaced by its mu1-
tipole expansion

f, =go[1+ r cos(8)( A + rB)], (17)

with go from Eq. (4) and A and B as variation parame-
ters, gives the exact energy up to second order in the case
of hydrogen [5]. Thus we can expect good results for the
alkali-metal atoms as well. For this case the parameters
are determined by minimizing the expectation value for
the energy

(q, ly, )

Assuming the field to be small, only the linear term of E
in the variation parameters is considered. That is,
3 = 3'E and 8 =8'E. This variational procedure gives
directly the values of A' and B' Note . that, if f, is exact
in first order, the calculated energy will be exact up to
second order.

The induced electric dipole moment corresponding to
ij'j, is given by

(19)

We know also that the induced dipole moment is pro-
portional to the electric field:

p=adE, (20)

with

—&y, l. lq, &=q'E~,

2

g'+rg' r ~~+2e ~ dr
0 r

(21)

(22)

~here ad is the dipole polarizability. Substituting Eq.
(17) with go given by Eq. (4) into Eq. (19), we find after
some computation that

r cos0
VI =1 R2

z

R
(14)

where z is in the direction of the internuclear axis. The
electron of atom a is therefore pulled to one side by a
force

Combining Eqs. (19)—(21), we obtain finally a simple ex-
pression for the unknown amplitude q of Eq. (4):

' 1/2

F =—
Z

av,
Bz R2

(15)

It is important to note that F, does not depend on either
r or 0. The polarization of the wave function due to this
perturbation is therefore the same as if the atom were
placed in a constant electrical field E in the z direction
with a field strength of —1/R . The polarized wave
function and the perturbed energy of the atom a in the

(23}

@2——
—,'a„E (24)

This value for the dipole polarizability ad can also be

The dipole polarizability of the charge distribution
represented by go can also be calculated from the result
of the variational calculation. The variational energy 6
is obtained as a polynomial in the field strength E, where
the dipole polarizability is proportional to the second-
order term
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used in Eq. (23) for calculating the amplitude. We will

denote the result as q' and see in Sec. IV that the
difference between the two values is small.

10' - -.

10' =

I I—present
+ exact (Peek '

j

IV. RESULTS AND DISCUSSION

The variational calculation was performed analytically
by a REDUCE [6] routine. The results for A' and B' are
shown in Table I for all the alkali-metal dimer ions and
the hydrogen molecule ion. The values of P which are
calculated from the ionization energies by Eq. (5) and the
"best" literature values [8] of the dipole polarizabilities
ad are also shown in Table I.

The calculated energy has a constant term which is
equal to e, because 1(, is an eigenfunction of H in zeroth
order. There is no linear term in E, which means that the
perturbation energy is not dependent on the sign of the
field or, in other words, that there is no permanent elec-
tric dipole moment when the perturbation vanishes.
Thus the second-order term 62 = —I /2ad E becomes the
lowest order of the perturbation energy. We checked the
stability of v2 with respect to the form of the trial wave
function by introducing a third variational parameter C.
The modified trial function is

P't =Po[1+r cos(8)(A +rB+r C)] .

The results for the perturbed lithium atom are

82= —70.20E [Eq.(17)],
62= —70. 85E [Eq.(25)] .

(25)

The energy difference is only 0.9%%uo. Therefore Eq. (17)
seems to be an adequate description of the field-induced
distortion. The values for ad and their deviation from
the "exact" values are also given in Table I, together with
the constant q and q' calculated by Eq. (23) from these
two different values of the dipole polarizability. The
values of q and q' decrease in going from H to Cs. This
can be explained by noting that for the bigger atoms the
valence electron is distributed over a wider region, corre-
sponding to a smaller amplitude of the wave function.

For hydrogen, the calculated polarizability is exact,
but for the alkali-metal atoms, with the exception of Li,
the percentage error increases with the size of the atom.

L
UJ
% 10

10-5.— H2

10-e

0
I

4,0
I I

8.0 12.0

R (a.u. j

16.0 20.0

FIG. 2. hE for Hz+. The calculated expression is identical
with the exact asymptotic exchange energy [1]. Compared with

the exact results of Peek [10], the relative error at R = 15 a.u. is

only 0.7%.

1 n
Vo = ————e r"

r r
(26)

This can be explained by recalling that the calculation is
based on two fundamental approximations. First, the po-
larizability of the core electrons is neglected. Therefore
the calculated value should be too small. This is the case
only for lithium, which has only a very small core polari-
zability, and so there must be another competing effect
for the larger atoms. It comes from the second approxi-
mation, which assumes the core potential to be 1/r. This
is correct only in the case of a perfect screening of the nu-
clear charge by the inner electrons. But the charge densi-

ty in the outer closed shells becomes more diffuse in go-
ing from Li to Cs. As a consequence, the e+ectiue core
potential "seen" by the outer electron tends to be larger
than 1/r In this .case the attractive force on the valence
electron is greater and this reduces its polarizability.
Therefore neglecting this effect will give too large a value
for ad, which is indeed the case for the heavier alkali-
metal atoms. In principle, this error could be reduced by
the use of an effective core potential instead of Vo = —1/r
in Eq. (3). For example, Chang et al. [9] used a potential
of the form

TABLE I. Results of the variatonial calculation. Using the ionization energy e, the variational parameters A ' and B' are calculat-
ed. These values and the dipole polarizability ad (ad ) are used to calculate the amplitude q (q').

System

H
Li
Na
K

Rb
Cs

c (Hartree)'

—0.50000
—0.19632
—0.188 86
—0.159 50
—0.153 50
—0.143 10

1.00000
0.626 61
0.614 59
0.564 80
0.55408
0.534 98

ad(ao )'

4.5
164.3
162.6
298.0
330.0
416.5

—1.00
—11.35
—12.49
—18.53
—20.14
—23.25

B'"
—0.500
—0.124
—0.084
—0.090
—0.125
—0.175

ad(ao)'

4.5 (+0.0%")
140.4 ( —14.5% )

163.3 (+0.43%)
314.7 (+5.62%)
364.8 (+ 10.53%)
476.4 (+14.39%)

2.000
0.858
0.747
0.554
0.505
0.436

I g

2.000
0.793
0.749
0.569
0.531
0.466

'Ionization energy [7].
Calculated by Eq. (5).

'Dipole polarizability [g].
Optimized variational parameters.

'Dipole polarizability calculated by Eq. (24).
'Amplitude calculated by Eq. (23) using ad.
Amplitude calculated by Eq. (23) using ad.

"Error relative to ad (column 4).
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where n and y are adjustable parameters that can be
determined by a fit to spectroscopic data. Unfortunately,
Eq. (26) cannot be applied in a straightforward manner
since it does not lend to a closed form of the one-electron
wave function Po, which is required in order to carry out
a %KB calculation similar to the approach of Bardsley
et al. [4].

Figures 2 —7 compare the exchange energy calculated
by Eq. (10) with different ab initio, model, and pseudopo-
tential calculations for H2+ and the alkali-metal dimer
ions. The excellent agreement in the case of Hz+ (Fig. 2)
was already noted in an earlier closely related calculation
[11]. Figure 3 shows a comparison of the exchange ener-

gy calculated with q and q' for Li2+. The agreement with
the best ab initio potentials [12] in the asytnptotic region

10

—io I-'
QJ

Q)
L.

c &O'I-

+ 103&

t-

1P.4 „
L

2.0 8.0

+

14.0

—present (using q')

0 SCF-C I calculation
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L model pot c ale

model pot calc
model pot. . calc

~ serniempirical mode

( Schmidt l~
)

( Valance (~
)

( Dalgarno )

(Henriet (8 )

(Henriet '7
)

l (Franc! s l4
)

j

+
8 7

20.0 26.0 3 2.0

FIG. 3. b,E for Li&+. The present results using q (from exact
a) and q' (from calculated cz) are compared with the values of
Bardsley et al. [4] [Eq. (10) with their q], Schmidt [12] [SCF
plus configuration-interaction (SCF/CI) calc.], Bottcher, Al-

lison, and Dalgarno [13] (model pot. calc.) and Francis and

Rapp [14] (semiempirical model).

FIG. 5. hE for K,+. The present results using q' from calcu-
lated a are compared with earlier calculations of Valance [15]
(pseudopot. calc.), Henriet [17] (model pot. calc.), and Francis
and Rapp [14] (semiempirical model).

10o =

10' =

—present (using q')
+ pseud opot. calc. (Valance I~

)

o pseudopot, calc.(Bardsley4)
semiernpir ical model (Francis I"

t 10~

Q

—10~
LLJ

CJ

10-4-

Rb~

0

is very good. It is slightly better using q' instead of q.
This is an additional justification for neglecting the core,
because q' is calculated from ad, which is the calculated
polarizability of the one-electron function ij'jo. It is in any
case a more consistent way of treating the problem, be-
cause in the derivation of Eq. (1) for hE we also assumed
that the core can be neglected. For Li2+ we also com-
pare our results with the curve obtained from Eq. (10) by
using the best q value of Bardsley et al. [4]. One can see
that our results using q' are in better agreement with the
ab initio data. For example, at R =20 a.u. , the deviation
of AE calculated with q' from the ab initio value is
+2.0%. Using the q value of Bardsley et al. [4] the devi-
ation is +7.5%. Figure 4 shows the comparison for
Na2+. The agreement between the present results and
the best ab initio calculation [12] is also very good.

For the heavier alkali metals shown in Fig. 5 —7, no ab
initio potential curves are available and the present re-
sults can only be compared with various approximations.

R ( a. u. )
10-5

20 14.0 20.0 26.0 32.0

FIG. 4. 4E for Na2+. The present results using q' from cal-
culated a are compared with earlier calculations of Schmidt

[12] [(SCF-CI) calc.), Valance [15] (pseudopot. calc. ) Cerjan,
Docken, and Dalgarno [16] (model pot. calc.), Henriet [17],
Henriet and Masnou-Seeuws [18] (model pot. calc.), and Francis
and Rapp [14] (semiempirical model).

R(auj

FIG. 6. AE for Rb2+. The present results using q' from cal-

culated a are compared with earlier calculations of Valance [15]
(pseudopot. calc.), Bardsley [19] (pseudopot. calc. ), and Francis
and Rapp [14] (semiempirical model).
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FIG. 7. hE for Cs2+. The present results using q' from cal-
culated a are compared with earlier calculations of Valance [15]
(pseudopot. calc.), Bardsley [19] (pseudopot. calc.), and Francis
and Rapp [14] (semiempirical model).

FIG. 8. Comparison of wave functions for the valence elec-
tron of lithium. Crosses: SCF calculation with a basis set of six
sister orbitals (Clementi and Roetti [21]). Lines: four different
fits of Eq. (4) of the present paper. The amplitude q is chosen by
fitting 1(o to the SCF data at different distances.

Francis and Rapp [14] were the first to derive a simple
approximate formula for the exchange energy. Using a
semiempirical model, they found

aE =2~Re- I'", (27)

where e is the eff'ective ionization energy of the atom [see
Eq. (3)] and P is given by Eq. (5). As can be seen in Figs.
3 and 4, this simple expression is in poor agreement with
the ab initio calculations for Liz+ and Naz+. Thus this
expression probably is also not reliable for the heavier
systems. The pseudopotential calculations of Valance
[15] for Na2+, K2+, Rb2+, and Cs2+ have a much
different shape in the asymptotic region, which is prob-
ably caused by a lack of numerical accuracy of their po-
tential curves for the X+ and X„+ states at large internu-
clear distances. Thus the relatively large error comes
from subtracting two nearly equal large values. For Li2+
and Na2+, the model potential calculations of Dalgarno
and coworkers [13,16] are in very good agreement with
the present results. The only reliable data for Csz+ and
Rbz+ are the pseudopotential calculations of Bardsley
[19]. The agreement in the asymptotic region is very
good for these systems. For potassium, only the calcula-
tions of Valance [15] and Francis and Rapp [14] are
available at large distances. In view of the large devia-
tions of these calculations for the other systems, the
present results are probably the most reliable for the po-
tassium dimer ion.

Previously, both Smirnov and Chibisov [20] and Brads-
ley et al. [4] have proposed to determine q by fitting tpo to
the wave function obtained by a SCF calculation. In Fig.
8 we show such a fit for the lithium dimer ion using the
SCF data of Clementi and Roetti [21]. Although the gen-
eral shapes of $0 of Eq. (4) and the SCF curve are reason-
ably close, they are not identical. For this reason the fit
is not unique and the dependence of q on the distance
where the fit is made is still considerable. It varies from
q =0.85 for r =3 a.u. to q =0.80 for r = 12 a.u. which is
to be compared with our result of q =0.793. The present

method is more direct, and since it does not depend on
the SCF data, it is internally more consistent.

Probably, the most important result of the present in-
vestigation is the observation that the exchange energy is
related to the polarizability. The explicit relation be-
tween the dipole polarizability ad and the exchange ener-

gy bE derived from Eqs. (4), (10), and (23) is
T

adgE(g)= g ~)t ' 1+
K R

X 1+ —1 +01 3 1

pR 2 R
(28)

where P and p are determined by Eq. (5) and E by Eq.
(22). Since X does not depend on az, the exchange ener-

gy is directly proportional to ad. The dependence on the
ionization energy is more complicated since E, p, and p
are all functions of e With Eq. (2. 8) it is possible to calcu-
late simply and analytically the exchange energy for any
of the alkali-metal dimer ion systems.

V. CONCLUSIONS

The advantage of the present procedure compared with
other methods lies in the direct derivation of the ex-
change energy without the need of any fitting to other
complicated calculations. The present model provides an
explicit relationship between molecular-ion exchange en-
ergies and the properties of the atoms. It is interesting to
note that recently, Liuti and co-workers [22,23] have
discovered an empirical quantitative relationship between
the polarizability of the single atom and the well depth
and its location of the van der Waals potential for a num-
ber of diatomic systems.

In the future we hope to be able to derive a simple ex-
pression for the entire potential curve in terms of the
properties of the atomic constituents. At least for the
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alkali-metal dimer ions, such an expression now seems
within reach. As is well known, the total interaction en-
ergy can be written as [24]

V( Xs+)= Vc,„, ,'b—,E—,

V( X„+ ) = Vc,„,+ ,' b,E—,

(29)

(30)

where Vc,„~ is the Coulomb energy. This can be con-
sidered to consist of two terms: the first-order Coulomb
energy VC,'„,, which can be calculated using standard
SCF procedures, and the second-order induction and
dispersion energy Vc,'„~ [25]. The latter can be accurately
approximated from the results of a perturbation theory
calculation, and for the present system, it is dominated by
the induced dipole term, which is also proportional to the
dipole polarizability nd. In the region of the van der
Waals minimum ( X„+ minimum), the first-order
Coulomb energy is probably much smaller than other
components. Thus the van der Waals potential may

indeed be dominated by terms which are directly related
to the polarizability.

In principle, the present method should be applicable
to all systems that have the required symmetry which
causes the degeneracy of the molecular states at large in-
teratomic distances. This is the basis for the present
definition of the exchange energy. If we consider systems
with n valence electrons, the integral in Eq. (I) is over
(3n —1)-dimensional hypersurface. Therefore the analyt-
ical effort to carry out this integral as well as the problem
of finding an approximate localized n-electron wave func-
tion increases considerably with the complexity of the
system. The derivation of an expression for the exchange
energies of H2 and the neutral alkali-metal dimers is in
progress.
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