
PHYSICAL REVIEW A VOLUME 46, NUMBER 7 1 OCTOBER 1992

Core-valence correlation effects on E1 and E2 decay rates in Ca+
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Elaborate multiconfiguration Hartree-Fock wave functions have been obtained for the 4s S, 3d D,
and 4p 'P' states in Ca+ in order to investigate the core-valence correlation effects on the transition
probabilities of the electric dipole (E1) and quadrupole (E2) processes involving these levels. In paral-
lel, model-potential calculations using a core-polarization potential have been performed. They support
the large reduction of the oscillator strengths found in the ab initio approach for both the E1 and E2
processes. The agreement between the two sets of results is satisfactory only if the polarization term is

included in the Hartree-Fock variational procedure. The present theoretical P& j23/2 lifetime values

differ by 3.5% from the most recent fast-beam laser measurements with an estimated single-standard-
deviation uncertainty of about l%%u~.

PACS number(s): 31.20.Tz, 32.70.Cs, 32.70.Fw

I. INTRODUCTION

Precise wave functions have been obtained in the
multiconfiguration Hartree-Fock (MCHF) scheme for the
Ca and Sr alkaline-earth-metal atoms, taking valence
correlation effects into account [1,2]. These wave func-
tions were used for evaluating the radiative lifetimes of
low-lying levels. The irregularities and departures to sim-
ple scaling laws observed in the Sr lifetime trends are
reproduced very well by the theoretical calculations and
can be explained by strong configuration-mixing effects in
the outer valence-electron pair. The same perturbations
strongly affect the isotope shifts. The large positive rela-
tive residual shifts measured from two-photon experi-
ments in Ca and Sr can be understood qualitatively by
these outer correlation effects [3,4]. This approach works
less well in Ca than in Sr [2] and, despite the relative suc-
cess of these studies, core-valence and core correlation
need to be considered. These correlation effects can be
incorporated either explicitly through a configuration-
interaction (CI) or multiconfigurational procedure
(MCHF), or by the use of model potentials [5]. The latter
approach results in a considerable saving of computer
time, compared with the explicit CI scheme, but ques-
tions of accuracy are raised and systematic comparisons
need to be made. The present paper is a step in this
direction, improving in the same way the McHF —Asp
atomic-structure package [6] by including the one-body
core-polarization correction. Before tackling the spec-
troscopy of nominal "two-electron" systems by some hy-
brid method using the MCHF approach for the valence
correlation and a core-polarization potential model for
the core-valence correlation effects, it is essential to test
the reliability of the latter on nominal "one-electron" sys-
tems. Ca+ is a good candidate not only because core-
valence correlation is large but also because a number of

accurate experimental measurements have been published
recently for this ion.

Accurate determinations of lifetimes for the 4p P;&2
and 4p P3/2' states in Ca+ are now available [7,8]. They
involve fast-beam laser excitation which removes the
classical cascade problems encountered in beam-foil spec-
troscopy. These lifetime measurements, with an estimat-
ed 1% of accuracy, disagreed at the time of the publica-
tion by about 5 —9% with all the available ab initio
values. The situation for Ca+ was similar to that of neu-

tral lithium and sodium for which an unexplained 1%
difference remains between the

multiconfigur

atio
Hartree-Fock [9] or many-body perturbation (MBPT)
[10] theoretical oscillator strengths and the fast-beam
laser experimental values [11] supported recently by ac-
curate time-resolved laser spectroscopy experiments
[12,13]. At the same time, recent semiempirical calcula-
tions based on nonrelativistic Hartree-Fock-Slater wave

functions are in agreement with the measurements in

lithium [14],along the sodium isoelectronic sequence [15]
and for Ca+ [16]. In this context, it is highly interesting
to see what the ab initio multiconfiguration Hartree-Fock
method and the ab initio and semiempirical Hartree-Fock
core-polarization model potentials can do for Ca+. After
the present calculations were completed, Guet and
Johnson [17] published relativistic many-body-
perturbation-theory results through third order; the cor-
responding excited p lifetimes in Ca+ agree with mea-

sured values within 2%%uo after semiempirical corrections
are included. For Ca+, in contrast to Ba+ and Sr+, the
agreement is even better (l%%uo) when using the theoretical
(i.e., not modified semiempirically) transition amplitudes.

The metastability of the 3d D3/2 5/p levels of Ca+ is

also of theoretical interest. In the singly charged alkali-
metal-like ions the metastability of the (n —1)d D3/p 5/2

levels can be understood as a consequence of the d orbital
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A. MCHF wave functions

(n -1)d '0„,
(n -1)d '0„,

E2

FIG. 1. Level diagram of Ca+ (n =4), Sr+ (n =5), and Ba+
(n ——6).

collapse with increasing nuclear charge, accompanied by
a corresponding lowering of the D levels until they lie
between the ns S and np P' levels (see Fig. 1). For Ca+,
Sr+, and Ba+, these levels can then decay to the ground
ns S,&2 state via an electric quadrupole process. The
other E2 and M1 processes have been shown to be negli-
gible [18]. The very long radiative lifetimes have been
measured recently using the ion storage technique [19,20]
for Sr+ [r( D3/2 5/2) =395 ns, 345 ns] and Ba+
[r( D3/25/2)=17. 5 ns, 47 ns]. Similar experiments for
Ca+ are planned for the near future [21] and other than
the semiempirical MBPT values of Guet and Johnson
[17],no recent theoretical prediction is available.

Lastly, the astrophysical interest of the E2 A,

=7293,7326 A lines of Ca+ arising from the transitions
connecting these metastable level components to the
ground state is well known. These lines are considered,
for instance, by specialists of Seyfert 1 galaxies and T
Tauri stars [22) and have been used in a recent study of
the Beta Pictoris disk [23].

Elaborate variational wave functions have been calcu-
lated for 4s S, 3d D, and 4p P' of Ca+ in order to
evaluate the oscillator strengths and lifetimes involving
these levels. In the "all-electron" approach, in which the
core-valence interaction is treated by explicit
configuration interaction, we investigate the core-
polarization effects by opening the 3p core subshell
within the multiconfiguration Hartree-Fock approxima-
tion. This method is described in Sec. II. In parallel, the
frozen-core Hartree-Fock model including a core-
polarization correction (HF+ CP), used in a perturbation,
variational, or semiempirical scheme, is described in Sec.
III. The relativistic effects on the wave functions have
been neglected and are introduced into the radiative data
only through the use of the experimental frequency fac-
tors. The ionization energies, oscillator strengths, and
lifetimes calculated in the two difterent schemes are com-
pared to each other and to the most recent theoretical
and experimental values in Sec. IV.

II. MCHF CALCULATIONS

All the calculations were performed using the atomic-
structure software package [24,6] based on the
multiconfiguration Hartree-Fock approach [25].

Ca is an alkali-metal-like system and can be treated
at the simplest level as a one-electron system with the nl
electron in the nuclear potential —20/r modified by the
Is 2s 2p 3s23p core. A frozen-core Hartree-Fock (HF-
FC) calculation on (core)nl, taking the core from a
Hartree-Fock calculation for the ground state of Ca +, is
a good starting point but neglects the correlation in the
motion of the electrons. A recent study of the resonance
transition in potassium 4s S 4p —P

'
[9] showed that

reasonably accurate oscillator strengths can be calculated
using the multiconfiguration approximation including
core-valence correlation only with the 3p core. In Table
I we present the MCHF configuration state function
(CSF) expansions,

0 (I LS)=pc, @(y,LS),
I

used in the present work. These wave functions have
been built using the separated pair approach [25]. The
idea is to correlate "separately" each pair which can be
formed from the coupling of one 3p core electron to the
valence electron, using the reduced forms of the MCHF
expansions for each pair in the same calculation. For
4s S, for instance, the two pairs to correlate when open-
ing the 3p subshell are 3p4s ' P'. The natural coupling
scheme would be 3p 3p4s[' P ] S, which is transformed
into 3p 3p['3S]4s S according to the angular coupling
scheme required by the program MCHF —NONH [26] used
for calculating the Hamiltonian matrix. Different sets of
orthogonal orbitals are used for the different angular cou-
plings (the orbital subscripts designate the different or-
thogonal sets), but keeping orthogonality between the
configuration-state functions. For the 3d D state, six
different electron pairs 3p3d ' P', ' D', ' F' are required
for capturing the same effect, increasing the number of
radial distributions to optimize. Similarly, for the 4p P'
state, there exist six different pairs, i.e.,
3p4p ' S, ' P, ' D, but the situation is somewhat more
complex. Indeed, the same 4p orbital is used for
4p 'S, 'D, P in order to fulfill the orthogonality con-
straints between the configuration-state functions. There-
fore, these three components do not satisfy Brillouin's
theorem and it is necessary to include one-electron exci-
tations such as 4psp 'S, 'D, P. The lengths of the expan-
sions used are 17 ( S), 63 ( P'), and 37 ( D) involving,
respectively, 38, 26, and 78 different radial distributions
P„((r).

The core orbitals [ ls, 2s, . . . , 3p } that arise were ob-
tained in two different ways: MCHF-CV&, from a
Hartree-Fock calculation for the ion 3p 'S of Ca +, or
MCHF-CV2, from a MCHF (2X2) calculation for the
ion including the dominant radial correlation effects
[3p +3p 4p 'S}.

In the latter approach, the fully variational (2X2)
multiconfiguration calculation turned to be extremely un-
stable. A two-step procedure consisting of (i) optimizing
the 1s,2s, 2p, 3s orbitals on the ground state 3p 'S of
Ca followed by (ii) optimizing the 3p, 4p orbitals within
the two-configuration approximation j 3p +3p 4p 'S } of
Ca+ was used to overcome this convergence difficulty.
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The comparison between the two sets of results illus-
trates the "indirect" effects of core correlation on core-
valence correlation. In both types of calculations,
MCHF-CV

& 2 all the orbitals outside the core were
varied, their number being 33, 21, and 73 for S, P, and
D, respectively. For the P' state, however, no stable

solution was found in the MCHF-CV2 approximation us-

ing the multiconfiguration superposition of Table I. An
"explicit" representation I3p 4p&, 5p&, 6p, j was then
used in order to avoid this instability. The "contracted"
form

c 3p 4p, =—3p Ic,4p, +c,5p, +c,6p, I

was used for evaluating the first-order corrections in the
transition-matrix elements arising from the inner sub-
shells (see Sec. II B).

In Table II we report the ground state 4s S MCHF-
CV

& 2 eigenvector compositions, limited to the com-
ponents larger than 1%. In this table each configuration
with its mixing coefficient is followed by the correspond-
ing subshell coupling information specifying the

configuration-state function. Note that the electron la-
bels might differ from Table I, the number of nodes in the
radial distributions being counted a posteriori for deter-
mining the associated principal quantum numbers. In an
orthogonal scheme in which, for instance, the 4s, and 4s3
orbitals would be identical, the 3p~p one-electron exci-
tations would correct the frozen-core approximation for
which Brillouin's theorem does not hold. In both
MCHF-CV& 2 nonorthogonal approaches, the contribu-
tions such as 3p 4p, 4s, also capture core-valence correla-
tion effects. However, the wave functions differ consider-
ably between the two MCHF calculations. In MCHF-
CV2, the dominant core-valence contribution (10%) cor-
responds to 3p 4p, ( 'S ]4s „while the corresponding
weight in MCHF-CV, decreases drastically below l%%uo.

The reason for this eigen vector modification is the
difference in the core descriptions and, subsequently, in
the roles played by the correlation orbital 4p, in the two
calculations. Indeed, in MCHF-CV2, the frozen 3p orbit-
al arises from the (2 X 2) MCHF calculation
I3p +3p 4p 'SI on Ca + and, therefore, the variational

TABLE I. Multit:onfiguration Hartree-Fock (MCHF) expansions for the 4s S, 4p P', and 3d D
states in Ca+.

LS

'S

2po

D

Expansion

3p 4s3, 3p'(4p, ['S ]4s „4p2['S ]4sz, 3d, ['P]3p3, 3d2['P]3p4,
4f, ['D)3d„4f,['D]3d4, 4f, ['G]5g, ,4f4 ['G]5g„
Sp i ['S]5s» 5p 2 ['S]5sz,4d i ['P]5p»4d2 ['P )5p4,

5fi['D]4d3, 5f2['D)4d4, 5f, ['G]6gi, 5f4['G]6g2]
3P '4P3 3P '!4P i ('S»4P1('D»4P 'i('P»4P

i ('S)5P i

4p, ['D]5p„4p, ['P)5p„4pi['S]5p„4p, ('P]5p„
4Pi['D]5Pi 5Pi('S) 5Pi('D»5Pi('P»
3d'('S), 3d'('D), 3d'('P), 3d i ['P)4d,
3di ['P]4d„3d, ['D]4d„3d, ['D]4di, 3di ['F]4d,
3d, ['F]4d, , 4d, ('S),4d i ('D), 4d i ('P),
4s'('S), 3d, ['P)4s» 3d, ['P)4s»4f, ('D)4p»
4f, ['D]4p4, 4d, ['P]5s»4d2['P]5s, , 5s'('S),
5d ('S),5d ('D), 5d'('P)
3d, ['P]5d „3d,['P]5d, , 3d, ['D]5d, , 3d, ['D]5d, ,

3d, ['F]5d„3d,['F]5d„4d, ['P]5d „4d, ['P]5d„
4d, ['D]5d„4d, ['D)5d„4di ['F]5d„4d i ['F]5d„
6P i ('S), 6P i('», 6P i('P), 4P i ['S)6P i,
4pi('D]6pi 4pi('P)6pi 4pi('S)6pi 4pi( P)6pi
4P, ['D]6P„SP,['S]6P„SP,['D]6P „5P,['P]6P„
5Pi['S)6Pi 5Pi['P]6Pi 5Pil D]6Pi]
3p'3d, , 3p' I 4p, ['S]3d, ) 4p, ['S]3d„4p,['D]3d4, 4p4 ['D]3d, ,

4p, ['P]3d6, 4p6['P)3d7, 4s, ['P]4P7, 4s2[ P]4pa,
3d, ['P]4f„3d,['P]4f„3d,ii['D]4f g, 3d i i ['D]4f„
3d, ~ ['F]4f„3d„['F]4f6,4s, ['P ]4f7,4s~ [ P ]4fii,

4p9['D]5gi, 4pio[ D]5g2, 5pi [ S]4di, 5p2[ S]4d2q

5p, [ 'D]4d„5p4 ('D]4d„5p, [ 'P]4d6, 5p6 ['P]4d7,
5si ['P]5p7~5s2[ P]5ps 4ds[ P]5f i 4d9('P]5fz,
4d iii['D]5f„4d„['D]5f4, 4d „['F]5f, ,4d„[ 'F]5f„
Ss3['P]5f»5s4['P]5f &, 5P9['D]6g»5piii ['D]6gz]
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CSF

3p 4s3
lS 2S 2S

3p 4p14$1
2P 2p'S 'S'S
3p 3d14p3
2p 2D 2p 1p 2S

3p'4f, 4d,
P~DDS

3p 4p24s2
2p 2p 2S 3S 2S

3p '3d 24p4
2p 2D 2p 3p 2S

3p Sp 1 5s I

2p 2p'S 'S'S
3p'5f, 3d
PPDDS

MCHF-CV,

0.994 037 3

—0.038 957 6

0.095 033 0

0.017 135 6

—0.020 778 1

—0.015 576 6

0.005 691 9

0.012 969 6

MCHF-CV2

0.947 372 4

—0.307 039 4

0.083 438 7

0.015 925 7

—0.019 579 7

—0.013425 4

0.012 1544

0.011 3130

TABLE II. Comparison of MCHF-CV, and MCHF-CV,
multiconfiguration Hartree-Fock eigenvectors for the 4s 'S state
in Ca+. Only contributions of more than 1% are given. The

+"L quantum numbers specify the configuration coupling
scheme corresponding to the N shells followed by the (N —1)
intermediate quantum numbers.

4p& orbital captures the same core-correlation effects. To
illustrate this, we can point out that the weight of
3p 4p, ['S)4s, in MCHF-CV2 (0.307) is very close to that
of 3p 4p in the (2X2) MCHF calculation on Ca2+

(0.294), used for providing the core radial distributions.
Note that the same difference between MCHF-CV& 2 ap-
pears, to a lesser extent, for 3p 5p, ['S]5s, with the same
core coupling as in Ca + but not for the other coupling,
i.e., 3p '4p2 ['S ]4s2.

In Table III the MCHF-CVz eigenvectors are given for
the three states. The large magnitude of the 3p 4pnl
(nl=4s, 5p, 3d for S, P, and D, respectively) com-
ponent, already shown in Table II for S, also holds for
the P' and D states, for the same reasons. The larger
components correspond to the usual angular correlation
contributions, i.e., pd, df for S; sp, df for D; and sd, d
for P'. The advantages of the nonorthogonal reduced
forms of the multiconfiguration expansions can be appre-
ciated from the overlap matrix elements selected in Table
IV, which should be reduced to 1.0 or 0.0 (unit matrix) in
the orthogonal scheme along with an increase in the
wave-function expansion length.

The huge correlation effects found in the transition

TABLE III. Multiconfiguration Hartree-Fock (MCHF-CV2) eigenvectors for the 4s S, 4p P', and 3d D states in Ca+. Only con-

tributions of more than 1% are given. The "collapsed" form of the 4p P' eigenvector is presented (see text). The ' +"L quantum

numbers specify the configuration coupling scheme corresponding to the N shells followed by the (N —1) intermediate quantum

numbers.

Ca+ 4s S Ca+ 4p P' Ca+ 3d'D

3p 4s3
's's's
3p 4p 14$1
2p 2p 2S lS 2S

3p 3d14p3
2p 2D 2p 1p 2S

3p 4p24s2
2p 2p 2S 3S 2S

3p '4f, 4d,
2P2p2D 1D 2S

3p'3d, 4p4
2p 2D 2p 3p 2S

3p Sp15sl
2p 2p 2S lS 2S

3p'5f, 3d,
p p D3D2S

0.947 372 4

—0.307 039 4

0.083 438 7

—0.019 579 7

0.015 925 7

—0.013425 4

0.012 154 4

0.011 3130

3p'4p3
's'p'p
3p 4pl Spl
2p 2p 2p 3D 2p

3p 4pl
2p 3p 2p

3p 4pl Spl
2p 2p 2p 3p 2p

3p 54p2

2p 1D 2p

3p 4pl Spl
2p 2p 2p lD 2p

3p 4pl Spl
'p'p'p 's'p
3p 4pl Spl
2p 2p 2p lp 2p

3p 4pl Spl
2p 2p 2p 3S 2p

3p'3d, 4d,
2p 2D 2D 1p 2p

3p '3d 34$3
2p 2D 2S lp 2p

3p 4pl
2p IS 2p

3p Sp 1

2p 3p 2p

3p Spl
2P lD 2P

3P 3d 24s 1

2P 2D 2S 3p 2P

3P Sp 1

2p lS 2p

0.952 706 4

—0.150 108 4

0.129 812 6

—0.117903 6

0.094 719 3

—0.085 369 3

—0.071 673 3

—0.068 050 2

—0.065 976 5

0.047 330 1

0.042 198 2

0.040 895 9

—0.035 085 3

—0.025 694 2

—0.017 927 1

—0.011259 9

3p 3d3
1S 2D 2D

3p'4p, 3d,
2p2p2D 1S2D

3p'3d94f 2

2p 2D 2p lp 2D

3p 3d124fs
2p2D p p2D
3p'Sp24d 2

2p2pD SD
3p '4s14p7
2p2S2p lp2D

3p 3d84fi
2p2D 2p3p 2D

3p'4s»f2
2p2S2F lp2D

3p 4P33d4
2p 2p 2D 1D 2D

3p 4P44d5
2p2p D 3D2D

3p 4p14di
PPDSD

3p 4p63d
2P2P2D3P2a
3p'4d95f,
2p 2D 2g 1p 2D

0.934 466 7

—0.345 556 2

—0.071 591 8

0.021 456 2

0.015 246 1

0.015 096 2

0.013059 2

—0.012 026 8

—0.011 8199

—0.011 502 2

—0.010908 3

—0.010508 2

—0.010408 9
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TABLE IV. Selected overlap matrix elements (absolute values) of the MCHF-CV2 radial distribu-
tions.

Ca+ 'g

(4s, ~4s, ) =0.9982
(4s, ~4s2 ) =0.7643
(4s, ~4s, & =0.8001
(4s,

~ Ss, ) =0.0562
(4sz ~5s, ) =0.5970
(4p, I4p, & =0.57»
( 3d&

~
3d, ) =0.5573

Ca+ '~'

&4p l4p &=09712
(4p315p i ) =0.2382
(3d213di ) =0.5524
(4s, i 4s, ) =0.8670

Ca+ 'D

&3d313dz) =0.9914
(3d3 ~3d, ) =0.8694

(3di l3di2 & =0.8992

(3d313dS) =0 8781

(3d313d4 ) =0.7724
(3d„l3d, ) =0.8445

( 3di i4d i ) =0.5298
(3d, i4d, ) =0.4482
(3d2~4d, ) =0.5919
(3d4~4d2) =0.5266

(3di2l4dz ) =0.3342

probabilities (see Sec. IV) are not expected on the basis of
the relatively high purities of the three MCHF-CV2 wave
functions (90%%uo, 91%, 87%), which are even purer in the
MCHF-CV, method (99%, 99%, 98%%uo).

B. MCHF oscillator strengths

The MCHF-CV
& 2 wave functions from Table I are

used to calculate the electric dipole and quadrupole oscil-
I

lator strengths. In a third approach, called hereafter
MCHF-CV3, first-order contributions to the transition-
matrix elements arising from the 1s 2s 2p 3s core are
determined separately for the shells 3s and 2p, using the
MCHF-CV2 variational wave functions and included in

the calculation of the final gf values. For instance, for
the transition 4s S~4p P, the contribution from the
subshell 2p is evaluated in the following way:

(1) Two multiconfiguration Hartree-Fock expansions,

[2p 3s 3p 4s3, 2p 3s 3p 4p4s3, 2p 3s 3p 4p5s3, 2p 3s 3p 4p3d S},
[2p 3s 3p 4p3, 2p 3s 3p 4s, 2p 3s 3p 4s5s, 2p 3s 3p 4s3d, P']

are evaluated separately, including all the configuration-
state functions arising from the many different couplings
of these configurations. Only the (4p„5s3, 3d) orbitals for
the symmetry S and (4s, 5s, 3d) for the symmetry P are
variational, the other orbitals having been taken from the
MCHF-CVz calculations. The choice of these expansions
is based on the direct effect of correlation contributions
involving the opening of the subshell (here, 2p ) and con-
nected through the transition operator to the dominating
components of the other symmetry [here, (core)4s3 S or
(core)4p3 P ].

(2) The transition probability is then calculated be-
tween these two MCHF superpositions and the contribu-
tion to the line strength S' is renormalized and added
to the MCHF-CV2 value.

This procedure is repeated for the subshell 3s, using
MCHF expansions judiciously chosen for the first-order
contributions to the transition-matrix elements they give
rise to.

Finally, let us note that the radial nonorthogonalities
resulting from the use of different MCHF orbital sets for
the three states optimized separately complicate the
transition-matrix element calculations but the expressions
remain tractable [27].

III. HARTREE-FOCK+ CORE-POLARIZATION
CORRECTIONS

Another way of taking core-valence correlation into
account is to express the correction to the Hartree-Fock

theory in terms of the core polarizability a of Ca + [28].
The physical picture is one in which the electric field of
the valence electron polarizes the core so that the
effective potential experienced by the valence electron is
changed. We will compare the use of such a core-
polarization correction in the Hartree-Fock scheme
(HF+ CP) with the MCHF approach in which core-
valence correlation is included "explicitly. "

A. Model potential

By incorporating in the MCHF program the effective
core-polarization potential

2

Vcp ( r ) = —
—,
' a i (r +r, )

where e, is the dipole polarizability of the core and r, is a
cutoff radius, one can evaluate the core-valence correla-
tion effects on the term energies, using the core from a
Hartree-Fock calculation on 3p 'S of Ca +. This
modification of the effective potential felt by the valence
electron can be introduced at two different levels of ap-
proximation. In one approach, hereafter referred to as
PCP, the core-polarization correction is calculated in a
first-order perturbation scheme, as the expectation value

of the operator (1). In order to capture more efficiently
the core-valence correlation effects, it is tempting to in-

troduce this polarization term into the Hartree-Fock
variational procedure. In the latter scheme, called here-
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after VCP, the core-polarization correction is not limited
only to the energy but also affects the radial distribution
of the valence electron. Note already that even if the
valence orbitals are unmodified in PCP relative to the
frozen-core Hartree-Fock approximation, the corre-
sponding transition probabilities will change according to
the specific "correction" of the transition operator intro-
duced and discussed in Sec. III B.

For the PCP and VCP calculations presented hereafter,
we opted for the "ab initio" electric dipole polarizability
value a, =3.254(ao) calculated by Johnson, Dietman
Kolb, and K. N. Huang [29] within the relativistic
random-phase approximation. This value agrees very
well with the one used by Hameed [30] [a,=3.26(ao) ].
The use of the cutoff function appearing in (1) is well
known [31,5], but the choice of r, appears often to be
crucial. We have chosen an r, value fixed to the mean ra-
dius of the outermost orbital of the unpolarized corelike
ion, i.e., (r )3z =1.2643ao. This choice can be justified
by the success of this approach adopted by Mohan and
Hibbert [32], Hibbert [5], or Migdalek and Baylis [33,34]
in other systems. It is interesting to note that the r,
values used by Hafner and Schwarz [35] or by Theodo-
siou [16],with another cutoff function, are roughly twice
our value.

Besides the PCP and VCP model-potential methods,
we also investigate the dependence of the results on the
adopted r, value. In a semiempirical treatment, the di-
pole polarizability a& can be found by adjusting the
theoretical ionization potential of the ground level to the
experimental value, taking the core-polarization correc-
tion into account and fixing, for instance, the core-radius
value r„defining the cutoff function to the mean value of
the most external core orbital (3p in our case). Keeping
the dipole polarizability value so determined, it is possi-
ble to adjust excited energy levels by using r, as a param-
eter. This approach was used, for instance, by Migdalek
and Baylis [36]. We adopted a similar technique of r,
fitting by adjusting the theoretical ionization energies for
the three levels of Ca+ relative to Ca + but keeping the
ab initio a& =3.254(ao) value. The corresponding results
will be labeled SECP. The r, values so determined are
equal to 0.9642ao, 1.0365ao, and 1.2522ao for 4s S,
4p P', and 3d D, respectively, and are all lower than the
r, value used in PCP or VCP, giving rise to a larger
core-polarization correction in the semiempirical ap-
proach with respect to the ab initio approach.

The valence-orbital contraction is illustrated in Table
V in the core-polarization model. In the variational VCP
approach, the largest effect is found for 3d (11%), as ex-
pected because of the 3d collapse. The differences be-
tween VCP and semiempirical SECP valence-orbital
mean values follow naturally the corresponding r,
changes, the largest effect being found for the 4s orbital.

In a study of the electron-impact excitation of Ca+,
Mitroy et al. [37] calculated the target wave functions
using a semiempirical Hartree-Fock approach including a
core-polarization potential. Their method and our SECP
approach are very similar. They mainly differ in the form
of the cutoff functions used in the way of solving the

HF-FC
VCP
SECP

3.74
3.66
3.59

4.55
4.45
4.39

2.54
2.27
2.26

Hartree-Fock equations, i.e., analytical against numeri-
cal.

B. Correction to the oscillator strengths

In the core-polarization model, the E1 transitions can
be calculated in the length formalism using the correction
of Hameed, Herzenberg, and James [28]. In this kind of
model, it is well known that corrections to valence-
electron transition operators are needed in the evaluation
of the transition-matrix elements. The most important
corrections of order r were derived by Bersuker [38]
and Hameed, Herzenberg, and James [28] for the electric
dipole operator. When using semiempirical potentials in-
cluding the long-range polarization force between the
electron and the core, Caves and Calgarno [39] general-
ized the modified multipole moment operator to be used,
from a consistent application of the theory. More recent-
ly, Laughlin [40] investigated the form of the long-range
polarization potential for an atomic system consisting of
a spherically symmetric core and valence electrons using
the approach of Peach [41] and derived in a "natural"
way the higher-order corrections to the transition-matrix
elements of the electric multipole operator. The first-
order correction of O(r ' "+") that he found is con-
sistent with the previously derived expressions. [In Eq.
(16) and the following lines of Laughlin [40], the "dipole
polarizability" a(co) should be replaced by the "multipole
polarizability" a„(co).] The modified electric multipole
Ek transition operator, correct to first order, can be writ-
ten as

N

g rkC„(8,p ) 1—
j=l

(2)

where N, is the number of valence electrons and ak is the
core multipole polarizability.

In practice, a cutoff function must be introduced in (2)
[39]. The cutoff function, consistent with that used in (1),
is obtained by replacing r ' "+"ak in (2) by

( 2+ 2)—(2k+1)/2
C Qk

For the SECP calculations in which we were using r, as a
parameter, the transition operator should be replaced by
the average value of the multipole moments induced by
the valence electron in the initial and final states [31,42].
We simply averaged the r, value over the initial and final
states by taking the mean value of the cutoff parameters
adopted for both states [36].

TABLE V. Mean radius (a.u. ) of the valence orbitals from
the frozen-core Hartree-Pock (HF-FC), variational (VCP), and
semiempirical (SECP) core-polarization calculations.

(r)4,



3710 N. VAECK, M. GODEFROID, AND C. FROESE FISCHER

TABLE VI. Nonrelativistic (NR) and relativistic (R) binding energies (cm ) relative to the ionization limit 3p' 'S of Ca'+ in the
relaxed-core (HF-RC), frozen-core (HF-FC), multiconfiguration Hartree-Fock (MCHF), and Hartree-Fock with core-polarization
(HF+CP) approximations compared to observed values.

Ca+

Ca+

Ca+

Level

4s S

3d 'D

4p P'

NR
R

NR
R

NR
R

HF-RC

91225
91560
75520
74957
67899
67922

HF-FC

91090
91512
73102
73161
67877
67984

MCHF-CV;

96110
96478
84782
84233
70612
70746

MCHF-CV~

95359
95802
81678
81501
69922
70029

PCP

93763
94186
81215
81274
69544
69651

VCI b

93841
94307
81807
81880
69605
69726

(SECP) —= (expt. )'

95751.9

82065.3

70411.8

'Using the multiconfiguration expansions of Table I, MCHF-CV„core from 3p 'S of Ca'+; MCHF-CVz, core from I 3p'+3p '4p 'S
I

of Ca'+ (see Sec. II).
PCP, core polarization included as a first-order perturbation correction; VCP, core polarization included variationally; both PCP

and VCP with an ab initio r, value; SECP, core polarization included variationally with an r, value determined semiempirically (see
Sec. III).
'Binding energies of Ed)en and Risberg [60], averaged for spin-orbit splitting.

IV. RESULTS AND DISCUSSIONS B. Oscillator strengths

A. Ionization energies

Table VI reports the ionization energies obtained using
the relaxed (HF-RC) and frozen-core Hartree-Fock (HF-
FC) approaches, the two different MCHF approximations
(MCHF-CV& 2), and the two core-polarization models

(PCP and VCP), as well as the experimental values (aver-

aged for spin-orbit splitting) used in the semiempirical
approach SECP. For each approach, we give the nonre-
lativistic (NR) and relativistic (R) binding energies, in-

cluding the relativistic shift corrections (non-fine-

structure corrections in the Breit-Pauli scheme). As in

neutral K [9], the ionization energy is too large with the
core described by a Hartree-Fock calculation for Ca +.
Oppositely, the ionization energy becomes too small with

the core described by the two-configuration approxima-
tion I3p +3p 4p 'SI. There is some cancellation be-

tween "indirect" core correlation, which can be measured
from the differences between the MCHF-CV& and

MCHF-CV2 values, and core-valence correlation effects.
Starting from the Hartree-Fock model, the increase of
the ionization energy values obtained by the inclusion of
the core-polarization correction is not large enough and
the differences between PCP and VCP results are very

small, as far as binding energies are concerned. Among
the three states considered here, the 3d D state is the
more strongly affected by the core-valence correlation in
both MCHF and (HF+CP) approaches. This is obvious-

ly related to the 3d-orbital collapse near Ca+. In the
MCHF-CV2 and VCP approaches, which can be con-
sidered as the most reliable ab initio methods in the
present paper, the inclusion of relativistic shift correc-
tions which never exceed 0.5%%uo improves in most cases
the agreement between experimental and theoretical
binding energies, the final agreement being very satisfac-
tory, i.e., (0.0,0.7,0.5%) and (1.5,0.2, 1.0%) for the
S, D, P levels, respectively, in MCHF-CV& and VCP.

Our HF, MCHF, and (HF+CP) electric dipole (El)
and electric quadrupole (E2) gf values are reported in

Table VII for the transitions connecting the three levels
4s S, 3d D, and 4p P'. In all cases, the oscillator
strengths are calculated with the experimental rather
than the theoretical transition energies in order to avoid
any accidental compensation error between the
transition-matrix element and the energy factor, reducing
in this way the source of error to the line strength only.
The comparison of the frozen-(FC) and relaxed-core (RC)
results illustrates the large core-relaxation effects, partic-
ularly for the two transitions involving the 3d D level for
which the agreement between the E1 and E2 length and
velocity forms is systematically better when relaxing the
core. However, in order to keep the transition probabili-

ty calculations tractable, the use of a frozen-core descrip-
tion becomes imperative, taking the actual restrictions of
the McHF —ASF program package into account. The in-

clusion of core one-electron excitations in the
multiconfiguration expansion and in the first-order
corrections to the transition-matrix elements is, in some

way, relaxing this constraint.
In the following, the evaluation of the magnitude of

core-valence correlation effects is systematically done,
relatively to the frozen-core approximation. If the core-
relaxation effects are then classified artificially as core-
valence correlation in the frozen-core MCHF scheme,
this has the advantage of putting the multiconfiguration
and core-polarization results on the same footing, the
ionization limit 3p 'S of Ca + being a natural reference.

The convergence of length and velocity formalisms
with improving accuracy of the wave functions through
the inclusion of more correlation is striking and very sa-

tisfactory. In the MCHF scheme, the introduction of
core correlation through the MCHF-CV2 brings the two

forms closer to each other for the three transitions con-
sidered. The addition to the first-order corrections going
from MCHF-CV2 to MCHF-CV3 further improves the
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TABLE VII. Theoretical oscillator strengths using the length (gfL ) and velocity (gf r) forms and the observed transition energies,
in the relaxed-core (HF-RC), frozen-core Hartree-Fock (HF-FC), multiconfiguration Hartree-Fock (MCHF), and Hartree-Fock with

core-polarization (HF+ CP) approximations.

gfi
gfv

HF-RC

2.37
1.89

HF-FC

2.38
1.87

MCHF-CV;

1.88
2.07

MCHF-CV2

4s S-4p P'
1.96
2.08

MCHF-CV3

1.95
2.01

PCP'

2.15

VCP'

2.04

SECP'

1.92

gfc (1o ')

gfv (1o ')

gfL
gfv

0.81
1.05

0.78
0.17

1.01
2.15

0.98
0.004

0.62
0.49

0.57
0.79

4s S-3d D
0.71
0.83

3d D 4p 2P

0.65
0.32

0.70
0.63

0.65
0.31

0.99

0.91

0.70

0.66

0.68

0.66

'See footnotes a and b of Table VI for explanations.
The transition-matrix elements were calculated using the MCHF-CV2 wave functions and corrected by first-order contributions (see

Sec. II B).

length-velocity agreement for the two transitions involv-

ing the 4s S state but does not affect the 3d D-4p P'
value. In all cases, the length form looks much more
stable than the velocity one. In the same way, the latter
is much more sensitive to the first-order corrections cal-
culated in the MCHF-CV3 approach.

For the resonance transition, the 18% reduction of the
MCHF-CV3 line strength (length form) relative to the HF
value is larger than the 10 jo found using the core-
polarization correction in the PCP model. By including
this correction variationally (VCP), the reduction be-
comes larger and converges to the MCHF-CV3 value
within 5%%uo.

For the electric quadrupole transition, an even more
pronounced effect was found, namely, a reduction of
31%, which is in line with the huge 44% core-valence
reduction calculated by Bauschlicher et al. [43] for the
E2 transition 4s 3d D ~4s 'S in neutral calcium.

Similarly, for the E1 transition 3d D~4p P', the
core-valence reduction of the length oscillator strength
has the same order of magnitude (34% and 32% in the
MCHF-CV3 and VCP approaches, respectively). The ve-

locity form is here much more difBcult to calculate: The
transition integral is affected by strong cancellation
effects (the positive and negative parts of the integrand al-
most cancel), reducing dramatically the one-configuration
frozen-core Hartree-Fock value. This kind of abnormally
small oscillator strength has been observed already for
other alkali-metal-like ions but mainly in the length for-
malism. Two examples given by Hibbert [44] are the
2s S~3p P' transition in Li I [45] and the
3s S~4p P' transition in Mg II [46] for which even in a
CI approach the cancellation of the oscillator strength is
very important, the CI expansions being dominated by a
single term. The factor 2 between the MCHF-CV3 length
and velocity results is noteworthy from that point of
view, the "final" velocity value resulting solely from
correlation contributions. Note that the cancellation
does not occur to the same extent when using the fully
variational Hartree-Fock approximation which relaxes
the core (HF-RC).

The large core-valence effects on the oscillator
strengths found for both transitions involving 3d D are
due to the extreme sensitivity of the 3d orbital with
respect to the description of the core potential near the
collapse. The electric dipole oscillator strengths are corn-
pared with other theoretical and with experimental
values in Table VIII.

In the set of ab initio calculations, Hafner and Schwarz
[35] applied a relativistic pseudopotential approach in-
cluding a core-polarization correction in the transition
probability calculation. Guet and Johnson [17] carried
out relativistic many-body perturbation theory through
third order. The corresponding MBPT values given in
this part of the Table have been obtained using their
theoretical electric transition amplitudes (D'""'). The
corresponding oscillator strengths are compared with our
ab initio multiconfiguration MCHF-CV3 results and our
VCP values obtained by including variationally the core-
polarization potential in the Hartree-Fock procedure.

The core-valence correlation effect found by Hafner
and Schwarz is much smaller than what we have found.
This smaller reduction can be understood first by the fact
that these authors introduced the core-polarization
correction in a perturbation scheme and, secondly, be-
cause they used a larger r, core radius value (r, =3. lao
and 1.3ac for the s-p and d-p transitions, respectively) as-
sociated with another cutoff function.

The dispersion between the theoretical results is 7%
and 48% for the 4s S~4p P and 3d D~4p P tran-
sitions, respectively. Our MCHF results are much closer
to the MBPT results than to the others (1.6%%uo agreement
for the resonance transition), but a 13% discrepancy ex-
ists between the two sets for the 3d-4p transition. The
VCP values support the MCHF results for the latter tran-
sition but are too large for 4s-4p. The difhculty associat-
ed with the 3d-4p transition calculation is corroborated
by the larger MBPT semiempirical correction to the tran-
sition amplitudes: The ratio (D'""'/D ) amounts to
5'Fo for this transition, while it is only 0.3% for the reso-
nance transition.

In the set of semiempirical results, beside the MBPT
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TABLE VIII. Comparison between calculated and measured oscillator strengths in Ca+.

ab initio

Transition RPP' MBPT MCHF-CV3 VCP'

Semiempirical

CA MP1' MP2' MP3 MBPT" SECP'

Experimental

4$-4p

4$1/2 4p] /2

4$1/2 4p3/2

3d-4p
3d3/z-4p & /2

3d 3/z-4p 3/2

3d5/2-4p3/2

1.03 0.962 0.977

0.319 0.324

0.643 0.653

0.074 0.0570 . 0.0646
0.0470 0.0533
0.00956 0.0109
0.0572 0.0649

1.019 1.002 1.03

0.338

0.681

0.961 0.952 0.965

0.316 0.320

0.637 0.645

0.0663 0.0845
0.0547
0.0112
0.0666

0.0599
0.0494
0.0101
0.0601

0.0714 0.066 0.0574
0.0473
0.0096
0.0574

0.959 0.94(7)'
1.02(10)"

0.318 0.32(3)'
0 34"

0.641 0.66(2)'
0.62(4)'

0.066 0.053(6)'
0.0547 0.0428'
0.0112 0.0088(10)'
0.0666 0.053(6)'

0.955"

0.316'

0.639'
0.68"

'Relativistic pseudopotential calculations of Hafner and Schwarz [35].
Relativistic many-body calculations of Guet and Johnson [17] calculated from their theoretical transition amplitudes (see text).

'Present work: see footnotes a and b of Table VI.
Numerical Coulomb approximation of Lindgkrd and Nielsen [47].
Semiempirical model potential values of Black, Weisheit, and Laviana [47].
Analytic Hartree-Fock calculations including a semiempirical polarization potential of Mitroy et al. [37].
Semiempirical model-potential values of Theodosiou [16] (Hartree-Slater core potential).
Relativistic many-body calculations of Guet and Johnson [17] including semiempirical corrections.

'Beam-foil excitation measurements of Andersen et a1. [50].
Calculated from the fast-beam laser excitation lifetimes [7,8] and the branching ratio of Gallagher [49] (see text).
"Electron-beam phase-shift measurements of Smith and Liszt [51].
'Hanle-effect measurements of Gallagher [49].

results, which get their semiempirical character from a
scaling of Brueckner orbitals, there are the model-
potential values of Black, Weisheit, and Laviana [47]
neglecting the spin-orbit interaction (MP1) and the re-
sults of Theodosiou [16] (MP3) approximating the core
potential by the Hartree-Slater method and including a
spin-orbit interaction term and the values of Lindgkrd
and Nielsen [48] using an entirely numerical approach to
the Coulomb approximation. Lastly, Mitroy et al. [37)
performed analytic Hartree-Fock calculations including a
semiempirical polarization potential (MP2). Their
values, corrected with the modified dipole operator, agree
perfectly with our SECP results for the two electric di-

pole transitions. For both transitions, our SECP results
are 7% smaller than the values of Black, Weisheit, and
Laviana. They agree within less than 1% with the
MBPT values of Guet and Johnson and with the results
of Theodosiou for the resonance transition, but are
significantly larger, respectively, 10% and 15%, for the
3d-4p transition.

The experimental oscillator strength values were all de-
rived from lifetime measurements using the branching-
ratio value

R b,
= A ( P' S,i2 ) / g A ( P —DJ )= 17.6+2—

J

measured by Gallagher [49] without isolating the J com-
ponents of the P level. The lifetimes have been mea-
sured by the Hanle-effect technique [49], the beam-foil
excitation technique [50], or the electron-beam phase-
shift method [51]. It is also possible to extract the f
values from the fast-beam laser excitation lifetimes [7],
assuming the same branching ratio R b, for the two J

components, i.e.,

A( P' D3 q)=— 1

r( P;~~)(1+Rb, )

A( P' —S,q2)=
1

r(2P j )(1+R b,
'

)

This was done in Table VIII. For the resonance transi-
tion, the theory-experiment agreement with the semi-

empirical values of Theodosiou is perfect. It is also very
good with our MCHF results (2%), with the MBPT
values (1%), and even better with our SECP results. For
the 3d-4p transition, however, the remaining 11%
discrepancy found between the f value calculated from
the P;&2 lifetime of Gosselin, Pinnington, and Ansbacher

[7] and the serniempirical results of Theodosiou is not
resolved by our calculations. Our MCHF-CV3, VCP, and

SECP values are consistent, though much smaller than
the older results, but still 25% larger than the experimen-
tal value of Gosselin, Pinnington, and Ansbacher.

This comparison is obviously not strictly rigorous since
the experimental f value so derived depends on the
branching-ratio value (measured with an accuracy of
11%). In this respect, it is interesting to point out that
the latter (17.6+2) is somewhat larger than those which

can be calculated from Theodosiou (15.7), Guet and

Johnson (15.2), or our transition rates (14.3).

C. Comparison of E2 transition probabilities

The electric quadrupole transition probabilities are
presented in Table IX. These radiative data were also
calculated by Ali and Kim [18] using the relativistic
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Dirac-Fock (DF) single-configuration approximation, by
Zeippen [22] using CI-type wave functions in the Breit-
Pauli approximation (superstructure) in which the one-
electron radial orbitals were computed from a Thomas-
Fermi statistical model or from the Coulomb potential,
and by Guet and Johnson [17] applying the many-body
perturbation theory.

The agreement between the superstructure and Dirac-
Fock results is satisfactory. In these calculations, the
discrepancy has been shown never to overstep 5% for the
first six ions of the K isoelectronic series considered, ex-
cept for Ca+, where it goes up to 10% [22].

Our nonrelativistic HF transition probability values for
the two transitions

4s S&/2-3d D3/25/
2 2

differ from each other only through the transition energy
factor EE; . The effect of the core relaxation in going
from HF-FC to HF-RC is huge and our relaxed values in

length formalism agree very well with the DF values.
The agreement between the MCHF and (HF+ CP)

values is remarkable. The 31% reduction found by intro-
ducing core-valence correlation effects within both
schemes is consistent with the 27% reduction found by
Langhoff, Bauschlicher, Jr., and Partridge [52] in neutral
K but is larger than the 25% effect found by Zeippen in
Ca+, relative to our frozen-core value. The reduction
found by Guet and Johnson [17) is even larger, their
values being very close to our MCHF-CV3 velocity
values; this agreement is probably fortuitous in view of
the instability of our velocity results with respect to the
description of the core (see Table VII). Unfortunately,
the magnitude of the semiempirical corrections to the E2
transition amplitudes cannot be evaluated from their pa-
per. From all these results, it appears that the old values
calculated by Osterbrock [53] (A =1.30 s ') with a Har-
tree radial wave function with exchange and by Warner
[54] (A =1.27 s ') are definitely too large.

D. Lifetimes

The lifetimes of the 4p P;/2 3/2 levels calculated from
our theoretical (MCHF-CV3, VCP, and SECP) oscillator
strengths are given in Table X and compared with the
theoretical results of Cowan and Martinson [55], with the
semiempirical values of Theodosiou [16],with the relativ-

3d D3/2
3d D 5/2

1.16
1.14

The very weak J dependency results only from the fine-
structure splitting of the D level. In our nonrelativistic
approach, the two lifetime values 73/2 and ~5/2 are
differentiated by the frequency factor m, which reflects
the 3d D3/p 5/2 fine structure of 61 cm ' [56]. Note that
the intraconfiguration E2/M 1 and the M 1

4s S&/2-3d D3/2 decay rates calculated by Ali and Kim
[18] and Zeippen [22] turn out to be too small to contrib-

istic MBPT results of Guet and Johnson [17] corrected
semiempirically, and with the Hanle, beam-foil [including
cascade corrections (CC)], and beam-laser experimental
values.

The Hartree-Fock-Slater with exchange (HSX) values
of Cowan and Martinson [55] include a correlation
correction based on a free-electron gas approximation
and the agreement with our length MCHF results is rath-
er good (1%). Our set differs from the most recent exper-
imental values of Gosselin, Pinnington, and Ansbacher
[7] by about 3.5%. The semiempirical results of Theodo-
siou are in perfect agreement with these experimental
values. The adjusting procedure of the r, parameter in

our variational core-polarization calculations (SECP) im-

proves the agreement with Theodosiou's results (2%),
showing some consistency between the two semiempirical
approaches. On the other hand, our SECP results agree
perfectly with the semiempirical MBPT values of Guet
and Johnson but differ from the most accurate lifetimes

by 2%. Note that, in the case of Ca+, the agreement of
the MBPT lifetimes with experiment is better (1%}if cal-
culated with the theoretical (i.e., not modified semiempiri-
cally) transition amplitudes. The corresponding values
have been calculated from their Table II as
r( P;/2)=6. 98 ns and r( P3/2}=6.79 ns. The reasonably
good agreement (5%) found between our ab initio
MCHF-CV3 and VCP results only supports that core-
valence correlation effects can be included to some extent
via a variationa1 core-polarization correction.

The lifetimes (in seconds) of the metastable
3d D3/25/2 levels, calculated from our length MCHF-
CV3 transition probabilities of Table IX, are the follow-

ing:

Lifetime(s)

TABLE IX. Electric quadrupole transition probabilities (L =length, V=velocity) for 3d D3/2 5/2~4s S, /2 in Ca+ using the ob-
served transition energies in the relaxed Hartree-Fock (HF-RC), frozen-core Hartree-Fock (HF-FC), multiconfiguration Hartree-
Fock (MCHF), and Hartree-Fock corrected for core-polarization (HF+CP) approximations, compared with other theories.

A (E2) (s ') HF-RC HF-FC MCHF-CV3 VCP' SECP' DF SPST' MBPT

3d D3/2 4s Sl/2
3d Ds/2 —4s S&/z

1.00
1.02

1.30
1.32

1.24
1.27

2.67
2.70

0.86
0.88

0.78
0.79

0.86
0.88

0.84
0.86

1.02
1.05

0.93
0.95

0.79
0.81

'See footnotes a and b of Table VI for explanations.
Dirac-Fock calculations of Ali and Kim [18].

'Superstructure-CI calculations of Zeippen [22].
Relativistic many-body calculations including semiempirical corrections of Guet and Johnson [17].
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TABLE X. Lifetimes (ns) of 4p P&/2 3/2 in Ca . Comparison of multiconfiguration Hartree-Fock (MCHF) and Hartree-Fock with

core-polarization correction (HF+CP) results with other theoretical estimates and experimental values.

Theory

State

MCHF-CV3

This work

VCP' SECP'

Other

Semiempirical ab initio Experimental

Method

4p p& /2

4p P3/2

6.83

6.64

6.78

6.72

6.55

6.37

6.93

6.74

7.045b

6.94'

6.852b

6.75'

6.75'
6.44'

6.57'
6.28'

7.07(7)
7.5(5)g

6.62(35)"
6.87(6)
7.4(6)g

6.68(35)"
6.72(2)"
6.61(30)"

Beam
Beam
Beam
Beam
Beam
Beam
Hanle
Hanle

laser
foil
foil, CC'
laser
foil
foil, CC
effect
effect

'See footnotes a and b of Table VI for explanations.
bModel-potential calculations of Theodosiou [16].
'Hartree-Fock-Slater with exchange (HSX) results of Cowan and Martinson [55].
Gosselin, Pinnington, and Ansbacher [7].
Relativistic many-body calculations including semiempirical corrections of Guet and Johnson [17]. The lifetimes calculated from

the theoretical transition amplitudes (see text) are ~( P~» ) =6.98 ns and ~( P3/2) =6.79 ns.
'Pseudopotential calculations of Hafner and Schwarz [35].
~Andersen et al. [50].
"Ansbacher, Inamdar, and Pinnington [61].
'CC stands for cascade corrected.
"Smith and Gallagher [62].
"Rambow and Shearer [63].

ute to the D lifetimes. The very recent MBPT theoreti-
cal lifetimes of Guet and Johnson [17] (1.27 and 1.24 s for
D3/z 5/2 respectively) agree with ours to better than
10%. This agreement can be qualified as good in com-
parison with the much smaller theoretical values of
Warner [54] (0.80 and 0.77 s, respectively). There is no

experimental lifetime value available for these metastable
levels. We hope to see our theoretical predictions
confirmed through the experiments planned by Werth

It is interesting to note that although the measurement
of the ratio r( P&/z)/r( P;/2) is very difficult, all the
theoretical ratios agree with each other to four decimal
places, i.e., 1.0284(2), and agree very well with the most
recent experimental ratio [1.029(19)]. The correct value
is theoretically simple to obtain: One gets 1.0268 using
any S( P S) line strength-, the correct (i.e., the observed)

dependence of the Pz- S, /2 transition rates, and

neglecting the decays to the DJ states.

V. CONCLUSIONS

Core-valence correlation effects can be incorporated
either explicitly through the non relativistic rnulti-

configuration Hartree-Fock method or by the use of a
Hartree-Fock model including a core-polarization correc-
tion to the potential (HF+CP) [5]. In the first approach,
the MCHF results show a strong dependence of the final

line-strength value on the description of the core orbitals.
It was shown previously that the inclusion of radial
correlation in the core can be very important for predict-
ing accurate ionization energies and electric dipole transi-

tion probabilities [9]. Similar and even larger effects have
been found for the electric dipole and quadrupole pro-
cesses considered in the present study. The core-
polarization Hartree-Fock method results in a consider-
able saving of computer time, compared with the explicit
configuration-interaction scheme, but questions of accu-
racy need to be resolved and systematic comparisons
need to be made. The present paper is a step in this
direction.

In a recent review of oscillator strength calculations
for medium to heavy ions in which the influence of the
core on the valence electrons has been treated by the use
of model potentials, Hibbert [5] concluded that core po-
larization with model potentials is of comparable accura-
cy to that from explicit configuration interaction. The
present paper shows that this also holds for Ca+ but only
when the core-polarization correction is included in the
effective potential during the variational procedure. The
better than 5% agreement found between the MCHF and
VCP results is probably good enough to support the use

of a combined (MCHF+CP) approach for reinvestigat-
ing the spectroscopy of nominal two- [1,2,4] or three-
electron systems, though in such systems a two-body
core-polarization correction must be included as well.
Another good candidate for such a hybrid method is the
negative ion Ca for which quantum chemistry codes
predict that the binding of the 4p electron found in nu-

merical MCHF calculations [57] and supported by recent
observation [58] disappears when adding core polariza-
tion.

It has been shown that our semiempirical core-
polarization (SECP) results agree closely with the ab ini-

tio MCHF calculations for the three transitions. In the
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core-polarization model-potential scheme, this approach
has the advantage of avoiding the arbitrariness in the
choice of the r, parameter appearing in the cutoff func-
tion. A more systematic study involving other states and
systems needs to be done before definite conclusions
about the reliability of this approach can be made.

The theoretical 4p P&/2 3/2 lifetime values calculated
by Guet and Johnson, using relativistic many-body per-
turbation theory through third order and including sem-
iempirical corrections, disagree by about 2% with the
most recent fast-beam laser excitation measurements with
an estimated single-standard-deviation of about 1%. A
slightly larger theory-experiment disparity (3.5%) is
found with our ab initio nonrelativistic MCHF values.
Thus, the original deviation between theory and experi-
ment has been reduced considerably but not removed
completely. A similar situation occurs, as mentioned in
the Introduction, for neutral lithium [59] and sodium

[10], for which an unresolved difference between MBPT
calculations and benchmark measurements remains. In
our approach, the J dependence of the lifetimes is in-
duced only through the experimental transition energy
factors. It would be interesting to investigate if taking
the relativistic effects on the wave functions into account
within the Breit-Pauli approximation could resolve the
remaining discrepancies, though relativistic effects would
be expected to be small in lithium.

The comparison of oscillator strengths shows that the
3d-4p transition rates, which contribute for less than 7%

to the P lifetimes, are particularly difficult to calculate.
All the theoretical branching ratios are somewhat smaller
than the measured value and it would be interesting to
have a more accurate branching-ratio measurement to
convert the experimental benchmark J-dependent life-
times into oscillator strengths.

Our MCHF-SECP electric quadrupole transition rates
agree with the recent MBPT values of Guet and Johnson
to within 10%. There is a need of lifetime measurements
for these long-lived metastable levels for which no experi-
mental value is available.

Work of Laughlin [64] has recently appeared in print.
Laughlin has used a model-potential approach similar to
Theodosiou's but neglecting the relativistic corrections.
The semiempirical value for the lifetime of the 4p P'
state presented in this paper (v=6 67 ns.) agrees very well
with our ab initio result in the length formalism

(+MCHF-Cy3
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