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We discuss the binding of three unit charges q; =+1,+ 1, + 1, with various constituent masses m;. It
is found that the most convenient variables are the normalized inverse masses defined by

a; =m; '/(m, ' +m 2
'+ m 3

' ). The region where this three-body system is stable against dissociation
into a neutral atom and an isolated charge is restricted to a narrow band that is characterized by small

values of ~a2
—a, ~

and includes the well-known cases H2+, e+e e, and H . Some properties of this re-

gion of stability are presented. A method of proof of instability of e pe+ is proposed.

PACS number(s): 34.20.Cf, 36.10.—k, 31.10.+z, 31.20.Di

I. INTRODUCTION

There are many regularities associated with series of
rnolecules obtained by replacing an atom by another one
of similar valence structure. These regularities, first ob-
served as empirical rules, can be understood from the
universality of the binding mechanisms.

We shall illustrate this property in the simplest case
one encounters beyond hydrogenic atoms: three charges
q; =+1,+ 1, + 1 bound by their Coulomb interaction. At
first glance, one is surprised by the observation that sys-
tems as different as Ps =e+e e [1], H2+=e pp, or
H =pe e are stable against dissociation, whereas

pp e breaks into (pjM )+e . A more careful investi-
gation reveals an empirical rule: like charges have to be
borne by equal or nearly equal masses, in order to get sta-
bility.

This rule applies, for instance, in the case of pp e
and the observed instability is not surprising: the muon
is tightly bound to the nucleon, thus screening the proton
charge for the electron. On the other hand, one can con-
sider the especially simple situation where these two posi-
tive charges are both much heavier than the negative
charge. In this case, the Born-Oppenheirner approxirna-
tion applies, with the consequence that increasing the
mass of one of the positive charge does not ruin stability.
Thus, when reading the empirical rule for stability,
"nearly equal in mass" cannot be interpreted as

~
m 2

—m 3 ~ /( m 2 +m 3 ) being small. Indeed, H2+ isotopes
such as HD (e dp) and HT (e tp) are stable, though
m2 is much heavier than m3.

This consideration suggests that the inverse masses
1/m; are more suitable variables than the masses them-
selves. It is a property of Coulomb interaction that all

masses can be scaled. Therefore the most convenient
variables are

a;=
1 m;

1/m, + 1/m z + 1/m 3

with the normalization

1+&2+&3=1 (2)

FIG. 1. Domain of possible inverse masses a;, submitted to

g, a;=1.

The masses being "nearly equal" in the above stability
rule is then naturally interpreted as a2 —a3~ being small.
For example, ~a2

—a& -0.00027 for e dp and 0.00036
for e tp It also fol.lows from the normalization (2) that
all possible cases can be conveniently plotted inside an
equilateral triangle as shown in Fig. 1.

Inside the triangle, at some of the points, a system of
charges q& =+1 and q2 =q3 = + 1 is stable against disso-
ciation into a neutral atom and an isolated charge, and, at
other points, it is not stable. In this paper, on the basis of
nonrelativistic three-body quantum mechanics, we study

46 3697 1992 The American Physical Society



3698 ANDRE MARTIN, JEAN-MARC RICHARD, AND TAI TSUN WU

the "stability frontier, " defined as the lines that separate
the ' stability domain" from the "instability domains. " It
turns out that each instability domain is convex, when
drawn in the (a&, a2, a&) triangle. The stability domain
consists of a narrow band around the symmetry axis
a& =a3, and we shall give a simple bound on the width of
this band.

We are aware that there is already a rich literature on
the subject. An excellent introduction can be found in
the book by Thirring [2] who gives, at the end of Chap. 4
of this reference, a list of diScult problems where the
presently investigated problem is number 1. Most papers
concern improved calculations of systems with definite
masses of interest. Some of the most recent estimates are
given in Ref. [3]. There are also some studies where the
question of the mass dependence of the binding energy is
addressed [4]. In particular, a numerical investigation of
the stability frontier was undertaken in Ref. [5].

II. SUMMARY OF KNOWN RESULTS

In this section, we recall some results which have been
established in the literature [3,6]. We consider the Ham-
iltonian

P& P2 P3

2Pl ) 2Pl2 2m 3

1 1

"Z3r13
(3)

in appropriate units where fi=c = e /(4n. eo) = 1.
A selection of the best-known cases are listed below,

where Eo is the ground-state energy, E,h the threshold
energy, and g =(Eo—E,h )/E, „represents the fraction of
extra binding.

(a! e+e e

m =m =m —1, a=a=a= —, ,3 ) ] 2 3

E,h= —2663 eV, Eo= —2988 eV, g =0.122 .

(e) p e e

m& =206.77, m2=m3=1,

a& =0.002412, a2=a3=
1 —a)

E,h
= —0.497 593 a.u. , Eo= —0.525055 a. u. ,

g =0.055 19 .

(f) pe e

m& =1836.15, m2=m3=1,

a& =0.000 272 23, a2=a3=
1 —a(

E,h
= —0.49973 a. u. , Eo= —0.52735 a. u. ,

g =0.0553 .

(g) p„e e

Pl)=~, Pl2=m3 = 1

a( =0, a2=a3=
2

E,h
= —0.5 a. u. , Eo= —0.527751 a. u. ,

g =0.0555 . (10)

(h) p dt:

m, =206.77, m~ =5496.9, m, =3670.48,

a
&
=0.9141, a2 =0.0344, a3 =0.0515,

E h
= —2711.2 A, Eo= —3029.3 eV, g =0. 117 . (11)

E,h
= —0.25 a. u. , Eo= —0.2619956 a.u. ,

g =0.047 982 .

(b) e pp:

m
&

1 m2 =m3 =1836.15,

a& =0.998 912, az=a3=

(4)

Some comments and further remarks are in order.
(i) Along the symmetry axis a~=a~, the binding ener-

gy, or the fraction of additional binding, is a smooth
function of a, , as it should be. This is illustrated in Fig.
2. As demonstrated by Hill [7], all symmetric systems
with m 2

=m 3 are stable against dissociation. Near
a

&

= 1 there is a square-root behavior g = A

B+1—a&. Th—e coefficients can be computed from an

E,„=—0.49973 a. u. , E = —0.59715 a. u. ,

g =0.19495 .

(c) p pp:

m, =2,06.77, m2=m3=1836. 15,

0.20—
g(Q )

0.15—

0.10
t

a &:0.8 162 a2 =a 3
= 1 —ai

E,„=—2528. 5 eV, Eo= —2782 eV, g =0.100 .

(d) p dd:

m ) =206.77, m2 =m3 =3670.48,

0.00
0.2 0.4 0.6

I l

0.8 ~ 1
1

a, =0.8988, a2=a3=
1 —a)

FIG. 2. Fraction of additional binding for symmetric states

(m ~
=m & ), as a function of e„ the inverse mass of the first par-

ticle.
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harmonic approximation to the Born-Oppenheimer po-
tential near its minimum, with the result A =0.20527,
8 =0.313.

(ii) The Born-Oppenheimer limit has been investigated
in great detail, for obvious reasons. In particular, more
results on muonic molecules are available [8]. We have
seen in Eq. (5) that e pp is amply bound. This
deteriorates as m 3 becomes smaller, and we believe that
e pe+ is unbound [9,10]. The critical value for stability,
(m3)„occurs somewhere between 1 and 1836, if m, =1
fixes the scale. From Rotenberg and Stein [11],
(m3), (2.20, while from Armour and Schrader [12],
(m3 },) 1.51, for mz= ~.

(iii) Miscellaneous cases. We just mentioned that
e pe+ is not stable. This result was generalized to finite
values of m3, down to e p+e+ being unstable [9,10,13].
The system p e+p is also unstable [13].

III. GENERAL PROPERTIES
OF THE STABILITY FRONTIER

From the existing investigations listed in the preceding
section, we suspect that the stability domain consists of a
band around the symmetry axis of the [a;] triangle. The
following rigorous properties can be established.

(i) One crosses the frontier at most once when going
along a straight line from a lower corner of the triangle to
any point on the symmetry axis. This property, which is
called "star-shape behavior" by mathematicians, is illus-
trated in Fig. 3. The proof is very simple. If
(m „mz, m3) is stable, with say, mz & m3, then when m3
increases with m, and m 2 unchanged, the three-body en-

ergy Eo(m, , mz, m3 ) decreases while the threshold ener-

gy E,z(m&, mz) remains constant, so the stability of the
system is improved. In terms of the rescaled variables a;,
this means that one keeps stability when one moves to the
right with a, /az fixed.

(ii) Each half of the domain ofinstability is convex As-.
sume that M'=(a&, az a3), with g; a,'=1, and
M"=(a", , az', a3 ) (g; a' =1) both lie on the stability
frontier. Then the sets of unscaled inverse masses

FIG. 4. Topology of the stability and instability domains,
from rigorous results and the knowledge that every symmetric
system ( m 2

=m 3 ) is stable.

=x", +x2' =1, the threshold energy remains constant for
any intermediate point N(A, ) = AN'+ (1—

A, )N". The
Hamiltonian depends linearly on A, when one goes from
N' to N"; thus, from a general theorem [2],
Eo(A. ) ~ AEo(1)+(1—

A, )Eo(0). If N'(A, = 1) and
N"(A, =O) both lie on the stability frontier, M(A, ) is out-
side the stability domain. Now, the inverse transforma-
tion N —+M that rescales the inverse masses x, into
a;=x;/(x, +xz+x3) is a conic projection of the spaceI into the plane x&+x2+x3=1. It preserves straight
lines, i.e., M(A, } runs on the segment M'M". Since M(A, }
is in the instability region, the convexity is proved.

3 priori, from these rigorous results, the stability re-
gion could consist either of a connected band in the mid-
dle, or of two separated domains, with a hole of instabili-
ty near the center of the triangle. The latter scenario is
excluded by the proof by Hill [7] that every symmetric
system (mz=m3) is stable. We are thus left with the to-
pology depicted in Fig. 4. In the following sections, we
shall study three properties of the stability frontier: (i) its
intersection with the legs of the triangle, i.e., where the
Born-Oppenheimer approximation is valid, (ii) its inter-
section with the bottom side, i.e., the asymmetric hydro-
gen ion pe e with m3%mz, and (iii) the width of the
band as a function of the vertical coordinate a, .

N' x= CXI. N" x;"=
CX) +CX2 e& ++2

(12)

also correspond to the edge between stability and instabil-
ity. Since these points have the same x ', +x 2

IV. THE BORN-OPPENHEIMER APPROXIMATION

Let us consider in this section the region near the
upper angle A

&
of the triangle. The Born-Oppenheimer

method can be used to compute the binding energy when
the masses m2 and m3 are large. However, if both m2
and m3 are finite, the Born-Oppenheimer method is not
very useful to calculate the stability frontier. Indeed, the
threshold is given by

772 ) 171 2E,q(m„mz)=—
2(m, +mz)

(13)

A2

if one assumes mz m3, whereas the Born-Oppenheimer
potential has an asymptotic value which corresponds to
an electron bound to one of the positive charges and
reads

FIG. 3. A straight line crosses the stability frontier at most
once between A3 and any point on the symmetry axis.

m&
I ao(r» ~ ) (14)
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or, at best,

m, (m~+m~)~Bo(r2~=")=—
2(m, +m2+m, )

(15)

if one uses Jacobi variables to remove the center-of-mass
motion. Thus enforcing binding in the Born-
Oppenheimer approximation would require more than
stability.

We thus restrict ourselves now to m 2
= ~, in order to

investigate the point where the curve of Fig. 4 reaches
the left-hand side of the triangle. We provisionally
release the normalization g, a; = 1 and fix m, = 1, so that
we are dealing with the Hamiltonian

P3 1 P1H= +—+
2m 3 P3 2

1 r13
(16)

Replacing the bracket by its lowest eigenvalue s(r~ ) leads
to the extreme" Born-Oppenheimer approximation,
which corresponds to the one-body operator

P3 1
H~ = + +e(rq ),

2m3 f3
(17)

4„„=f(rs)9 (r, ;rs), (18)

and overbinds the system.
The value of e(r) is available in the literature [6]. A

simple computation shows that the effective potential
1lr +s(r) leads to binding down to values of m& as low
as m& —-1.4 (we integrate the radial equation at energy
E = —0.5 and see whether the wave function exhibits
nodes). However, we knew already that the critical value
(m ~ ), is larger than 1, since e pe is believed to be un-
bound. Armour and Schrader [12] have even shown that
( m

& ), ~ 1.51.
The best upper limit, to our knowledge, seems to be

(m~), & 2.20 in Ref. [11]. In an attempt to improve this
bound, we have used the so-called "variational Born-
Oppenheimer" approximation. It consists of the trial
wave function

V. THE ASYMMETRIC HYDROGEN-ION LIMIT

/r, —r, /

A, m1

2

~2 2
P2 P3

2m 2 2m 3

1

/r, —r, [

1 1

r, —r3 r2 r3

(21)

The optimal k is obtained by requiring that, when we
switch off all terms involving particle 3, we get a lower
bound which is exactly the binding energy of the [1,2]
system. This choice is

m1+m2
(22)

and we get, setting r& =0 (since it is from now on an ir-
relevant parameter),

We know that H =p„e e is stable. Variational
calculations, and the argument presented in Sec. VI,
show that an "asymmetric" ion p e'e remains stable as
long as m2 & 1. 1. Glaser et al. [14] have shown that sta-
bility is lost for m2 ~ 1.57. Their proof can be extended
to the case of finite m, as follows.

To return to a situation similar to the infinitely heavy
case (m, = ~ ) without losing the advantage of the extra
kinetic energy, we write the operator inequality

p A, km&
2m /r

—r
/

2

valid for all ro and for all X~O, whose usefulness arose
from discussions with Basdevant. This inequality follows
in an obvious way from the Schrodinger equation for one
particle in a Coulomb potential. For a two-body system
in Coulomb interaction, it leads, after suitable optimiza-
tion, to the correct energy proportional to the reduced
mass. For the three-body Hamiltonian (3), we get the
lower bound

where g is the lowest solution of the two-center problem
for particle 1. This results in the modified one-body
equation

2 2 2
p2 p3 m 2m1

2m& 2m& 2(m
& +mz)

m1

m1+m2 r2

HvBof =
2m 3

(19)

P3 1 1))+ goo(r~) f =EvBof .
T3 m3

1 1+
~23

(23)

The correction goo has been tabulated in the literature
and already used by several authors [6], for values of m3
corresponding to actual nuclei. We have solved Eq. (19)
with various values of m3 ~ Stability requires rather large
m 3 at least in the simplest version of the variationa1
Born-Oppenheimer approximation. Improvements might
consist of replacing Eq. (18) by an expansion on the elec-
tron eigenstates, resulting in coupled equations for the
nuclear motion, instead of the single equation (19). For
the moment, we are left with the result [11,12]
1.51 &(m&), &2.20, or, in terms of normalized inverse
masses, 0.60 ((a, ), (0.69.

m1m2 3 m1) 1.57, m3 (—m2
m3(m1+m2) 4 m1+m2

(24)

Such a condition indicates, for instance, that the system
proton-antiproton-muon (neglecting the strong interac-
tion) is not bound. However, we are disappointed from
the observation that the extension to finite values of m1
does not provide any useful information. Indeed, one can
draw a straight line from the bound already obtained for

We can now use the projection method of Ref. [14], as
generalized in the Appendix, and we find that there is no
binding if
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m, = ~ to the bound on the left-hand side of the triangle,
corresponding to m2 infinite, and one can exclude any
point on the left of this line. One easily checks that this
provides a more severe constraint than Eq. (24).

VI. WIDTH OF THE STABILITY BAND

Let us now comment on the width 5 of the stability
band. If the normalization (2) is imposed, the coordinates
in the triangle plot are x =(uz —u&)/&3 and y =a„so
that

= 25(a, )=,—
l az —a3l t„„„,„.v'3 (25)

One can get a simple lower limit on 5 once one knows
the binding energy on the symmetry axis accurately. We
rewrite the Hamiltonian as

H(a&, uz a3)=Hs+H~

u2+a3
'2

1 1

r12 r13

1

23

a —a
(

z z)
4 P2 P3 (26)

Thus, if

=Eo[a1, —,
' (az+ a3 ), —,

' (az+ a& ) ] ~ (27)

Eo[a„—,'(az+a3), —,'(az+a3)] =Eth(a&)[1+g (a, )],
(28)

we obtain after a little algebra using the explicit expres-
sion of E,h that

so that the terms which are symmetric under 2+ 3 ex-
change are separated from the antisymmetric one. Let
%'z be the ground state of Hz, which is symmetric. From
the variational principle, one obtains

Eo(ai uz u3) ~ &'Ps IH(ai uz az)l Ps &

g(a&)5~ — (1+a,) .
3 1+g a )

(29)

VII. SUNlMARY AND OUTLOOK

In this paper, we have tried to unify the existing infor-
mation on the stability of systems made of three unit
charges. The detailed calculations involve different tech-
niques: Born-Oppenheimer type for ppe, Helium-atom
type for pe e, etc. However, simple patterns emerge:
stability requires that the particles with the same charge
have nearly equal inverse masses; the stability frontier, in
the triangle of normalized inverse masses, is made of two
symmetric curves which are convex; the width of the sta-
bility band, delimited by the two frontier curves, seems to
slightly decrease and then increase regularly as the in-
verse mass of the first particle increases.

Our findings are summarized in Fig. 6. The dashed
curve reproduces the minimal width already shown in
Fig. 5 and the solid curve is our guess at the actual fron-
tier. We hope that the present note wi11 stimulate further
mathematical and numerical work on these three-body
systems.

There are immediate applications. For instance, p dp
and other systems of interest for muon catalyzed. fusion
[8] are stable. There has been also some discussions on
the level of rigor of the proof of the instability of e pe+
when the proton mass becomes finite [9,10,13,15]. If one
draws a line on our triangle plot, starting very conserva-
tively from the upper limit of Glaser et al. [14] (m, = ~,
m z

= 1.57, and m
&
= 1, converted into normalized a s)

and ending on the left-hand side of the triangle (m, =1,

The lower limits on 5/2 are shown in Fig. 5. For a, =0,
it corresponds to a mass ratio m2/m3=1. 111. We be-
lieve that it is very close to the exact half-width for small
values of u1, because the antisymmetric term H~ in Eq.
(26) is small and enters at second order only. For larger
a1, the width is clearly underestimated by this lower
bound: one can see in Fig. 5 that it saturates the width of
the triangle only for a1~ 0.82, while the exact value is be-
tween a1=0.60 and a1=0.69, as seen in Sec. IV.

0.25—
8
2

0.20— y=a

A
1

0.15—

0.1Q—

0.05—

0.00
0.2 0.4 0.6 0.8 („

I

Q.6—

Q 4—

0.2—

I I I I

-0.6 -0.4 -0.2 0.0 0.2
I I

x=(a —u )/43
2 3

FIG. 5. Lower limit on the half-width 6/2 of the stability
band, as a function of al. Also shown is the half-width of the
triangle of the normalized inverse masses.

FIG. 6. Shape of the stability border (solid line) vs the
minimal width derived from the binding energy on the symme-
try axis.
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m 2
= ~, and m 3

= 1.5 if the result of Armour and
Schrader [12] can be considered as rigorous, i.e., if one
forgets uncertainties in the numerical calculation of in-
tegrals), one easily proves that e pe+ is unstable for at
least m ~ 4.2m, .

A challenging extension would consist of the study of
the hydrogen-molecule-like configurations q,- = +1,+ 1,
+ 1, + 1 with arbitrary masses. One can easily show, for
instance, that the stability of the positronium molecule
e+e+e e [16] against dissociation into two positronia
implies the stability of the asymmetric configurations
M+M+m m . We are sure that many more results
await to be revealed. Understanding why these systems,
for some mass distributions, prefer a collective binding
rather than a splitting into two subsystems is a central is-
sue in few-body physics: we know that there is more nu-
clear binding in the a particle than in two deuteron
atoms, while, in hadron physics, stable multiquarks
q q q q have so far escaped detection.

with eigenenergies

2 2
fPZ2q2 m2q2

n)1—
8

We adopt the normalization

lie. 112—= f lv'. (~) I'd'X =1

(A4)

(A5)

When calculating the expectation value of H, we use
Schwarz's inequality for the term in r 23',

f +(rz, r3)yt(r2)d r2
d r2)

23 f lqt(rz)l'r23 '
2

—:lg, (r3) 'W(r, ) . (A6)

This defines W(r3 ) and leads to a lower bound on the en-

ergy of the ground state,
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APPENDIX

Xg, (r3)d r,
2

+ (1—
114 ill z)—

2Pl 2q2

8

Therefore we get

2 2
m2q2 P3+inf

2 2m 3

2 ~2

E& — ' 'lk, lie+ f kt(, )
2 2m 3

I"
3

+ W(r3)

(A7)

+ W(r3)
f3

23

w1th q2, q3 & 0, and, for instance, m3q3 & m2q2. we fol-
low very closely Ref. [14]. The wave function is written
as

We derive here a sufficient condition for the absence of
binding of the hydrogen-ion-like Hamiltonian corre-
sponding to a fixed center r, =0,

P2 P3 q2 q3 1H= +
2m 2 2m 3 12 ~3

E) inf
2

m3q3

2

2Pl 2q2

8

(Ag)

2
P3

inf
2m 3

+W(r3) ~0 (A9)

q

By rescaling the calculations of Ref. [14], we find that

(z»=X(.
n=1

(A2) and

m2q2 ) 1.57,

(A10)

where the g„'s are eigenstates of the Hamiltonian
m3q3

and so we conclude that there is no binding if
~2
P2

2m2

q2

7"
2

(A3) q3 ~1, m2q2 ) 1.57, m3q3 (—'m2q2 .
m3q3
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