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We report a compilation of Roothaan-Hartree-Fock (RHF) wave functions for the ground states of He
through Xe, with atomic orbitals expressed in terms of Slater-type functions. Slight increases in the size
of the basis set with respect to those used in Clementi and Roetti's tables [At. Data Nucl. Data Tables
14, 177 (1974)] turn out to yield total energies to better than eight figures, reducing between 21 and 2770
times the energy errors in the above tables, and also improving over the previous numerical HF energies
computed by Froese Fischer [The Hartree Fock Me-thod for Atoms (Wiley, New York, 1977)]. We also
report 10-digit numerical HF energies with different results for Cr, Cu, Nb, Mo, Ru, Rh, Pd, and Ag.

PACS number(s): 31.20.Tz, 31.20.Ej

I. INTRODUCTION

Hartree-Fock (HF) atomic wave functions are
independent-particle-model approximations to the nonre-
lativistic Schrodinger equation for stationary states. The
Pauli principle is imposed through the use of Slater deter-
minants. For an ¹lectron system, the HF equations
yield N Hartree-Fock spin orbitals.

In the conventional Hartree-Fock approximation [1],
the spin orbitals are expressed as products of a radial
function times a spherical harmonic times a spin func-
tion, the radial functions are taken to depend only on the
quantum numbers n and l, and the total wave function is
required to be an eigenfunction of the total orbital and
spin angular momentum; the form of the spin orbitals
guarantees that L„S„and parity are good quantum
numbers. The conventional HF approximation is also
known as the restricted HF approximation.

Roothaan-Hartree-Fock (RHF) or analytic self-
consistent-field atomic wave functions [2] are approxima-
tions to conventional HF wave functions in which the ra-
dial atomic orbitals are expanded as a finite superposition
of primitive radial functions.

Since Roothaan's papers [2] and through the early
1970s, RHF calculations yielded the most accurate atom-
ic HF energies. Later, numerical HF calculations [1]be-
came more accurate than RHF ones. However, our re-
cent results for Mg [3] suggested that, once again, RHF
energies might be more accurate than available numerical
HF results. In this paper we communicate a compilation
of RHF atomic wave functions for He through Xe [3]
that is significantly more accurate than its predecessors.
In order to assess the quality of the new RHF wave func-
tions, we report ten-digit numerical HF energies, which

may also serve for reference purposes.
Why use RHF atomic wave functions when an efficient

code [4] for numerical multiconfiguration Hartree-Fock
(MCHF) wave functions is available? The MCHF code
of Froese Fischer generates HF atomic wave functions as
accurately as physically reasonable, and it can also be
used to introduce correlation effects, viz. , to go beyond
the HF approximation. Nevertheless, RHF wave func-
tions today are very much in demand, as suggested by the
150-odd citations [5] received in 1990 by Clementi and
Roetti's tables [6] of RHF atomic wave functions.
Another compilation of RHF wave functions [7], less
available than the work of Clementi and Roetti, has also
proved very useful.

The RHF wave functions offer some advantages over
their, in principle more accurate, numerical counterparts
as they can be readily incorporated into a variety of codes
for atomic calculations, and also for molecular and solid-
state calculations by density-functional methods. Nu-
merical wave functions, instead, need to be kept in
diskettes or generated as needed, and nontrivial software
is required for their use, viz. , to calculate expectation and
transition values.

Traditionally, RHF atomic wave functions have been
expanded in terms of Slater-type orbitals (STO's). More
recently, Chakravorty and Clementi [8] reported
significantly improved RHF results using a very large
basis set of Gaussian-type orbitals (GTO's). Although
the latter may be convenient in relativistic (and nonrela-
tivistic) calculations with finite nuclear size [8], there is
continued interest in the STO basis set for the study of
correlation effects, and also because far fewer STO's than
GTO's are needed for a given accuracy.

Our own interest in STO-expanded RHF wave func-
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tions stems from atomic structure calculations by the
configuration-interaction (CI) method. The RHF ap-
proximation is the starting point of the CI method in ac-
curate predictions of atomic spectra and negative ions.
In many instances the CI method is more powerful than
the MCHF method on account of the relative ease with
which basis functions can be generated, for example, for
core-excited states and slightly bound negative ions.

To perform these calculations involving highly corre-
lated electronic motions it is convenient to have rather
accurate RHF wave functions to start from. In the case
of electron affinities, in particular, the energy error in
previous RHF results [6] is often orders of magnitude
larger than the values of the affinities themselves. For ex-
ample, electron affinities might be smaller than 100 meV
[9], while RHF energy errors of this magnitude and
above (1658 meV for Cd) are not uncommon. This obser-
vation is also valid for the prediction of atomic spectra in
general.

Of course, one could use a RHF code and calculate
RHF wave functions as needed. However, it is not just
that simple to calculate RHF wave functions of the accu-
racy already reported in the literature, much less with the
accuracy warranted by the applications mentioned above.

Also, by considering not a few but a large number of
atomic states, systematic trends emerge, allowing for
more accurate and rapid results. It is therefore of in-
terest to have a compilation of RHF wave functions with
energies in error by not much more than 1 meV.

In Sec. II we report improved numerical HF energies
for the ground states of He through Xe. Computer pro-
grams to carry out atomic RHF calculations are men-
tioned in Sec. III. In Sec. IV we discuss our RHF energy
results and compare them with the more accurate numer-
ical HF energies.

II. NUMERICAL HARTREE-FOCK CALCULATIONS

We have used a relatively old version [4] of the MCHF
program of Froese Fischer to calculate numerical HF en-
ergies. The coefficients f„(l) and g„(1,1') for the Slater
integrals F and G were taken from Froese Fisher's
book [1], except those for Cr, Nb, Mo, Ru, and Rh,
which were calculated using the relationship [10]between
the fk (I ) and gk (1,I '), and the RHF coupling coefficients
discussed by Roothaan and Bagus [11]. The Malli-Olive
tabulation of RHF coupling coefficients was used [10].

In Table I we present Hartree-Fock energies for the

TABLE I. Hartree-Fock total energies (in a.u. ) for the ground states of He through Xe. Values
which are not available are denoted by NA.

z
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Atom

He

Li

Be

B
C

N

0
F
Ne

Na

Mg

Al

Si

p

S

Cl

Ar

K
Ca

Sc
T1

V

Cr

Mn

Fe
Co

State

's
S
's
2p

3p

4S

3p

2p

's
S
's
2p

3p

4S

3p

2p

's
S
's
D
3F

4F

S
's
5D

4F

F

Configuration

1s (2)
. . .2s(1)
. . .2s(2)
. . .2s(2)2p(1)
. . .2s(2)2p(2)
. . .Zs(2)2p(3)
. . .2s(2)2p(4)
. . .2s(2)2p(5)
~ . .2s(2)2p(6)
. . .3s(1)
. . .3s(2)
. . .3s(2)3p(1)
. ~ .3s(2)3p(2)
. . .3s(2)3p(3)
. . .3s(2)3p(4)
. . .3s(2)3p(5)
. . ~ 3s (2)3p(6)
. . .4s(1)
. . .4s(2)
. . .3d ( 1)4s(2)
. . .3d(2)4s(2)
. . .3d (3 )4s (2)
. . .3d(5)4s(1)
. . .3d(5)4s(2)
. . .3d(6)4s(2)
~ . .3d (7)4s ( 2)
. . . 3d(8)4s(2)

Previous'

—2.861 680 0
—7.432 726 9

—14.573 023
—24.529 061
—37.688 619
—54.400 934
—74.809 398
—99.409 349

—128.547 10
—161.858 91
—199.614 63
—241.876 71
—288.854 36
—340.718 78
—397.504 90
—459.482 07
—526.817 51
—599.164 79
—676.758 18
—759.735 72
—848.406 00
—942.884 33

NA
—1149.866 2
—1262.443 7
—1381.414 6
—1506.870 9

Present

—2.861 679 995
—7.432 726 927

—14.573 023 16
—24.529 060 72
—37.688 618 95
—54.400 934 19
—74.809 398 45
—99.409 349 33

—128.547 098 0
—161.858 911 6
—199.614 636 3
—241.876 707 2
—288.854 362 4
—340.718 780 8
—397.504 895 8
—459.482 072 1

—526.817 512 6
—599.164 786 5
—676.758 185 7
—759.735 717 8
—848.405 996 7
—942.884 337 4

—1043.356 376
—1149.866 251
—1262.443 665
—1381.414 553
—1506.870 908
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TABLE I. (Continued)

Z

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Atom

CU

Zn

Ga
Ge
As

Se

Br
Kr
Rb
Sr

Y
Zr

. Nb

Mo

TG

Ru

Rh
pd

Ag

Cd

In

Sn

Sb

Te

I
Xe

State

2S

's
2p

3p

4S

3p

2p

's
S
'S
2D

3F

6D

'S
6S

5F

4F

's
S
's
2p

3p

4S

3p

2p

's

Configuration

. . .3d(10)4s(1)

. ~ .3d(10)4s(2)

. ~ .3d(10)4s(2)4p(1)

. . .3d(10)4s(2)4p(2)

. . .3d(10)4s(2)4p(3)

. . .3d(10)4s(2)4p(4)

. . .3d(10)4s(2)4p(5)

. . .3d(10)4s(2)4p(6)

. . .Ss(1)

. . .5s(2)

. . .4d(1)Ss(2)

. . .4d(2)Ss(2)

. . .4d(4)Ss(1)

. . .4d (5)Ss(1)

. . .4d (5)5s(2)

. . ~ 4d (7)5s (1)

. . .4d(8)5s(1)

. . .4d(10)

. . .4d (10)Ss(1)

. . .4d(10)5s(2)

. . .4d (10)5s(2)5p(1)

. . .4d(10)5s(2)Sp(2)

. . ~ 4d(10)5s(2)Sp(3)

. . .4d ( 10)Ss(2)Sp(4)

. . .4d(10)5s(2)Sp(5)

. . .4d(10)5s(2)5p(6)

Previous'

—1638.96
—1777.848 1

—1923.261 0
—2075.359 7
—2234.238 6
—2399.867 6
—2572.441 3
—2752.055 0
—2938.357 4
—3131.545 7
—3331.684 2
—3538.995 1

NA

NA
—4204.788 7

NA

NA
—4937.92
—5197.70
—5465.133 1

—5740.169 1

—6022.931 7
—6313.485 3
—6611.784 0
—6917.980 9
—7232.1384

Present

—1638.963 742
—1777.848 116
—1923.261 009
—2075.359 733
—2234.238 654
—2399.867 611
—2572.441 332
—2752.054 977
—2938.357 4S3
—3131.545 686
—3331.684 169
—3539.995064
—3753.597 727
—3975.549 499
—4204.788 736
—4441.539 487
—4685.881 703
—4937.921 023
—5197.698 472
—5465.133 141
—5740.169 154
—6022.931 694
—6313.485 319
—6611.784 058
—6917.980 895
—7232.138 363

'Reference [1],except where indicated otherwise.
bReference [12].

ground states of He through Xe and compare them with
a previous eight-digit tabulation [1]. A few discrepancies
with the old results are observed: in Mg, Ca, V, Mn, As,
Rb, In, and Te, always affecting one unit in the eighth di-
git.

Ten-digit energy accuracy is expected after observing
more than ten-digit stability upon increasing mesh sizes
both for solving the HF equations and for the evaluation
of one- and two-electron integrals. Virial ratios accurate
to between eight and ten figures are always obtained.

The solutions of numerical HF equations for open-shell
systems are usually plagued by numerical instabilities.
The accuracy achieved in this work honors the exception-
al quality of Froese Fisher's code [4].

Numerical HF results for the ground states of Cr, Nb,
Mo, Ru, and Rh are new in the literature. In all these
ground states the outermost s orbital is singly occupied,
and these configurations had not been calculated before
by numerical HF. For Cu, Pd, and Ag, previous numeri-
cal HF results [12) were only accurate to six figures.

III. ROOTHAAN-HARTREE-POCK CALCULATIONS

The first comprehensive tables of RHF atomic wave
functions were produced by Clementi [13] with a pro-

gram designed and written by Roothaan and Bagus [11].
That program, after undergoing a translation to
FORTRAN [14], evolved along several paths. One version
was used by Clementi and Roetti to generate a compila-
tion of RHF atomic wave functions [6]. A further im-
proved version is part of the program collection in Ref.
[15]. An extension to handle open f shells was used to
obtain RHF atomic wave functions for atomic numbers
55—92 [16].

A fourth version incorporates pseudopotentials and
has been effectively documented by Daudey [17]. We
have used Daudey's version of the RHF program with
the following modifications: (i) if a full calculation with
the old program is called a macrocycle, the new program
runs any number of rnacrocycles up to an energy conver-
gence threshold, (ii) after each macrocycle, convergence
thresholds are reinitialized; usually, this procedure over-
comes most divergence problems, as a new macrocycle
uses the orbitals from the previous macrocycle, and (iii)
the convergence parameters for the Jacobi diagonaliza-
tion were reduced by a factor of 10000. Eventually, we
had to replace the existing Jacobi subroutine by a more
accurate one. Finally, a program error affecting the
operator which eliminates the Lagrange multipliers be-
tween orbitals of closed and open shells was uncovered;



3694 BUNGE, BARRIENTOS, BUNGE, AND COGORDAN 46

that error did not prevent the reproduction of Clementi
and Roetti's energy values to all reported figures, howev-
er, it prevented the achievement further accuracy.

IV. RESULTS AND DISCUSSION

In Table II we compare the RHF energies of this work
with those of Clementi and Roetti and with the "exact"
numerical values of Table I. It may be observed that, for

all atoms considered, our RHF energies are less than 1

meV in error. In all cases our energies are below recent
RHF energies of Chakravorty and Clementi [8] using
geometrical Gaussian basis sets. Also, they are accurate
to more than eight digits, which is more accurate than
the previous numerical HF results [1].

In the last column of Table II we report the improved
accuracy (IA) as the quotient between present and past
RHF energy errors. The smallest IA is 21, for V, while

TABLE II. Roothaan-Hartree-Fock total energies (in a.u. ) for the ground states of He through Xe,
comparison with previous RHF results and with exact ones. The last column shows the improved accu-
racy (IA) defined as the quotient between present and past RHF energy errors.

Atom State Previous RHF' Present RHF Exact HF' IA

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

33
34

35

36
37

38
39

40
41

He

Li

Be
8
C

N

0
F
Ne

Na

Mg

Al

Si

P

S

C1

Ar

K
Ca

Sc
T1

V

Cr

Mn

Fe
Co

Ni

Cu

Zn

Ga
Ge
As

Se

Br
Kr
Rb
Sr
Y
Zr

Nb

's
2S

's
2p

3p

4s

3p

2p

's
2S

's
2p

3p

4s

3p

2p

's
2S

's
2D

3F

4F

'S
'S
5D

4F

F
S
's
2p

3p

4S

3p

2p

's
2S

's
2D

3F

6D

—2.861 679 9
—7.432 725 7

—14.573 021
—24.529 057
—37.688 612
—54.400 924
—74.809 370
—99.409 300

—128.547 05
—161.858 90
—199.614 61
—241.876 68
—288.854 31
—340.718 69
—397.504 85
—459.481 87
—526.817 39
—599.164 53
—676.758 03
—759.735 52
—848.405 75
—942.884 20

—1043.355 2
—1149.865 7
—1262.443 2
—1381.414 2
—1506.870 5
—1638.962 8
—1777~ 847 7
—1923.260 4
—2075.359 I

—2234.238 2
—2399.865 8
—2572.440 8
—2752.054 6
—2938.347 0
—3131.537 9
—3331.671 2
—3538.982 1

—3753.584 5

—2.861 679 993
—7.432 726 924

—14.573 023 13
—24.529 060 69
—37.688 618 90
—54.400 934 15
—74.809 398 40

—999.409 349 28
—128.547 098 0
—161.858 911 3
—199.614 636 1

—241.876 707 0
—288.854 362 2
—340.718 780 6
—397.504 895 5
—459.482 071 9
—526.817 512 2
—599.164 783 1

—676.758 181 7
—759.735 712 3
—848.405 990 7
—942.884 330 8

—1043.356 368
—1149.866 243
—1262.443 656
—1381.414 542
—1506.870 896
—1638.963 723
—1777.848 102
—1923.261 001
—2075.359 726
—2234.238 647
—2399.867 604
—2572.441 325
—2752.054 969
—2938.357 442
—3131.545 674
—3331.684 158
—3538.995 053
—3753.597 716

—2.861 679 995
—7.432 726 927

—14.573 023 16
—24.529 060 72
—37.688 618 95
—54.400 934 19
—74.809 398 45
—99.409 349 33

—128.547 098 0
—161.858 911 6
—199.614 636 3
—241.876 707 2
—288.854 362 4
—340.718 780 8
—397.504 895 8
—459.482 072 1

—526.817 512 6
—599.164 786 5
—676.758 185 7
—759.735 717 8
—848.405 996 7
—942.884 337 4

—1043.356 376
—1149.866 251
—1262.443 665
—1381.414 553
—1506.870 908
—1638.963 742
—1777.848 116
—1923.261 009
—2075.359 733
—2234.238 654
—2399.867 611
—2572.441 332
—2752.054 977
—2938.357 453
—3131.545 686
—3331.684 169
—3538.995 064
—3753.597 727

47

409

72

124

139

255

569

986

533

39

131

136

262

454

152

1010
306

74

39

36

41

21

147

69

52

32

34

50

30

76

90
65

259

76

47

950
649

1179
1179
1202
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TABLE II. (Continued)

z Atom State Previous RHF' Present RHF Exact HF' IA

42

43

44

45

46

47

48

49

50

51

52

53

54

Mo

Tc
Ru

Rh

Pd

Ag

Cd

In

Sn

Sb

Te
I
Xe

"S
6g

5F

4F

's
S
's
2p

3p

4S

3p

2p

's

—3975.533 8
—4204.775 3
—4441.526 4
—4685.883 3"
—4937.907 1

—5197.685 2
—5465.072 2
—5740.1570
—6022.922 0
—6313.475 5
—6611.774 8
—6917.972 7
—7232.1302

—3975.549 487
—4204.788 722
—4441.539 471
—4685.881 686
—4937.921 004
—5197.698 452
—5465.133 119
—5740.169 136
—6022.931 678
—6313.485 304
—6611.784 043
—6917.980 881
—7232.138 349

—3975.549 499
—4204.788 736

AAA 1 539 487
—4685.881 703
—4937.921 023
—5197.698 472
—5465.133 141
—5740.169 154
—6022.931 694
—6313.485 319
—6611.784 058
—6917.980 895
—7232.138 363

1308

960
818

819
664

2770

675

606

655

617
585

583

'Reference [2].
bThis work and Ref. [3].
'This work.
dWrong value, cannot be reproduced.

the largest one is 2770, for Cd. The energy errors in-

crease smoothly from 0.002 phartree for He up to 0.4
phartree for Ar. These errors are much smaller than
warranted by most applications, yet they were obtained
with moderate-size basis sets.

The potential energies, kinetic energies, orbital ener-

gies, orbital exponents of the STO's, and corresponding
expansion coefficients will be presented elsewhere [3).

The monumental tables of Clementi-Roetti RHF [6]
date from 1974, a time when available computer
resources were a small fraction of what we have today.
Extensive orbital exponent STO optimizations were not
only tedious but also appeared beyond computational
reach.

The recent introduction of cheap and powerful
workstations such as the IBM RS/6000 series opened the
possibility to attempt RHF calculations competitive with
the numerical HF results. Our results show that once

effective optimization of STO orbital exponents is
achieved, RHF energies converge rather fast with in-

creasing basis-set size. Key to the success of RHF calcu-
lations is the composition of the STO basis sets, which is
defined by the set of principal quantum numbers for
STO's of successive angular momentum l.

For He we used one 1s, two 2s and one 3s STO, this
combination being denoted hereafter by (121). For Li
and Be we used (241) and (232) STO's, respectively. For
B through Ne we used (241)(5) sets, the (5) indicating five

2p STO's.
In Table III we present the composition of the present

STO basis and compare it with those of Bagus, Gilbert,
and Roothaan [7], and of Clementi and Roetti [6]. As
can be seen, there is a certain resemblance between the
first two. The major difference with Clementi and
Roetti's calculation is our use of (5) and (44) or (35) d-

type basis for Rb-Sr and Y-Xe, respectively, instead of

TABLE III. Compositions of STO basis and comparison with the ones of Bagus, Gilbert, and
Roothaan (BGR), and of Clementi and Roetti (CR).

Atom

He
Li
Be
B-Ne
Na-Mg
Al-Ar
K-Ca
Sc-Zn
Ga-Kr
Rb-Sr
Y-Cd
In-Sn
Sb-Xe

Present

(121)
(241)
(232)
(241) (5)
(244) (5)
(244) (44)
(1235) (43)
(1244) (43) (5)
(1244) (244) (5)
(12334) (244) (5)
(12334) (244) (44)
(12334) (2334) (44)
(12334) (2334) (35)

Basis composition
BGR

(12)
(23)
(221)
(221) (4)
(123) (3)
(123) (32)
(1232) (32)
(1232) (32) (4)
(1232) (322) (4)

CR

(5)
(24)
(24)
(24) (4)
(107) (104)
(107) (107)
(2234) (24)
(2234) (24) (5)
(2233) (234) (5)
(22223) (223) (3)
(22223) (223) (23)
(22223) (2223) (23)
(22223) (2223) (23)
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the (3) and (32) basis employed by these authors; this ac-
counts for most of the energy differences between both
calculations. The improved accuracy reported in Table
II, however, resulted also from a more comprehensive
STO optimization within more effective basis-set compo-
sitions.

For a few light atoms we used the Bagus-Gilbert-
Roothaan STO's [7] as starting points for larger STO op-
timizations. The other STO optimizations, even those in-
volving most light atoms, started from a linearly extrapo-
lated full basis for the two lighter (or heavier) elements.
Also, interpolations were found useful. For example,
given accurate RHF wave functions for In and Xe, a
straight linear interpolation between them yields RHF
energies for Sn, Sb, Te, and I which are in error by no
more than 100 phartree. After optimizing sequentially
the STO's with lowest orbital exponents for each nl value,
the error is reduced to about 20 phartree. Further exten-
sive orbital exponent optimization within each harmonic
set lowers the energy by another 5 phartree.

Energy optimization of STO orbital exponents becomes
quite cumbersome when there is a discontinuity in the
basis-set composition, for example, for In and Sn. For Y
through Cd, a (44) d-type basis appears to be better than
a (35) basis. For In, a (44) set is better than a (35) set by 4
phartree but the two 3d STO's with smallest orbital ex-
ponents become rather close to each other. For Sn, the
same energy difference shrinks to 1 phartree and the two
troublesome 3d STO's become approximately linearly
dependent with each other if full optimization is allowed.

For Xe, the (35) basis is better by 1 phartree and it easily
lends itself to extrapolation into I, Te, and Sb; the same is
not true of the (44) basis.

In spite of having carried out an extensive search
around many local minima in the nonlinear parameter
space, we are unable to conclude how far we are from ab-
solute energy minima for the present basis-set composi-
tions, except for the bounds afforded by the numerical
HF results. Should future needs warrant improved accu-
racy the present basis-set composition may serve as a
guide for the construction of an enlarged set.

The main conclusion of this work is that RHF atomic
wave functions of the accuracy of numerical HF can be
obtained and are available [3] for the ground states of He
through Xe. Apart from their practical importance,
some people will also find them aesthetically satisfying.
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