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Relativistic calculations of nuclear motional efFects in many-electron atoms
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We assume that the nucleus is a relativistic point mass with no internal degrees of freedom and derive

an expression for its motional contribution to the energies of atomic levels in jj coupling. Our formalism

has been implemented in a computer program module sMs used in conjunction with the GRAsp2

multiconfiguration Dirac-Fock package. Representative calculations are presented for some atoms and

ions.

PACS number(s): 31.30.Jv, 31.30.Gs, 31.20.Tz

I. INTRODUCTION

The relativistic theory of atoms is usually based on the
Dirac-Coulomb Hamiltonian for the atomic electrons,
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where

HD TD+ ynuc
I (1.2)

is the Dirac Hamiltonian for electron i in a central field
with potential energy given by V""', and

2
Hc (1.3)

is the Hamiltonian for the Coulomb interaction between
electrons i and j. We use the symbol e for the charge on
the proton. The Dirac kinetic-energy operator T is
given by

T =ca p+(P 1)m""c— (1.4)

The CSF's, in turn, are usually constructed from a set of
orbitals —one-electron states with the angular symmetry
appropriate to the one-electron Hamiltonian. A relativis-
tic orbital, denoted

~
norm ) is thus an eigenfunction of the

total angular momentum operator j=l+s and the rela-
tivistic parity operator ~,
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where c is the speed of light in the vacuum, a and P are
the Dirac matrices, and m"" is the mass of the electron.
An (approximate) atomic state function (ASF) for a level
with energy E, angular momentum J (J+ 1)A', and parity
P, may be constructed from a linear combination of
configuration state functions (CSF's) that share the same
angular momentum and parity,

(1.5)

the normal mass shift ter-m, ac-counted for by using the
reduced mass p, where
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in place of m ""in the electronic Hamiltonian, and
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the specific mass shift or m-ass-po-larization term. In Eqs.
(1.7)—(1.9) m ""' is the mass of the nucleus. Nonrelativis-
tic estimates of the specific mass shift have been made by
a number of authors [3]. Recent work [4] has focused on
the role of correlation in this context.

An ab initio relativistic treatment of the interaction of
the atomic electrons with the nucleus would be based
upon quantum field theory. However, no practically use-
ful models of the atomic nucleus have emerged from this

To each nonrelativistic orbital with orbital quantum
number I )0, there correspond two relativistic orbitals
with j =l —

—,
' and 1+—,'; for these the quantum number x

takes the values I and —l —1, respectively. When l =0,
j =

—,
' and ~= —1. We refer the reader to the review arti-

cle of Grant [I] for the many details of relativistic atomic
electronic structure theory that we have omitted; in par-
ticular, the use of Racah algebra in the reduction of ma-
trix elements of many-body operators between CSF's to
sums over matrix elements of one- and two-electron
operators between orbitals.

An assumption that is implicit in the formalism sum-
marized above is that the degrees of freedom of the nu-
cleus make no appreciable contribution to the ener'gies of
atomic levels. There are circumstances in which this as-
sumption is unacceptable; account must then be taken at
least of nuclear translational motion. The first quantum-
mechanical treatment of such effects in many-electron
atoms is due to Hughes and Eckart [2], who showed that
two additional terms appear in the nonrelativistic atomic
Hamiltonian:
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framework. Theoretical models of the atomic nucleus
based upon the gross features of the interactions of the
nucleons are, at present, too cumbersome for use in atom-
ic calculations. Recourse must, therefore, be had to rela-
tively simple models that accurately manifest the most
important gross features of the nucleus: examples are its
mass, angular momentum, spherically averaged charge
distribution, exterior electric and magnetic multipole mo-
ments, and polarizability.

Our approach to a relativistic treatment of nuclear
motional effects differs from earlier work [5,6] in that the
kinematics of the nucleus is assumed to be that of a rela-
tivistic point mass with no internal structure. Further,
we neglect retardation and assume that the interaction of
the nucleus with electron i is completely specified by V"u'

(r, ), a function of the distance separating the electron and
the nucleus. Clearly, corrections of higher order must be
introduced to account for other aspects of the interaction
of the nucleus with the electrons. We shall not study
these corrections here.

In Sec. II we give a brief resume of the kinematics of
relativistic point masses to derive approximate expres-
sions for the energy due to nuclear motion. The reduc-
tion of matrix elements of operators corresponding to
certain important expressions of Sec. II is discussed in
Sec. III. We have implemented the methods of Sec. III in
a computer program; this program is brieAy described in
Sec. IV. Some estimates of energy-level shifts due to our
specific mass shift Hamiltonian using relativistic models
of atoms are given in Sec. V. We summarize our work in
Sec. VI.

T —mu 2 (2.8)

the familiar nonrelativistic expression.
In the center of momentum frame,
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From Eq. (2.5},

Eelec Telec+ m elecC 2
I I

squaring both sides,
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From Eq. (2.3),

elec)2&2 (gelec)2 (m elec)2&4
I I

(2.1 1)

(2. 12)

(2.13)

(2.14)

We substitute the right-hand side of Eq. (21.3) for (E,'"')
in Eq. (2.14) to obtain

Clearly, when v /c is sufficiently small, Eqs. (2.5) and
(2.7) yield
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II. RELATIVITY AND THE MOTION

OF THE ATOMIC NUCLEUS

p=mv(1 —v /c )

where

(2.1)

The momentum p of a particle is related to its mass m

and velocity v by the Einstein formula

We divide both sides of this formula by c and use this re-
sult in place of the first term on the right-hand side of Eq.
(2.11),
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The total energy E is given by

(p 2c 2 +m 2c 4
)

1 /2

where

(2.3)

(2.4)

Clearly, when p =0, then E=mc, the rest energy. The
kinetic energy T is the total energy less the rest energy,

The motional energy of the nucleus,

Tnuc [(pnuc)2& 2+( m nuc)2&4]1/2 m cue&2 (2.17)

(
""')' 2«( ""')' 4. (2.18)

may thus be obtained from the motional energy and mo-
menta of the electrons.

We shall now examine two important nonrelativistic
limits of these expressions. In typical atomic problems,

T =E —mc2 . We write Eq. (2.17}as(2.5)

mc 2( 1 u 2/c 2
)
—1/2 (2.6)

Substituting Eq. (2.1) in Eq. (2.3), we obtain with a little
algebra, (

nuc )2
Tnuc 1+ P

( m nuc )2c 2

1 /2

m nucC 2 m nucC 2 (2 19)

E=mc (1+—,'u /c + —', u c + —,', u /c +- . ). (2.7)

We expand the rightmost term in powers of u /c using
the binomial theorem,
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and expand the term in the square brackets using the bi-
nomial theorem; it immediately follows that
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nuc )2
Tnuc p
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We begin by treating the nucleus as a nonrelativistic par-
ticle; its kinetic energy T„„, is then given by the first
term, or Eq. (2.8),
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nonrelativistic expression [2] for the nuclear motional
contribution,

We substitute for (p""') from Eq. (2.16) to obtain
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In the approximation represented by Eq. (2.22), the rel-
ativistic normal mass shift —the first term on the right-
hand side of Eq. (2.22)—cannot be completely accounted
for by using the reduced mass instead of the true electron
mass in the Dirac-Coulomb Hamiltonian (1.1). The dis-
tinction between the normal and specific mass shifts can
no longer be made in a meaningful manner as the higher-
order terms in Eq. (2.20) are examined.

elec )2Te]ec P
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(2.23)

and we may neglect the contribution of the first term in
the square brackets in Eq. (2.22); we obtain the familiar

I

This result, derived from more fundamental principles,
has appeared in the literature [6].

If the electrons are also treated as nonrelativistic parti-
cles,

III. MATRIX ELEMENTS IN jjCOUPLING

We write p in coupled-tensor-operator form,

8p= —i C(1)
Br
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r

From the Wigner-Eckart theorem in the form
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The second reduced matrix element on the right-hand
side may be calculated from the formula I )
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Substituting this expression in Eq. (3.6) yields an impor-
tant result:
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Exploiting the symmetries of the 6j symbol (any inter-
change of columns, any interchange of pairs of row ele-
ments), we may use the formula
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Setting T ' =C" ' in Eq. (3.11),
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We again use Eq. (3.11),but with T ' =(C "1)'':
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Combining this with Eq. (3.1),

(at—,';jllplla'1' —,';j') = i—(at ,';jfp—)(t,t')C'''lla'1' ,';j—'),

(3.16)

1+1/2+k
l
+j'=( —1) ' &(2j +1)(2j'+ 1)

l k, l'
x ', . '(atll(c "1)(')lfa 1 ) (3.13)

where

(3 1(1+ 1)—2 —1'(1'+ 1)
Br 2r

(3.17)

Combining this with Eq. (3.9), with a minor rearrange-
ment, we have
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We may write our atomic orbitals as

where
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Comparing Eqs. (3.12) and (3.14), we obtain our second
important result: Thus
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We define the relativistic Vinti [7] integral,

(3.21)
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and exploit the relations
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and From the form of Eq. (3.21), for any pair of electrons,

1(1+1)= —K( —K+ 1), (3.24) (C(1)C(1))(0)~ ~Pl P2 1 2 1 2 (3.27)

and the fact [1] that the reduced matrix elements of C are
independent of l to obtain

For a many-electron atom [1],
elec
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Note that the operators in the parentheses in Eq. (3.22)
are different from the operators defined in (3.17): we have
eliminated the factors 1/r in Eq. (3.21) in arriving at Eq.
(3.22).

In atomic units, the operator for the Coulomb interac-
tion between two electrons may be written as

=+V„,'(a b c d )R '(a b c d ), (3.28)
j

where R '(a b c d ) is the relativistic Slater integral. e
have adopted the abbreviation a =(n„K, ) in Eq. (3.28).
On comparing (3.26) and (3.27), it follows that
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The nonrelativistic counterpart of this formula has ap-
peared in the literature [8].

The kinetic-energy operator (1.4) is of rank zero and
even parity. The reduced matrix elements of the square
of T are obtained as a sum of the reduced matrix ele-

ments of T using Eq. (3.2):

(aJII(TD)'lla J )

0 0 0
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V. RELATIVISTIC SPECIFIC MASS SHIFTS

Vnuc
point

Ze (5.1)

The potential for a "Fermi nucleus" is obtained from the
charge distribution

nuc Po
PFermi

1 (r —c) /a+e
(5.2)

Here c is the radius at which pF",;;(r)=po/2, and a is re-

lated to the skin thickness t through

We have used the SMS package described in the previ-
ous section to compare specific-mass estimates from sirni-

lar relativistic and nonrelativistic models of atoms and
ions. In Table I we present some calculations for the
most abundant isotopes of the rare-gas atoms Ne, Ar, Kr,
Xe, and Rn. The nonrelativistic limit tabulated in

column 3 in each case is obtained by setting c to a much
higher value (than the normally used value of
137.0359895 in atomic units) in GRAsP2; c~10 c was

found to suffice to obtain the nonrelativistic limit of the
specific-mass-shift contribution, although a higher value

would be required to obtain the nonrelativistic limit of
the total energy. This is seen to compare well with
Hartree-Fock calculations that are nonrelativistic from
the outset [8,11]. Two different nuclear models have been
used in the GRASP2 calculations. The potential energy of
an electron in the field of a point nucleus is given by

(3.32) t/a =41n3 . (5.3)

We have effectively presented expressions that permit the
evaluation of the operator given by Eq. (2.16). It is now,
in principle, possible to evaluate the terms of the expan-
sion (2.20) to any order.

The reader may easily verify that pF",'„;(c—t/2) =0.9po,
and pF",'„;(c+ t /2) =0 lpo. It. is a little more difficult (see

[12],for instance) to prove that

IV. THE COMPUTER PROGRAM PACKAGE
( r') = 3 c'+ 7 n'a '

5 5
(5.4)

The formalism of Sec. III has been partially imple-
mented in a FORTRAN 77 package, SMS, used in conjunc-
tion with Version 2.10 of the GRASP2 multiconfiguration
Dirac-Fock computer program [9].

The angular coefficients V„",(abed) required in Eq.
(3.29) are obtained from the MCP package [10]. All
coefficients with k%1 are discarded. The requisite rela-
tivistic Vinti integrals (3.22) are calculated, and the con-
tribution accumulated to obtain

(~ JP~~HDc+HNMs+HsMS~~~ JP) (4.1)

the matrix of the composite operator between CSF's.
The inatrix (4.1) is then diagonalized to obtain new esti-
mates of the ASF's and energies of interest. The user
may eliminate the contribution of either the normal-
mass-shift operator or the specific-mass-shift operator by
setting options in the input to GRASP2.

The mass-shift operators in Eq. (4.1) are those of Eq.
(2.22) without the first term in the square bracket. Fu-
ture releases of SMS will be based upon Eqs. (2.20) and
(2.16) and will yield more accurate estimates of nuclear
motional effects within the domain of applicability of the
approximations described in Sec. I.

Unless otherwise specified, we use the parametrization

't/ ( r ) =0.836( A )
' +0.570

of Johnson and Soff [13],and

t =2.30 .

(5.5)

(5.6)

The nuclear root-mean-square radius from Eq. (5.5) and
the skin thickness from Eq. (5.6) are in femtometers. We
denote the nucleon number (or baryon number) by A.

Upon comparing column 3 with column 4, and column
5 and column 6, in Table I, it is immediately apparent
that the choice of nuclear model has negligible irnpor-
tance in the computation of specific mass effects in the
Dirac-Fock approximation. The Dirac-Fock energies
(H )D„corresponding to the entries in column 6 of
Table I are, respectively, 128.691 93052, 528.683 76243,
2788.860581 9, 7446.8943862, and 23 602.023 300 har-
tree. The relative contribution of the specific-mass-shift
operator is seen to diminish very gradually for the rare-
gas atoms. From the data in Table I, relativistic correc-
tions to the specific mass contribution are seen to grow
roughly as Z /m""'. Assuming that the specific mass
contribution can be written approximately as
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TABLE I. Comparison of nonrelativistic (Hartree-Fock) and relativistic (Dirac-Fock) specific-mass-
shift contributions (H )D„ for some rare-gas atoms. The nuclear mass in each case is assumed to be
A in atomic mass units (u). The "Fermi nucleus" is the charge distribution given by Eqs. (5.2) and (5.3);
the parameters c and a are given by Eqs. (5.5) and (5.6). Our procedure for the determination of the
nonrelativistic limits in columns 2 and 3 is described in the text. Energies are given in hartrees. Entries
of the form a [b] are to be interpreted as a X 10 .

Atom

MCHF

point

nucleus

Q —+ OO

point

nucleus

Q —+ OO

Fermi

nucleus

Q —+ OO

GRASP2

point

nucleus

c =1/a

Fermi

nucleus

c =1/a

Ne10

4'Ar
18

Kr

54
132Xe

222Rn
86

—4.109 2[—4]
—1.318 37[—3]
—4.896 83[—3]

9.632 08 [—3]
—2.037 6[—2]

—4.108 3[—4]
—1.31808[—3]
—4.895 8[—3]
—9.630 1[—3]
—2.037 2[—2]

—4.108 3[—4]
—1.31808[—3]
—4.895 8[—3]
—9.630 1[—3]
—2.037 3[—2]

—4.114 1[—4]
—1.327 26[—3]
—5.026 8[—3]
—1.023 38[—2]
—2.412 5[—2]

—4.1142[—4]
—1.327 27[—3]
—5.026 8[—3]
—1.023 40[—2]
—2.412 4[—2]

gsMS(Z)y uuc (5.7)

whence the specific mass shift between two isotopes with
nuclear masses m ",

"' and m 2"' is

gsMS( z) 1 1

nuc nuc
m& m2

nuc nuc

gsMs(z)
nuc nucm2 mi

(5.8)

X [n '"—a
~
E ( a. u. )

~ ] (5.9)

the relativistic correction to the specific mass shift thus
varies roughly as Z /A

We have used the rough estimate mnu'= A in the cal-
culations presented in Table I. The mass of the nucleus
in atomic mass units u is more accurately obtained from
the atomic mass using the formula

m ""'(u ) =m "'
( u ) —5.485 799 03 X 10

contribution of E itself is negligible, is a systematic er-
ror. All measurable effects of the specific mass shift are
differences of energies including specific mass terms. Sys-
tematic errors tend to cancel when differences are taken.

We have used Eq. (5.9) in conjunction with tabulated
atomic mass data [15] to estimate isotope-dependent
effects at the Dirac-Fock level in xenon. The two most
abundant isotopes of Xe were selected. Our results are
presented in Table II. Entries in the second column in
the rows labeled "Difference" give estimates of the nu-

TABLE III. Multiconfiguration Dirac-Fock calculation of
the specific mass shift for 2He. n, „ is the maximum principal
quantum number in the expansion (5.10). The abbreviation
"ex5" denotes the extrapolated [16] values for n, „up to 5;
"ex6" with n,„up to 6. Both relativistic and nonrelativistic
cases are shown. The nucleus has been taken to be a point
charge. All energies are in hartrees. Estimated errors in the
final digits are given by the entries in parentheses.

TABLE II. Calculation of isotope-dependent effects for Xe.
The atomic mass of 54 Xe has been taken to be 128.904780 u,
that of 54 Xe, 131.904 144 u. The corresponding nuclear masses
have been determined from Eq. (5.9).

(HDC) ( H DC+ NMS+ SMS ) DF

c =1/a

(we have ignored the uncertainty in the conversion con-
stant [14]). The use of Dirac-Fock binding energies as es-
timates for E introduces an error into our calculation of
m nu'. However, this error, usually negligible because the

nmax

1

2
3

4
5

6
ex5
ex6

) MCDF

—2.861 813 340 2
—2.897 808 460 1
—2.901 974 647 1
—2.903 042 972 4
—2.903 433 572 0
—2.903 609 177 9
—2.903 855 2
—2.903 856 8
—2.903 856 8(16)

c =1/a
—2.861 813 340 2
—2.897 785 1113
—2.901 952 248 9
—2.903 020 900 6
—2.903 411 630 6
—2.903 587 293 3
—2.903 833 4
—2.903 834 9
—2.903 834 9(15)

2.334 88
2.239 82
2.207 18
2.194 14
2.188 46
2.179
2.183
2.183(4)

(HDC+SMS) 105 (HSMS)

129X
54

132X
54

Difference

129X
54

132X
54

Difference

—7 446.897 686 8
—7 446.894 386 2

0.003 300 6

c~10 c
—7 232.035 969 2
—7 232.034 582 2

0.001 387 0

—7 446.874458 6
—7 446.871 686 4

0.002 722 2

—7 232.015 0174
—7 232.014 106 9

0.000 910 5

1

2
3
4
5

6
ex5
ex6

—2.861 679 993 6
—2.897 673 558 7
—2.901 840 494 0
—2.902 909 289 6
—2.903 300 188 4
—2.903 475 995 5
—2.903 722 3
—2.903 724 0
—2.903 724 0(17)

c 10c
—2.861 679 993 6
—2.897 650 214 2
—2.901 818 129 7
—2.902 887 273 7
—2.903 278 312 5
—2.903 454 1809
—2.903 700 6
—2.903 702 3
—2.903 702 3(17)

2.33445
2.236 43
2.201 59
2.187 59
2.181 46
2.172
2.175
2.175(3)
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TABLE IV. Multiconfiguration Dirac-Fock calculations of
the specific mass shift for &~Ne'+. The nuclear mass is taken to
be 19.98695 u. n, „ is the maximum principal quantum num-

ber in expansion (5 ~ 10). The abbreviation "ex5" denotes the ex-

trapolated [16]values for n, „up to 5; "ex6" with n, „up to 6.
In the relativistic case, the nucleus is described by a Fermi

charge distribution (5.2), whereas in the nonrelativistic case the

nucleus is treated as a point charge. All energies are in hartrees.
Estimated errors in the final digits are given by the entries in

parentheses.

~ max )MCDF ( HDC+SMS ) 1()5 (HSMS )

1

2
3
4
5
6
ex5
ex6

—93.982 756 778
—94.019 348 433
—94.025 268 909
—94.026 971 293
—94.027 627 276
—94.027 929 725
—94.028 372
—94.028 364
—94.028 364(8)

c =1/a
—93.982 756 778
—94.019 315451
—94.025 235 250
—94.026 937 626
—94.027 593 641
—94.027 896 109
—94.028 338
—94.028 330
—94.028 330(8)

3.2982
3.3659
3.3667
3.3635
3.3616
3.356
3.360
3.360(4)

1

2
3
4
5

6
ex5
ex6

—93.861 113505
—93.897 683 184
—93.903 636 786
—93.905 361 421
—93.906 032 020
—93.906 344 585

93.906 805
—93.906 806
—93.906 806(1)

c~10 c
—93.861 113505
—93.897 650 400
—93.903 603 321
—93.905 327 950
—93.905 998 581
—93.906 311 164
—93.906 772
—93.906 773
—93.906 773(1)

3.2784
3.3465
3.3471
3.3439
3.3421
3.336
3.341
3.341(5)

clear volume or geld shift The field . shift in the nonrela-
tivistic limit is less than half that in the relativistic calcu-
lation. This reflects the well-known relativistic increase
of electron density in the neighborhood of the nucleus.
The total isotope shift in the binding energy of xenon, that
is, the sum of the volume shift, the normal mass shift,
and the specific mass shift appears in the third column in
the same rows.

The calculations summarized in Tables I and II do not
include estimates of correlation effects. To obtain some
insight into the latter, a series of multiconfiguration
Dirac-Fock (MCDF) calculations have been performed
for three heliumlike ions.

We follow the procedure of Parpia and Grant [16],
based upon a theorem of Fischer [17]. The approximate
atomic wave function for the ground state is expressed as
the superposition

TABLE V. As in Table IV, except that values are for, oNe +,
whence the nuclear mass is taken to be 21.985 90 u.

n max )MCDF (H DC+ SMS ) l()5 ( HSMS )

1

2
3
4
5

6
ex5
ex6

—93.982 758 749
—94.019 350 404
—94.025 270 880
—94.026 973 264
—94.027 629 247
—94.027 931 696
—94.028 374
—94.028 366
—94.028 366(8)

c =1/a
—93.982 758 749
—94.019320 420
—94.025 240 280
—94.026 942 657
—94.027 598 669
—94.027 901 136
—94.028 344
—04.028 336
—94.028 336(8)

2.9984
3.0600
3.0607
3.0578
3.0560
3.051
3.054
3.054(3)

1

2
3
4
5

6
ex5
ex6

—93.861 113505
—93.897 683 184
—93.903 636 786
—93.905 361 421
—93.906 032 020
—93.906 344 585
—93.906 805
—93.906 806
—93.906 806(1)

c~10 c
—93.861 113505
—93.897 653 379
—93.903 606 363
—93.905 330992
—93.906 001 620
—93.906 314202
—93.906 775
—93.906 776
—93.906 775(1)

2.9805
3.0423
3.0429
3.0400
3.0383
3.033
3.037
3.037(4)

E„—E„|=a/(n —
—,
'

) (5.11)

TABLE VI. As in Table IV, except that values are for

18Ar' +. The nuclear mass is taken to be 39.952 525 u.

n max ) MCDF
(HDC+SMS) 105 (HSMS)

1

2
3
4
5

6
ex5
ex6

—314.199524 34
—314.236 239 02
—314.242 273 84
—314.244 000 71
—314.244 656 60
—314.244 952 82
—314.245 360
—314.245 365
—314.245 365(6)

c =1/a
—314.199524 34
—314.236 207 96
—314.242 241 94
—314.243 968 75
—314.244 624 64
—3 j4.244 920 87
—314.245 328
—314.245 334
—314.245 334(6)

3.195
3.194
3.194(1)

is used to estimate the exact Dirac-Coulomb energy, that
is, the eigenenergy of the Hamiltonian (1.1). These calcu-
lations are summarized in column 2 of Tables III—VI.
Differences in the Dirac-Coulomb energies in Tables IV
and V arise from the difference in the nuclear volumes of
the two isotopes 10Ne and 10Ne.

n max

n =1 a= —1, 1, —2, 2,
c„,i(n )iJr=O) . (5.10)

Thus, for each value of the quantum number n, all possi-
ble values of ~ are included. Six sets of MCDF calcula-
tions are carried out for each of two values of the speed
of light for 2He, 10Ne, 10Ne, and 18Ar. The extrapolation
procedure of Parpia and Grant [16], based on the as-
surnption

1

2
3
4
5
6
ex5
ex6

—312.861 063 27
—312.897 709 83
—312.903 856 95
—312.905 659 75
—312.906 365 36
—312.906 695 55
—312.907 122
—312.907 156
—312.907 156(34)

c~10 c
—312.861 063 27
—312.897 679 39
—312.903 825 66
—312.905 628 39
—312.906 33401
—312.906 664 21
—312.907 091
—312.907 124
—312.907 124(34)

3.135
3.133
3.133(2)
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Next, for each value of n,„, a larger basis than the
"diagonal" form in Eq. (5.10) is generated from all possi-
ble CSF's with J =0 and even parity using the available
set of orbitals. (That is, we carry out "complete active
space" calculations for each n,„. The CSF list is gen-
erated using the JJCAS package of Parpia, Wijesundera,
and Grant [18].) The lowest eigenvalue of the matrix
(4.1) determined from this new basis is tabulated in
column 3 of Tables II—VI.

Relativistic corrections to the specific-mass-shift con-
tributions for this isoelectronic sequence increase with Z
more rapidly than Z /m""'. The formula (5.8) is seen to
hold accurately for all the two-electron ions studied here:
the quantity b, is not affected by variations in the nu-

clear charge distribution. A perusal of Tables III—VI
shows that the relativistic contribution to the correlation
differs from the nonrelativistic contribution only for
nmax =2'

Unlike the systems of Tables I and II, the heliumlike
ions exhibit positive specific-mass-shift contributions.
The reasons for this unexpected behavior have been dis-
cussed by Krause, Morgan III, and Berry [19]. Quite
generally, closed-shell atoms and ions that are well de-

scribed by orbitals of only s symmetry exhibit positive
specific-mass-shift contributions (cf. the paper of Aspect
et al. [4]).

It is interesting to observe the trends in the last column
of each of Tables III—VI. The specific mass shift of the
He atom decreases monotonically for n,„)2. For the

Ne and Ar atoms, the mass polarization contribution first
increases and then decreases relatively slowly.

VI. CONCLUSION

We have derived expressions for the translational
motion of the atomic nucleus to obtain the contribution
of this motion to the level energy of the atom. The nu-

cleus has been modeled as a relativistic point mass with
no internal degrees of freedom. The electrons are as-
sumed to be relativistic fermions. In the nonrelativistic
limit (c~ae), our expressions reduce to the mass-shift
Hamiltonian of Hughes and Eckart.

Our formalism has been implemented in a computer
program SMS that forms part of a new version of the
GRASP2 multiconfiguration Dirac-Fock atomic-structure
program. Calculations have been carried out using SMS.

In neutral atoms, the relativistic corrections to the
specific mass shifts increase roughly as Z /A, where Z
is the atomic number and A is the number of nucleons
(protons and neutrons together). Relativistic corrections
increase roughly as Z /A along isoelectronic sequences.

ACKNOWLEDGMENTS

We are grateful to Andreas Stathopoulos for the use of
a sparse-matrix Davidson eigensolver computer program.
This research was supported by a grant from the U.S.
Department of Energy, Once for Basic Energy Sciences.

[1] I. P. Grant, Methods Comput. Chem. 2, 1 (1988).
[2] D. S. Hughes and C. Eckart, Phys. Rev. 36, 694 (1930).
[3] Reviews are: J. Bauche and R. J. Champeau, Adv. At.

Mol. Phys. 12, 39 (1976); W. H. King, Isotope Shifts in

Atomic Spectra (Plenum, New York, 1984).

[4] For instance, E. Lindroth, A.-M. Mkrtensson-pendrill,

and S. Salomonson, Phys. Rev. A 31, 58 (1985); F. W.

King, ibid. 40, 1735 (1989); A. Aspect, J. Bauche, M.
Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, J.
Phys. B 24, 4077 (1991).

[5] A. P. Stone, Proc. Phys. Soc. London 77, 786 (1961); 81,
868 (1963).

[6] H. Grotch and D. R. Yennie, Rev. Mod. Phys. 41, 350
(1969).

[7] J. P. Vinti, Phys. Rev. 56, 1120 (1939).
[8] C. F. Fischer and L. Smentek-Mielczarek, J. Phys. B 16,

3479 (1983).
[9] F. A. Parpia, I. P. Grant, and C. F. Fischer (unpublished);

the GRAsp2 program is available from the authors under a
joint-study agreement. Recent versions of GRASP2 em-

ploy the sparse-matrix Davidson eigensolver of A. Statho-
poulos and C. F. Fischer (unpublished).

[10]I. P. Grant, Comput. Phys Commun. 11, 397 (1976); 14,
312(E) (1978).

[11]C. F. Fischer, L. Smentek-Mielczarek, N. Vaeck, and G.
Miecznik (unpublished).

[12] F. A. Parpia and A. K. Mohanty, Phys. Rev. A (to be pub-

lished).

[13]W. R. Johnson and G. Soff, At Data Nucl Data Tables

33, 405 (1985).
[14]E R Cohen and B. N. Taylor, The 1986Adjtt t en«f t"e

Fundamental Physical Constants, CODATA Bulletin 63

(Pergamon, Elmsford, NY, 1986).
[15]See the Table of Isotopes, revised in 1991, by N. E. Hol-

den, in CRC Handbook of Chemistry and Physics, edited

by D. R. Lide (CRC, Boca Raton, FL, 1991).
[16]F. A. Parpia and I. P. Grant, J. Phys. B 23, 211 (1990); J.

Phys. IV, Suppl. J. Phys. II 1, C1 (1991).
[17]C. Froese Fischer, The Hartree Fock Method for A-toms

(Wiley, New York, 1977).
[18]F. A. Parpia, W. P. Wijesundera, and I. P. Grant (unpub-

lished).
[19]J. L. Krause, J. D. Morgan III, and R. S. Berry, Phys.

Rev. A 35, 3189 (1987).


