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Beginning with the quaternionic generalization of the Schrédinger equation, we present a simple
system consisting of two successive square barriers of general (quaternionic) height, and discuss
situations in which the predictions of quaternionic quantum mechanics differ from those of the usual
complex theory. Specifically, we show that the transmission coefficient may pick up a phase change
on reversal of the barrier order. We comment on why this phase change would not necessarily
be observed in experiments. Finally, we present a necessary condition for the magnitude of the
transmission coefficient to change under reversal of the direction of traversal of the barrier.

PACS number(s): 03.65.Bz, 03.65.Nk, 03.80.+r

I. INTRODUCTION

The possibility of formulating quantum mechanics over
a quaternionic field has been recognized since the early
work of Birkhoff and Von Neumann [1]. It remains an
open question whether such a generalization of the com-
plex quantum mechanics (CQM) is required to describe
nature, largely because quaternionic quantum mechanics
(QQM) seems to be well hidden from experimental de-
termination. In particular, it is not hard to show that
in any scattering experiment, the asymptotic states in
QQM are necessarily complex [2], while simple calcula-
tions of scattering from quaternionic square barriers show
no qualitative differences from results in CQM [3].

To our knowledge there has been only one explicit pro-
posal to look for QQM effects [4], followed by one actual
experiment using neutron interferometry [5]. The ratio-
nale for that experiment was to look for noncommuta-
tive effects of reversing the order of two metal targets
traversed by a split beam of neutrons. A phase change
between the two transmitted beams was looked for, but
not found. It was subsequently suggested [6] that the
experiment does not rule out QQM, as the interaction of
the neutrons with the targets, aluminum and titanium,
respectively, is of the same type (strong interaction), and
may, in some sense, have the same “quaternionic phase.”
Both the experiment and subsquent criticism appear to
have been based upon the observation that the quater-
nion algebra is noncommutative, with an inference that
the quantum mechanics will behave in a similar way. We
are unaware of any calculation based on the appropriate
wave equations leading to such a conclusion. It is the
aim of this paper to provide such a calculation, in order
to better discuss the implications of the experimental re-
sults, and to point to possible reasons for the null result
even if QQM is the theory required to describe the real
world. In Sec. IT we briefly review simple one-dimensional
calculations of scattering from square barriers in CQM
and QQM. In Sec. III we discuss further the problem of
scattering by two successive square barriers, highlight-
ing the difference in the behavior of the phase of the
transmission coefficient for the two theories under some
circumstances. We also comment on the relevance of our
results for discussion of the experiment of Ref. [5]. In
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Sec. IV we present the proof of a necessary condition for
the amplitude of the transmission coefficient to change
under reversal of barrier order in QQM, a result with no
analog in CQM.

II. ONE-DIMENSIONAL SQUARE BARRIERS
IN CQM AND QQM

We begin this section with some brief comments on
scattering from single square barriers in CQM and QQM
in one dimension. The Schrédinger equation for CQM is,
in units in which m = % and A = 1 for convenience,

d2

EE\II(Q:) +[E-V(z)]¥(z)=0. (1)
For the case of a square barrier (that is, V(z) = V5 # 0
only when z € [a, b]), in the case of scattering of an inci-
dent beam from the left, we can write the wave function
as

ez’k(z—a) 4 Re—ik(x—a,)’ r<a
U(x) = { Ae*® + Be™™?, a<z<b (2
Teik(z—b) b<z,

where k2 = E, and p? = E — V,. It is straightforward
to match the boundary conditions at £ = a and b in
the usual way to obtain the transfer matrix 7 for the

problem. The elements of the 2 x 2 matrix 7 are given
by

Ty, = e~ tk(b-a) [cos& +4 (E + E) sin 0] ,
w

2 \ k
_i (B _ K\ —ipraykg
Tio 2(k u)e sin 6,
(3)
T21 =T]37
732 =7?i9

where & = u(b — a). From these expressions we may
obtain the reflection and transmission coefficients R and
T:
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If we now want to calculate the transmission coefficient
for what we term a “compound square barrier” —two suc-
cessive square barriers, generally of different heights V;
and V; and different widths (from = = a to b for V; and
z = b to ¢ for V;)—all we need to do is multiply together
the appropriate 7 matrices and calculate R and T using
Egs. (4) and the elements of the product matrix. Pre-
senting only the result for the transmission coefficient T
for a compound barrier we find

T = eiklc=a) (cos 61 + %El sin 91)

X (cos 02 + %Ez sin 92) , (5)

where 61 = p1(b - a), 3 = pa(c —b), p® = E -V, and
3= % - TE’ i =1,2. It is now easy to see that if we in-
terchange a < ¢, k < —k, and 1 « 2 (in the subscripts)
in Eq. (5), then the expression for T is unchanged. Such a
set of substitutions is just that required to describe trans-
mission through the barrier from the right-hand side (i.e.,
from the region > b). This is a simple example of a
general result in CQM; if the direction of incidence on
a barrier of arbitrary shape is changed, the transmission
coefficient T is unaltered in magnitude and phase. This is
essentially a textbook result [7], but we shall briefly out-
line a proof in Sec. IV. In the remainder of this section
we review the QQM 7 matrix and outline the calcula-
tion of the T and R coeflicients. For background material
and the basic QQM formalism the reader is referred to
Refs. [2] and [3].

The one-dimensional QQM  time-independent
Schrodinger equation takes the form [in the same units
as for Eq. (1) [2]]

H®(z) = E®(2)i, (6)
where

e od?

H= —iTs +iV(z), )

V(z) being, in general, a quaternion-valued potential.
We can avoid the noncommutative nature of quaternionic
algebra in Eq. (6), by separating the equation into two
coupled complex equations, writing

®(z) = Qa(z) +705(x)
and (8)

V(z) = Va(z) + jVs(z)

to obtain
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d2
(—EE + Va) o, — VE@g =FE®,,

(9)
d2
(W - Va> ®p— Vpdo = Edg .

One may solve these equations for the case of piecewise
constant potentials and thus obtain in a manner analo-
gous to the complex case the transfer matrix. Unfortu-
nately, even for this simple case the expressions become
unwieldy rather quickly. Since we will not use them ex-
plicitly here, the reader is referred to Ref. [3] for the
expressions for R and T'. For our purpose we will sim-
ply note that the expressions obtained in Ref. [3] can be
quite easily shown to give an invariant T for the case of
scattering from a single square barrier, which is to be ex-
pected on physical grounds due to the symmetry of the
barrier. If we are to find a difference from CQM we ob-
viously must look at a more complicated system. In the
next section we address the scattering from a sequence
of square barriers.

III. PHASE CHANGES
IN THE TRANSMISSION COEFFICIENT

As mentioned in the preceding section, for a barrier of
arbitrary shape in CQM, changing the direction of travel
across a barrier makes no difference to the transmission
coefficient, although the relection coefficient is in gen-
eral phase shifted. We now turn to QQM for the case of
two successive (different) square barriers. It is extremely
difficult to work with analytic expressions for the T coef-
ficient, so we turned to numerical evaluation, using the 7~
matrix given in Ref. [3]. As per the CQM case of Sec. II,
it is simply a matter of multiplying together the 7 ma-
trices for the successive barriers. Our results are shown
in Table I. We have in each case taken the incident en-
ergy of the asymptotically complex wave form to be ten
units, and varied the heights and quaternionic phase of
the barriers. At this point we observe that the condition
for the incident energy to be “higher than the barrier” in
the usual sense is

E% > |V, |2+ |Vs)2. (10)

The results given in Table I are for T and 7", the trans-
mission coefficients for plane waves incident from the left
and right, respectively, of the two barriers. Barrier 1 ex-
tends from =z = a to z = b, and barrier 2 from z = b to
z = c. The expressions in Ref. [3] allow arbitrary val-
ues for these parameters, but the results shown are for
a=0,b=2, and ¢ = 4, i.e., barriers of the same width.
It makes no difference to our general conclusions if this
is not so. We let the barriers take the most general flux
conserving form:

Vi=VP 44V, i=1,2 (11)

where the V" are real numbers (which is required to
avoid the presence of sources or sinks of flux), and the
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TABLE I
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Representative results for the left and right incident plane-wave transmission coef-

ficients from a compound (double) square barrier, T and T’ respectively, for various values of the
potentials. In each case |T|2 = |T"|?, so only |T|? is given. The energy of the incident wave is ten
units, in each case higher than the total barrier height.

/ 2

< Vi VP v T T IT|

5 0+10 6 0+10 —0.463 +10.832 —0.463 + i0.832 0.907
5 1+ 140 6 1+10 —0.421 +90.849 —0.421 + i0.849 0.898
5 4+i4 6 4+id 0.959 + i0.275 0.959 +40.275 0.996
5 7410 6 0+147 0.290 — 0.441 0.131 — i0.512 0.279
5 0+ 0 6 0+i7 0.746 +10.233 0.746 +i0.233 0.610
0 6 + i6 0 7417 0.583 +10.398 0.583 + 0.398 0.498
0 9+ 10 0 0+19 0.077 +40.993 —0.626 +40.775 0.992

Vﬁ(’) are complex numbers, given as an ordered pair in
the table.

One may draw from the table the following inferences:
(i) If the quaternionic parts of the potentials are set to
zero, then the results of CQM are obtained. This is con-
sistent with previous results, as the asymptotic complex
states are completely decoupled from any quaternionic
piece in the potential in this limit. (ii) If the (complex)
phases of the Vé’) are equal, then we again obtain T' = T,
as in CQM. In this case the wave traversing the barrier
does not encounter a change in phase anywhere. If we
set either Vé’) =0, then T' = T" as well. (iii) If the Vﬂm
have different complex phases, then we will obtain, in
general, a phase shifted result for 77, that is, T = e**T”,
with ¢ # 0 a real number. This result is a new feature of
QQM. Unfortunately, it is extremely difficult to explic-
itly see this result from the analytic expressions because
of the size of the result for the compound barrier.

This result implies that there may well be observable
consequences of QQM, should it be possible to arrange an
experiment to look for a phase change in a beam which
has traversed two barriers in different directions. This
conclusion, however, begs two questions: Why was there
no phase change in the experiment of Perez and what
does it mean for a potential to be quaternionic? We
have no clear answer to the second of these questions,
other than to remark that if the underlying dynamics of
nature is quaternionic it is not unreasonable to suggest
that modeling the scattering of a particle from some tar-
get via a potential would require a quaternionic phase to
be introduced. To discuss the experimental nonobserva-
tion of a phase change, we are led to a conclusion similar
to that of Klein [6]. Since the targets used in the exper-
iment were very many neutron wavelengths thick, it is
reasonable to assume that the average of many interac-
tions in the material may be approximated by square bar-
riers. Then the simple analysis here suggests that the ex-
perimental results are explicable if we conclude that the
(quaternionic) phases of the interactions are the same.
It is therefore worth reiterating the suggestion of Klein
that an improved experiment may be done by subject-
ing the parts of the split neutron beam to the different
interactions of nature (gravitational, strong, and elec-
tromagnetic) in permuted order. This might be done,

for instance, by allowing one beam to pass through a
gravitational potential, followed by an electromagnetic
field, and then a metal target, while the other encoun-
ters them in a different order. Such an experiment may
be difficult to perform, but seems to be a better place
to look for QQM than has been done before. We em-
phasize that these considerations have not been derived
previously from the wave mechanical formalism which we
have employed.

We note in passing here that the experiment of Ref. [5],
although not an effective test of QQM for the reasons
outlined here, remains a very elegant demonstration of
the role of coherence in quantum mechanics (of either
complex or quaternionic variety).

IV. CHANGE OF THE AMPLITUDE
OF THE TRANSMISSION COEFFICIENT?

In this section we present an intriguing possibility. It
may be possible to find a situation where the magnitude
of the transmission coefficient is altered by changing the
direction of travel across a potential barrier. We will de-
rive here a necessary condition for this to occur, although
it is fair to warn the reader that we do not know how to
derive a sufficient condition, and we have not been able
to construct an explicit example of a system exhibiting
this feature.

We first show that this result cannot occur in CQM.
If ui(x), i = 1,2 are the two linearly independent (real)
solutions of the Schrodinger equation in a finite region
of nonzero potential [that is, V(z) # 0 for a < = < b,
but vanishes elsewhere], it is straightforward to derive
the result

R = P2®)p1(a) —pT (B)p; (a)
7 (a)p; (b) — p1 (b)p3 (a)’
with

(12)

ul(z
pf(z) = wi(z) + %) (13)
(It is easier to see what is going on by looking at R rather
than T, but the two are of course linked by the relation
|R|2+|T'|? = 1.) Under inversion of reflection as discussed

in Sec. I, pf(a) « pF(b), and R changes at most by a
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phase, which follows directly from Egs. (12) and (13).

We now turn to the equivalent problem in QQM. We
may use the first of the Egs. (9) to eliminate ®4 from the
problem. We thus obtain a single fourth-order equation
for ®,:

* 2 *
M _ ( B ;) (I)'” ((Vﬂ ),) —2V, — (Vﬁ )" "
V3 Vi

B

(14)
where
F(z,BE) = |Va|* + (Vo)? — E2 - V! + 2V (“/f*)
"N 2 "
+2(E—Va) @ —(E—Va)(VB) )

Vi Vs

Finding solutions of this equation is, except for a few
simple cases, obviously a difficult task. We can, however,
make an observation which will be of use later; if the
quantities

v V)
Vi Vi

(15)

are real, then the solutions of Eq. (14) are also able to be
written as real functions, as all of the coefficients of the
equation are real functions of z. If we write the general
solution of Eq. (14) as
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Do (z) = Arus () + Agua(z) + Azuz(z) + Aguy(z),
(16)
then we may write
E — Vo(z)|ui(z) + ul/(z
8y (z) — 4, B~ Ve@u(a) + (@) )

-Vi (z)

Here there is a sum over ¢ when it is repeated in a prod-
uct, and the second equation follows from the first of
Egs. (9). Matching the boundary conditions at = = a
and b as before we can solve for R:

R= A7 (a), (18)
where the A; satisfy the matrix equation
Ay Pi 1 (a) Py (a 3(a) p (a) (a) Ay
|42 2| 4@ ai(a) g5(a) ai(a) | | A
As Pl (b) p2 (b) p3(b) Py (b) As
Ag g’ (b) ¢F (b) ¢ (b) af (b)) \Aa
2
0
=1 (19)
0

The p’s and ¢’s appearing in Eq. (19) are given in terms
of the u; by

pEE) =@ £
(20)
qﬂmﬂwm+w—nmmnciq?>
B
T2 [+ (B~ Va)ul(z) — Vi (z)ui(a)]

Now, using Eqgs. (18) and (19) it is possible to write the
reflection coefficient as

R= det M

where the quantities P;; and @Q;; are given by
Pi; = p; (a)p; (b) — pj (a)p; (b)
and (22)
i =4 (a)g; (b) — ¢f (a)g; (b).

Under inversion Q;; — —Q;;, but the behavior of the P;;
is more complicated. If we expand out the expression for
the P;; above in terms of the u; we obtain

—P12Q34 + P13Q24 — P14Q23 — P23Q14 + P24Q13 — P34Q12 (21)

Py = [0 (8) = 5 (a)us(b)]
(@) (8) + s (@) )
—u (@)u(6) — () (1)
~ 5 (@) () = (@)us ()] (23)

It is now obvious that, if the u; are all real, then the swap
k — —k, a < b simply corresponds to F;; — —F;;. How-
ever, the sufficient condition for the u; to be real, namely
that the quantities in (15) are real, ensures that the Q;;
are also real. [See the explicit expressions (20) and (22).]



46 OBSERVABILITY OF QUATERNIONIC QUANTUM MECHANICS

Since det M is invariant under this swap, we see that R
simply changes by at most a phase under inversion of
reflection. Hence our result: a necessary condition for
|R| to change under inversion of reflection is that the
imaginary part of at least one of the quantities in (15)
be nonzero. Unfortunately, we can show via an example
that this condition is not a sufficient one for |R| to be
modified in this way. We also mention that the examples
explicitly worked in the literature, the square barrier (3]
and the § function [2] both have |R| constant, neither
satisfying our necessary condition.

We attempted to investigate the general expression for
R using algebraic manipulation programs when the u;
are complex-valued functions. We found that there is no
simple general transformation property of R under inver-
sion. In particular, there is no obvious (algebraic) reason
for | R| to remain unchanged for a sufficiently complicated
potential. However, to be sure we would have to take the
most general expression for R, calculate its modulus, and
then see if it is invariant. Unfortunately, the expressions
obtained are too unwieldy to carry out such an analysis.
(One might suggest to the contrary that one may model
any potential by a sequence of square barriers of varying
heights and phases. Then, since we have seen that for
compound square barriers |R| is a constant, this suggests
that the result may be generally true. The caveat to this
is of course whether the argument survives the limiting
process.)

We may show by an explicit example that our nec-
essary condition is not a sufficient one. Take V, = 0
and Vj = Vpe'*®, with 4 a real constant, which produces
a smoothly varying phase across the barrier. Then the
fourth-order Schrédinger equation (14) takes the form

M — 25ud” — u?dl — 2ipEP),
+ (V¢ — E? — W®E) @, = 0.

This (complex) constant coefficient differential equation
may be solved in the usual way, giving an auxilliary quar-
tic equation. We put several such examples into a numer-
ical routine to calculate R. We found in each case that
the numerator of Eq. (21) was pure imaginary and in-
variant under ¥ — —k,a < b. We conclude that there
are some nonobvious cancellations occurring in the real
part of the expression for R.

For a specific example, if we take E = 5 units, Vj =4,
and p = —1, the auxilliary equation becomes

A 4203 - 2241060 —-14=0,
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which has solutions A\; = —1.37¢,A2 = 1.96i,A34 =
+1.88 — 1.29:. There are no linear combinations of the u;
which are real, but for any choice of a and b we found nu-
merically that |R| was invariant. If one looks at Eq. (23)
it can be seen that the equation is invariant under com-
plex conjugation and x — —z, which is equivalent to
time-reversal (T') and parity (P) transformations. One
might thus suppose that it is this PT symmetry which
is responsible for “protecting” R. To check if this is so
we tried a potential of the form V, = 0, Vs = Voelk+in)z,
with u and p real numbers. In this case there is no PT
symmetry, but we find numerically for various input val-
ues of u and p that |R| is still invariant.

V. CONCLUSIONS

By considering simple one-dimensional models we have
discussed the possibilities of experimental determination
of the existence of QQM. We illustrated the interesting
point that QQM allows a phase change in the transmis-
sion coefficient when the barrier is reversed, which does
not occur in CQM, thus placing some previous work on
a firmer mathematical footing. We also presented some
work aimed towards finding a system for which the mag-
nitude of the transmission coefficient might change upon
reversing the barrier, proving a necessary condition for
this to occur. We leave it as an open question as to
whether a sufficient condition exists, or whether |T'| is al-
ways invariant under such a change. The algebraic com-
plexity ensures that this is a far from simple task.

We have shown also that it is not necessarily the case
that QQM is ruled out by experimental nonobservation
to date, and suggest reexamination of the possibility of
performing an interferometry-type experiment with dif-
ferent types of interactions.

Note added in proof. Since the completion of this work
we have received a draft of Quaternionic Quantum Me-
chanics, by S. L. Adler (Oxford University Press, Lon-
don, in press) in which a successful generalization of some
of the results in this paper is presented.
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