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Macroscopic dark periods without a metastable state
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The well-known three-level system of Dehmelt [Bull. Am. Phys. Soc. 20, 60 (1975)] exhibits
macroscopic dark periods because one of the upper levels is metastable. In this paper we show that
one can also have the same phenomenon for a three-level-atom system with both upper states rapidly
decaying to the ground state, provided (a) their level separation is very small and (b) their dipole
moments for the ground-state transition are parallel. For suitably chosen laser parameters we also
exhibit an exact nonradiating solution of the complete time development for atom plus radiation
field. This leads to the surprising effect that the atom, after emission of a number of photons, will

stop to fluoresce although still irradiated by the laser. The mean number of photons emitted before
this switching off of the atom is calculated, as well as the mean duration of the dark periods for the
general case.

PACS number(s): 32.90.+a, 42.50.-p

I. INTRODUCTION

Macroscopic dark periods of a single fluorescent atom
were predicted by Dehmelt [1] for a system with two
excited states, one rapidly decaying and the other
metastable. Driving such a system by two lasers one intu-
itively expects frequent transitions from the ground state
to the nonmetastable excited state with the subsequent
emission of a spontaneous photon (light period). Once in
a while there will be a transition to the metastable state,
where the electron will stay for an extended period, and
there will be no photons ("dark period, " "electron shelv-
ing"). These ideas have been analyzed semiclassically by
the telegraph process [2] as well as quantum mechanically
[3,4]. Macroscopic dark periods were indeed found exper-
imentally for single atoms in a Paul trap [5], confirming
a spectacular quantum effect.

In this paper we present an alternative mechanism for
dark periods which is not based on the existence of a
metastable state but rather on a quantum coherence and
interference phenomenon similar to the one responsible
for a type of nonabsorption resonances studied by Orriols
[6] and Cardimona, Raymer, and Stroud [7], for some
population trappings [8] and lasing without inversion [9,
10]. We deal with a V system, a three-level atom consist-
ing of two excited states optically coupled to 8, comrgon
ground state.

The basic feature is the existence of a coherent super-
position of atomic states which does not couple to the
quantized radiation field nor to the laser. For two de-
generate states this was already pointed out by Dicke
[11], and the corresponding superposition is invariant
in time, except for an overall phase. For a A system,
which consists of two nondegenerate ground states op-
tically coupled to a common excited state, this is also
true, provided one makes the rotating-wave approxima-
tion (RWA). Now, however, due to the nondegeneracy,
the purely atomic part of the time development opera-
tor will create a time-dependent relative phase, and the
superposition is no longer invariant.

For a V system as in Fig. 1, with a single laser, one can

obtain a superposition of
~ 2) and

~ 3) which does not cou-
ple to the electromagnetic field if their dipole moments
are parallel. Again one needs the RWA, and the purely
atomic time development will create a time-dependent
relative phase. The existence of such a superposition is
the deeper reason for the vanishing of spontaneous emis-
sion in these systems when driven by a laser of a partic-
ular frequency as found in Refs. [6, 7]. Cardimona [12]
applied similar ideas to a V system interacting with a
single quantized mode in a cavity, constructed an invari-
ant state of the combined system for a special mode fre-
quency and exhibited nonrevivals of atomic excitations.

We study a single V system as in Fig. 1 with parallel
or nearly parallel transition dipole moments eD~q and
eo~q and very small level separation b~. This is similar
to the system of Ref. [7], except that our b~ will be much
smaller. The possible existence of dark periods may now
be understood in analogy to the Dehmelt system, and
the following qualitative remarks will be substantiated
by a quantitative analysis. There exists a superposition,
denoted by

~ a), of
~

2) and
~

3) which does not cou-
ple to the electromagnetic field. The noncoupling may
be seen as a quantum interference phenomenon since the
spontaneous transition probability to the lower level is

FIG. 1. V system with energy separation h b~ of the ex-
cited levels; u& denotes the laser frequency.
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obtained by squaring the sum of two probability ampli-
tudes, and coherence can lead to interference terms. This
superposition

I a) may be compared to the metastable
state of the Dehmelt system, and the orthogonal super-
position, denoted by I s), to the rapidly decaying state.
After a photon emission one starts out from the ground
state, and the laser will build up an

I s) component. This
will generally lead to a photon emission and back t,o the
ground state so that the cycle can start all over again.
In case of degeneracy, b~ = 0, one would eA'ectively have
a two-level system, with the state

I a) completely stable
and invariant in time. However, for bu g 0, the purely
atomic time development mixes

I a) and
I s), and this the

faster the bigger bu is. It will turn out that there may
be a small probability for a delayed photon emission, and
during this time the purely atomic time development may
partially change the

I s) component to an
I a) component

while the laser cooperates to decrease the remaining
I s)

component even further. In this way one may reach a
state with a large

I a) component and thus with a low
transition probability to the ground state. This is the
beginning of a dark period.

The quantitative analysis will show that indeed macro-
scopic dark and light periods exist if bu is much smaller
than the Einstein coefficients of level

I 2) and
I 3) as well

as the Rabi frequencies. If b~ is larger, of the order of
the Rabi frequencies, then one may either have long dark
periods alternating with extremely short light periods of
a few photons only —and thus difficult to observe —with
an overall very low average fluorescence intensity, or the
dark periods become so short as to merge with the wait-

ing time between photons.
For a special laser tuning —in case of equal and paral-

lel dipole moments halfway between the upper levels —we
find that after the emission of a number of photons the
atomic fluorescence is switched oH', and the atom remains
dark. The average number of photons emitted before
the switching off depends on the parameters of atom and
laser. The ensuing infinitely long dark period is related to
the nonabsorption resonance found in Refs. [6, 7]. We ex-
plicitly determine the corresponding nonradiating state
of the complete system consisting of atom and quantized
radiation field with an external classical laser field. For a
single mode in a cavity interacting with such a V system
a similar state was found in Ref. [12].

For the study of light and dark periods in Sec. II we
use the probability Po(t) of finding no photon until time t
provided a photon was emitted at t = 0. The importance
of this probability for the study of dark periods was first
stressed and applied to the Dehmelt system by Cohen-
Tannoudji and Dalibard [3]. The form of Po(t) needed
here is, however, different from the one used in Ref. [3]
for the Dehmelt system. The general form of Po(t) has
been determined by Porrati and Putterman [13];an alter-
native and independent derivation can be found in Ref.
[14]. For a V system with two closely spaced upper lev-
els there arise important additional generalized damping
constants which were absent in the form of Po(t) used in
Ref. [3]. Related damping terms also arise in the Bloch
equation for this system [7, 16]. In Sec. III light and dark
periods are determined analytically.

II. DETERMINATION OF EMISSION BEHAVIOR

We consider a V system as in Fig. 1 with energy levels
2 and 3 close together but not degenerate. A single laser
with its frequency ~L, somewhere in the vicinity of 2 and
3 is treated classically. The Hamiltonian in dipole form
[15] for the atom interacting with the radiation field in
RWA is given by

Hlfi = ) . ~
I i) (i I + ) .~k~nkt&uk~

$=2 k, A

gikA = e Dil ' &kA (~k/2&ofil ) (2)

with eD, i ——e(i I
X

I 1) the dipole moment for the tran-
sition from the excited level i to the ground state. 0; is
the Rabi frequency corresponding to the same transition.

n; = h 'eEL, D). (3)

V is a quantization volume, later taken to infinity. By
parity conservation there is no dipole transition between

I 3) and
I 2).

VVe assume that right after an emission, at t = 0 say,
the atom is in its ground state

I 1). Then the stochas-
tic behavior of the next emission is governed by Po(/),
the probability of finding no photon before t [3]. We can
apply the results of Refs. [13, 14] which in our situa-
tion, with a single laser coupled to

I 2) and
I 3), can be

rewritten slightly to yield [17]

(4)

where, in matrix form with respect to the atomic basis

I 1), I 2), I 3), the nonHermitian reduced Hamiltonian H~
in the atomic space is given by

f 0 Q2/2
Ag/2 —

L,
—'I'22

( n, /2 -ir„
Bs/2
-iI'23

~2 —~L, —irss)

where

r,~
= e D;i D~. i cu /6~robe

so that, in particular,

I'22 — —' A,

(6)

(7)

where the A;'s are the Einstein coefficients.
Without the laser the state

I 0&h) I 2) is not an eigen-
state of H in Eq. (1), due to the interaction with the
radiation field, and hence the total energy is not sharp.
The time development therefore may mix

I 2) and
I 3)

+) ~' Ie ' '
I z)(1 I

+ H. c.)
i=2

3

+i ) ) gkA(ukA I i)(I I
—H c ) (I)

i=2 k, A

Because of the closeness of the upper levels the laser cou-
ples to both of them. Here
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by emission and subsequent absorption of virtual pho-
tons; this is easily checked in second-order perturbation
theory. This leads to the generalized damping terms I';~
whose explicit form is well known (cf. Refs. [7, 12, 13,
16]). These terms also appear in Ref. [9].

We note that the oA'-diagonal terms —il"23 and —iI'32
which will be crucial for the following were absent in
the corresponding expressions of Cohen-Tannoudji and
Dalibard [3] for two widely separated upper levels and
two lasers [18] .

We denote by A; the eigenvalues of HR and by I
u, )

and
I v;) the left and right eigenvectors, normalized to

Pp(t) can be neglected except the one with Ai, and one
obtains

1
TD ——Tg + 1/2 Im Ai

2 ImAg
(12)

Tr, = T/Pp(Tp) (13)

since 1/Pp(Tp) is the mean number of such consecutive
emissions. A precise expression is

If successive photons are less than Tg apart we speak
of a light period. If 7= is the mean time between such
emissions, then the mean duration of a light period is

~i ~j = ij-
Then

exp( —iHRt) = ) e '"'
I v;)(u, I

(8)

(9)

~0
dt t iui(t) / [1 —Pp(Tp)],

0

which will be evaluated in the next section.

(14)

and III. MACROSCOPIC DARK PERIODS

Po(t) = ) . e '"' (u I I) I
v )

If one of the A s, Ai say, has an imaginary part which is
very small compared to the other ones this may lead to
an extended dark phase if the corresponding coefBcient
I(ui I 1)I is nonzero. This is so because then there
is a nonzero probability to reach the region where Pp(t)
changes very little in time. Then the probability density
for the emission of a photon at time t, which is —Pp(t),
is very small.

It may happen, however, that the coefficient I(ui I 1) I

is not very small. If it were
yp say, this would mean on

the average the emission of only 10 photons before reach-
ing an extended dark period. Thus the light period would
be very short, too short to be measured experimentally.
If, on the other hand, the coefficient I(ui I 1)I were
extremely small one would have very many emissions be-
fore the occurrence of a dark period, and the light periods
might become so long that a dark period would never be
observed in practice. It is thus not only the existence of a
very small imaginary part of an eigenvalue that leads to a
dark period, but also the associated coefficient I(ui I 1) I

has to be small, though not vanishingly small.
The mean duration of a dark period is easily cal-

culated as follows [4, 13, 14]. Let Tp be a time
such that (2 ImA2s) (( Tp (& (2 ImAi) . Then

Pp(Tp) = I(ui I 1)I is the probability for the occur-
rence of a dark period after the emission of a photon.
The probability density for the emission of the first pho-
ton after t = 0 is ioi(t) = Pp (t). If the firs—t photon is
emitted later than Tp we call it a dark period, and the
average time for this is

(15)
Equation (15) is verified by applying it to the eigenvec-
tors of H~. Hence a knowledge of the eigenvalues A; of
HR is sufficient. These can be determined in closed form
by Cardano's formula, but it is more instructive to use
approximate expressions.

We now make the assumption

D2i II D»

From Eqs. (2), (3), (6), and (16) one then obtains

g2kA/gskA = f12/~3~

I23 I32 —I22 I33
Q~/I'gz ——Qs/I'ss.

We introduce a weighted mean frequency ~M by

(16)

(17)
(18)
(19)

I'ss u)z + I'gg ~s Asz ~z + 02 ~3
I'22+ I'ss Q2z+ 023

Note that for I'2z —I'ss one has u~ —— (~2 + &us)/2.
We define the detuning 4 and the mean Rabi frequency
Q by

4=4)L, —M~,
2Q2 Q2 + Q2

(»)
(22)

In applications there is no need to determine the left
and right eigenvectors of HR. Instead of Eq. (9) one can
use, w&th A&+3

—= A~,

3(,H, ) ) - (HR —A +i)(HR —A*+2),—.~, i

(A; —A, +i)(A; —A;+2)

TD = dt t ~, (t)/Pp(Tp)
To

We now make the additional assumptions

~3 —4)2 CK ~i) I ii) (23)

= Tp + dt Pp( )/Pt(Tpp)
To I

A
I

bee « 020s, I'g21'ss . (24)

by partial integration. For t && Tq all exponentials in The root A y of the characteristic polynomial for H~ with
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art can now be obtained by New-smallest imaginary par can

ood zeroth approximation for smaall b~. One n sg

z' b ' r»r»/(r»+ r»)'~ + n~/2+, z(r„+r„) (25)

This gives

b. b~ I I' /(rgp+ rss)
n'/4 + d'(r»+r»)'

a inar arts of A2 and A3 are of the order of I'22

and I'33 ~ They are thus much larger t an m
'del different time scales in Po(t), which is ahas two wi ey i

12 we et forprerequisite or a
'

't, f r dark periods. From q. ( ) g
the mean duration of a dark period

n4/4 + 6'(r»+ r»)'
2 A~ bur2 (r2g + I ss)

(27)

As
' '

S . II the coefIicient ofAs ex lained in ec.

number of emissions in a light period. Using qs.
and (25) as well as

I' for this number to be observable.be much smaller than or is n

ll. F , h o 11

the dark periods, one has [19]
n b choosing the detuning L sma . or v,

mean photon rate including t e ar

/ (TL + T~)
= 1/(7. + p TD) .

Insertion of Eqs. (30) and (2S) yields

(37)

p =—4 a'(r„+ r„)/n'. (39)

One sees that the fluorescence ra e pate dro s with increasing
sit . this is due to the faster growth olaser intensity. is is ue

e uenc . For 6
Th' '

dis layed in Fig. 2. In Ref. [7] one as
er intensity.and there v increases with the laser in e

'
y.

For the values

r„+r..2
2 2 Q2n'+ 4A' 1+ ((r»+ r»)'+ A']/n

Th' ression is valid for b~ 0 I'. For A2 ((is expressio
bQ + 0 it can be approximated y

Ag As ——det HR/Ai)

A2+ A3 ——Tr H~ —Ag,

(2s)

(29)

n, = 5 r, r = 10' s-',
7 —1b& ==10 4 = 2 10 s

one obtains

(40)
(41)

one obtains after some algebra for this coefFicient

n'+ (I »+ r»)'+ 4'
02

1
T

I'22 + I'33

. As a typicaland from this one determines TL —— 7, p .

case we now discuss

(31)

b~ n~ ns/2 n~

n + 4 6 (rgg+ rss)

t = Po(To) must be sufficiently small for
t

' ', d th obhaving enough consecut'utive emissions, an

one
'

and A . A lengthy calculationone has to determine A2 an 3.
gives

(42)

(43)

(44)

In Fig. 3 we have plotted TL annd
The dotted curve shows TD

dipole moments.

TD over the detuning
for parallel transition

TD ——390.6 ms,

TI. ——2.9 ms,

and for the number of photons in a ig pli ht eriod

p
' = 5x105.

n;=5I, r;, == r.
Then one obtains

(32)

625/4 , 4

/r)2(~/r)2
" +

(b /r)2
50(bee/r)

2500 + 64(d /r)'

50
= —(b~/r) for 4 ( I',

r- = [eS + 2 (a/r)'j 10-' r-' .

(33)

(34)

(35)

For 4 ( I' one sees tha p, f&at f and thus also Tg —— 7 p
ce thee to the detuning A. ince eare relatively insensitive o

number of photons in a ig pa li ht eriod is given y p i

(35) that the level splitting b~ has ofollows from Eq.

8 —1Rabi frequency (10 s

nsit vs Rabi frequency for threeFIG. 2. Fluorescence intensity vs a

=02I' th fl o
intensity drops with increasing a i requenc,
for 6 = 2 I',~.
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FIG. 3. Mean duration TD and TI. of dark and light pe-
riods. Tr) is plotted for three different angles (t) between the
transition dipole moments (dotted line: P = 0, dashed line:

()I) = 6 x 10 rad, solid line: (t) = 6 x 10 rad). Tl. does not
depend appreciably on P.

FIG. 4. Simulation of atomic emission behavior for 6 =
0, n; = rpj = 10 s and 6u = 0.3I';j. After a finit number
of emissions the atom stops to fluoresce. Here the mean num-
ber of photons emitted is 23.2. Four runs are plotted, with
each vertical line representing a photon emission.

Si(/itching the atom og From Eq. (30) it appears that for 6 -+ 0 the dark period becomes infinitely long. Indeed,
for 6 = 0 and Dsi ~~ Dsi, the reduced Hamiltonian Hn in Eq. (5) has an eigenvalue Ai ——0. The corresponding
left and right eigenvectors in the atomic space coincide and are given by

1ui) =
I vi) = ((nq ~ls/Il ) bn/

I 1) + ~s I 2) — fez
I 3))/II" (45)

This state is constant under the reduced atomic time de-
velopment given by H~ in the interaction picture [20].
The ground state

~ 1) has a nonvanishing
~
ui) compo-

nent. Since HJr has an eigenvalue 0 for 6 = 0 one sees
that

3

e '""'"
I 1) = » Iui)+) ~' '"'Iv')

2

converges to ai
~

ui) for large t. Hence Po(t) tends to
a nonzero constant for t ~ oo, which is ((ui ~ 1)~ and
gives the probability that after an emission no photon is
emitted for all times. Thus

[( i ) I)[ = (6 ) 0 (I'q2+ I'ss) /2 I'22 I'ss (46)

is the average number of photons before this constant
nonradiating state is reached. This means that after
the emission of a number of photons the fluorescence is

switched off completely. Figure 4 shows a simulation of
this phenomenon. If the laser is switched off this state is
no longer stable, and the atom will make a transition to
the ground state. In the next section we discuss this in
terms of the complete Hamiltonian, including the radia-
tion field. This will allow an intuitive understanding of
the appearance of dark periods.

IV. AN EXACT NONRADIATING SOLUTION
OF THE COMPLETE TIME DEVELOPMENT

To better understand the appearance of a nonradiat-
ing state and of dark periods we return to the complete
Hamiltonian (1) which includes the radiation field. We
assume parallel dipole moments as well as ~L, ——~M and
consider in analogy to Eq. (45), at t = 0, the no-photon
state

I o(o)) =
I oph} ((n2ns/n')b~ I &) + A n

I o))/II (47)

VVe claim that, for any b~, its time development under the complete Hamiltonian is given by

U„(», o) IO(o)) =
I op„)((n,n, /n') b~

I » + An ~-""I~))/II (48)

so that it remains a no-photon state for all times, and the laser will create no fluorescence with
~ @(0)) as initial state

even though it pumps
~ 1) to

~
s) and vice versa.

To prove this we use an interaction picture. We set

Hr'. = &~r, (l 2)(2 I + I 3)(3 I) + H» (49)
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and go over to the interaction picture with respect to HL. The time development is then given by

HL(t) eg Hg t/h(H Ho )
i H—Lt/s

We now express this in terms of the normed states

I
s)—:(ng I 2) + ns

I 3)) /y 2 n,

I a) —= (ns I 2) —n2
I 3)) /~2 n,

(50)

(51)

(52)

where 20 = 0&+ 03. For parallel dipole moments, which is assumed in the following, these states are independent
of the Rabi frequencies [21], and Eq. (50) can be written as

& 'HI (&) = (2 n') '(~znzz+ ~s ns')
I s) (s I

+ (~M —~L) I a) (a I
-(nsns/2n')~~(l s) (a I

+
I a)(s I)

y 2 '1 12(( c)(1) + Hc)+i 2' 12 ) (gccc/12c) (cccc ' '1'
) c)(1) —Hc),

where cuM is given by Eq. (20). The first three terms
arise from the purely atomic Hamiltonian minus HL.

From Eq. (52) one sees that for parallel dipole mo-
ments only

I s) couples to the laser and radiation field,
while the purely atomic part transforms

I s) into
I a) and

vice versa. For any t we find

HI (/) I @(0))= 2 '/ n(n ns/n )/)
I s)

-2'/' n(n, n, /2n')~ I.)
=0,

(53)
(54)

where the first term originates from the
I 1) component

of
I 2/1(0)) which is pumped by the laser to a multiple of

s). The second term comes from the
I a) component of

2)g(0)) which is transformed by the purely atomic part
to a multiple of

I s), too. It is crucial that for col. = ~M
there is no

I a)(a I
part in Hl . The photon operators give

no contribution. Since Eq. (53) holds for all t,
I 2/1(t)) is

constant in the interaction picture, by the Dyson series,
and this proves Eq. (48).

The existence of a stable state for 6 = 0 which does
not radiate although its ground-state component is con-
stantly pumped up to the

I s) state is thus due to a
cancellation of the laser pumping by t, he action of t, he

purely atomic part of the Hamiltonian on
I
a).

If the laser power is changed the system will start to
fluoresce again; in particular, if the laser is switched off
after some time, the previously stable nonradiating state
will acquire a photon part, and the atom will eventually
make a transition to the ground state under emission of
a photon.

For ~L, g uM, i.e. , 6 g 0, the term (+M —col.) I a)(a I

in Eq. (52) contributes and makes the right-hand side of
Eq. (53) nonzero and proportional to

I
a). By repeated

action of HI in the Dyson series this will then slowly
create an

I s) component which may lead to the emission
of a photon.

If one starts with the atomic ground state and no pho-
ton, the laser pumping will create an

I s) component
which may lead to the emission of a photon. But if this
emission is delayed the analysis of the preceding section
shows that for small bu the atomic state vector rapidly
approaches the eigenvector belonging to the small eigen-

I

value A~ of the reduced Hamiltonian H~. This eigenvec-
tor is close to the one for A~ ——0, i.e. , to the vector in
the curly brackets in Eq. (47) and thus close to a stable
nonradiating state. If 6 = 0 then also Aq

——0, and the
atom approaches the stable, nonradiating state. If we as-
sume b~ (( 0, I', then the stable state has a very small
ground-state component. In case of degeneracy, b~ = 0,
it is easy to see that

I a) is invariant, even without the
rotating-wave approximation.

V. DISCUSSION

We have shown how quantum coherence effects of two
very close upper levels of a V system may give rise to
macroscopic dark periods provided the dipole moments
of the upper levels with respect to the ground state are
parallel. This last condition leads to I'Q3 I 3Q —I 22 I 33 in

Eq. (5), and only this was needed. It is quite clear from
our analysis that dark periods will persist if this equality
holds only approximately. In case the dipole moments
are not quite parallel the mean length of a dark period
in Eq. (27) is modified and is given in zeroth order in bu
and 6 by

T =n'/[n', r„+ n,'r„—2n, n, r„]. (55)

In Fig. 3 we have plotted the duration of light and dark
periods for different angles between the dipole moments.
The light period is insensitive to the angle, but the dark
period decreases rapidly with increasing angle between
the dipole moments. An angle of 0.001 rad would still
lead to appreciable dark periods. The nonradiating state
for 6 = 0, however, then no longer exists.

In our treatment the rotating-wave approximation has
been used. Without it we do not expect any great change
for the light and dark periods. However, the nonradiating
state of Secs. III and IV will no longer be strictly stable
on a very long time scale, and instead of an infinitely long
dark period one would expect very long dark periods with
some photons in between.

As mentioned in the Introduction, for a A system there
also exists a state decoupled from the electromagnetic
field, and one might expect similar dark periods. It turns
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out that for the A system the additional damping terms
rg3 and I'32 do not appear in the reduced Hamiltonian
HR, and therefore the condition of parallel dipole mo-
ments is not necessary. Light and dark periods also exist
for the A system, but the short light periods are proba-
bly too dificult to be observed individually. An analysis
of these questions for the A system is planned to appear
elsewhere.

In this paper we have discussed dark periods of a sin-

gle atom. If instead of a single atom one has a gas of
atoms each exhibiting longer and longer dark periods as
the laser frequency approaches 4 = 0, then the gas will
absorb and rescatter less and less laser light, i.e. , one will
see reduced Auorescence and a nonabsorption resonance.
In this way one can understand the nonabsorption reso-
nances found in Refs. [6, 7] by dark periods of individual
atoms.
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