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A local hidden-variable model is exhibited for the experiments by Aspect, Grangier, and Roger [Phys.
Rev. Lett. 47, 460 (1981); 49, 91 (1982)] and Aspect, Dalibard, and Roger [Phys. Rev. Lett. 49, 1804
(1982)] measuring polarization correlation of optical-photon pairs. The model agrees with quantum-
mechanical predictions for all measurable quantities even with ideal polarizers and detectors, and em-
phasizes the need of a high degree of directional correlation, besides the correlation of spin (or polariza-
tion or other quantities), in any test of locality. It is proved that homogeneous inequalities, involving
only coincidence detection rates, cannot discriminate between quantum mechanics and local theories,
which invalidates all previously used empirical tests. The role of supplementary assumptions, like the
so-called no enhancement, for the derivation of Bell’s inequalities is discussed. Finally it is conjectured
that quantum mechanics might be compatible with local realism, if we assume that not all self-adjoint
operators represent observables and not all density operators represent states.
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I. INTRODUCTION

Several Bell inequalities [1] have been put to the test in
the past few years and have been violated by experiments.
(For reviews see Refs. [2—-4]). As a consequence, it has
been claimed in dozens of books and hundreds of articles
that local-hidden-variable (LHV) theories have been
empirically disproved or that local realism has been refut-
ed. The purpose of this article is to analyze whether this
repeated claim is correct.

The plan of the paper is as follows. In Secs. II and III
we exhibit LHV models in agreement with quantum
mechanics (QM) for all performed experimental tests of
Bell inequalities. The existence of the models proves that
such experiments are not suitable to discriminate between
quantum mechanics and the whole family of LHV
theories and, consequently, the LHV theories have not
yet been disproved.

The model of Sec. II emphasizes the need of good
directional correlation between the two signals (particles)
used in the experiments. As the main class of experi-
ments where violations of Bell inequalities have been re-
ported consists of measuring polarization correlation of
optical-photon pairs emitted in atomic transitions, I have
analyzed—following a previous paper [S]—typical ex-
periments in this class, such as those performed by As-
pect and co-workers [6-8]. In Ref. [5], I exhibited a
LHV model predicting almost the same as quantum
mechanics for these experiments even in ideal situations,
that is, using perfect polarization analyzers and 100%
efficient detectors. Here I propose an improvement of the
model that now agrees exactly with quantum-mechanical
predictions for all experiments measuring polarization
correlation of optical-photon pairs.

The model of Sec. III emphasizes the need of using
measuring devices sufficiently close to ideal. In that sec-
tion we show that no experiment measuring only coin-
cidence rates may disprove LHV theories. Both the need
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of directional correlation and the need of efficient
measuring devices are rather well-known facts since the
early studies of the problem, especially after the paper by
Clauser and Horne [9]. However, these facts have been
almost ignored in the recent literature.

The reason for the (wrong) claim that LHV theories (or
local realism) have been empirically refuted is that people
have considered restricted families of LHV theories that
fulfill, in addition to Bell’s conditions of locality [see
below, Egs. (2.6) and (2.7)], supplementary constraints
like the Clauser and Horne ‘“‘no-enhancement” assump-
tion [9]. The use of the auxiliary assumptions has be-
come a polemic matter, where personal opinions play a
prominent role. Indeed, these assumptions have ranged
from very plausible, almost compelling, to absolutely
unjustified. In Sec. IV, I shall try to clarify the subject.

As stated above, the need of directional correlation be-
tween the particles involved in the experiments, in addi-
tion to polarization correlation, has not been sufficiently
emphasized. This problem is revisited in Sec. V of the ar-
ticle.

The loophole for the refutation of LHV theories due to
the use of nonideal devices, especially the low efficiency
of optical-photon detectors, is widely recognized, but it
has been generally considered a minor practical problem.
In Sec. VI, I argue that this is not so by exhibiting a natu-
ral hidden-variable model of detection that predicts
weaker correlations with high-efficiency detectors than
with low efficiency ones. The model agrees with QM in
the low-efficiency (linear) region but departs from it at
high efficiencies and genuine (i.e., not involving supple-
mentary assumptions) Bell inequalities are never violated.

Finally, in the last section, I discuss the consequences
of this work. In particular, I conjecture that perhaps
quantum mechanics is, after all, compatible with LHV
theories, as defined by Bell.

In order to avoid misunderstandings, I should em-
phasize that the purpose of this article is not the ambi-

3646 ©1992 The American Physical Society



46 CRITICAL ANALYSIS OF THE EMPIRICAL TESTS OF . ..

tious one of proving that LHV theories able to interpret
all experiments in the quantum domain actually exist, but
the more humble aim of pointing out that the impossibili-
ty of such theories has not yet been shown. That is, we
want to prove that the problem of LHYV theories is still
open, contrary to the received wisdom.

II. LOCAL HIDDEN-VARIABLE MODEL
FOR THE EXPERIMENTS MEASURING
POLARIZATION CORRELATION
OF OPTICAL-PHOTON PAIRS

For the sake of clarity I shall consider the experiment
by Aspect, Grangier, and Roger [7], which produced the
maximum violation of a Bell inequality ever reported (by
40 standard deviations). The experiment involved two-
channel polarization analyzers and the following coin-
cidence rates were measured with polarization analyzers
at (several pairs of) angles a and b: N, (a,b) in the
transmission channels of both analyzers; N__(a,b) in
the reflection channels of both analyzers; and
N, _(a,b)[N_,(a,b)], in the transmission channel of
the first (second) analyzer and the reflection channel of
the second (first) analyzer.

Although not reported [7], it is also possible to mea-
sure single rates in these experiments. We may assume
too that it is possible to measure, or estimate, the decay
rate in the source. Then, the relevant quantities measur-
able in the experiment are the coincidence probabilities
pij(a,b) and single probabilities p;(a) and p;(b), where i
and j stand for either + or —. They are obtained as ra-
tios of the corresponding counting rates by the decay
rate.

The quantum-mechanical predictions for these quanti-
ties are [2]

p++(a,b)=p__(a,b)
=n,(Q/87)alel, €t +€ €: F cos(2a —2b)],
p+-l(a,b)=p_,(a,b)
=nm(Q/87) ale' €4 —€' € F cos(2a —2b)],
(2.1

pila)=p_(a)=(Q/8m)n €l ,
P (b)=p_(b)=(Q/8m)n,€% ,

where we have assumed identical lens systems in both
sides of the apparatus, covering a solid angle Q each.
(This is the usual practice and, in any case, our analysis
can be extended to experiments with two different angu-
lar apertures). The solid angle is related to the half angle
@ by

Q=27(1—cosp) . (2.2)

The factors F(¢) and a(@) represent the depolarization
and the angular correlation, respectively. The first factor
[10] takes into account that the polarization correlation
of a photon pair decreases when the angle between their
wave vectors departs from 7. The second factor is of or-
der unity in the experiment considered here, due to the
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three-body character of the photon emission by the atom,
and this fact is crucial for the existence of a LHV model.
[In sharp contrast, @ may be much larger in a two-body
decay, the product a(@)Q /4 being of order unity.]

The parameters €, €/ (7;) measure the efficiencies of
the polarization analyzers (detectors). For ideal experi-
ments all these parameters are equal to 1. It is useful to
define the new parameters

17,6 €4.aQ el e&

F, (2.3

€

Il

" anmel Ampe )’ T e
so that every possible experiment can be represented by a
point in a plot of € against 7, as in Fig. 1.

The explicit forms of the functions a(g) and F(¢) de-
pend on the multipole nature of the photon emission pro-
cess. In the experiment discussed here as well as in most
polarization correlation experiments, both the initial and
the final atomic states have zero angular momentum and
the decay proceeds via an intermediate state of angular
momentum 1. In this case, the functions a(¢) and F(g)
are

al(@)=1+Lcos’p(1+cosp)* ,
(2.4)
F(p)=1—2(1—cosp)® .

The expression of F(¢) is cumbersome [10], but the ap-
proximation here reported is very good in the most
relevant range 0<¢@<7/6. The quantum predictions
(2.1) and (2.4) for the experiments under discussion never
violate a genuine Bell inequality like

pla')+p(b)=pla,b)+pla,b’)+pla’,b’)—pla,b’) (2.5

(see Fig. 1). This fact was already pointed out by Clauser
and Horne [9], but as the Bell inequalities are not
sufficient conditions for the existence of LHV models, it

FIG. 1. Polarization correlation vs angular correlation of
photon pairs. In experiments using photons from atomic emis-
sions, the parameters € and 7 are related to the functions Q(g),
alg), and F(@) and the efficiencies of polarization analyzers and
detectors by Egs. (2.3). The solid line corresponds to atomic
emissions of the type J=0—1—0 [with a and F given by Egs.
(2.4)] and the dashed line corresponds to processes
J=1—1-—0, both with ideal polarizers and detectors. Real ex-
periments lie at the left of the corresponding curves. The
dashed region at the upper right corner is forbidden by the Bell
inequality (2.5). The small circle at the left upper corner
represents the experiment by Aspect, Grangier, and Roger [7].
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has remained unknown whether these models exist. Here
I prove the existence by constructing an explicit one. Ac-
cording to Bell, a LHV model consists of a set of hidden
variables A and some functions p(A), Pi(A,a), Pi(A,b),
with j =+ or —, fulfilling the conditions

p(M)=0, [p(Mdr=1, 0<Pi(A,a),P;(A,b)<1.

(2.6)

The measurable probabilities should be obtained as fol-
lows:

pita,b)= [ P(k,a)P,(A,b)p(R)dA
pila)= [ Pi(k,a)pRdr , (2.7)
pb)= [P (Ab)p(M)dA .

I shall exhibit a LHV model in perfect agreement with
the quantum-mechanical predictions (2.1) for ideal exper-
iments, i.e., with ej+=6’;=nj=1. We take A to be the
set of four variables {u,,u,,v,v,} With ranges

U €10, 7] v, v, €[0,1] (2.8)
and the functions mentioned above are given by
p=7 *[1+cos(2u;—2u,)18(v,—v,) ,
B if {,uj—afiy (mod7) and v; <§
Py(ha)= 0 otherwise
(2.9)
P _(Ma)=P, (Aa+m/2),

and similar expressions for P, (A,b) and P_(A,b).
It is a trivial matter to obtain the predictions of the
model in terms of the parameters f3,7,£ and the result is

piyla,b)=p__(a,b)

=7 B2E*[4y>+sin*(2y )cos(2a —2b)] ,
p+_la,b)=p_,(a,b)=p, (a,b+m/2) (2.10)
pla)=p_(a)=p (b)=p_(b)=2yBE/7 .

These probabilities agree exactly with the quantum-
mechanical predictions, Egs. (2.1), provided the parame-
ters fulfill the conditions

E=a!, sin2y)=2yVF, yB=Qa/16. (.11
In the experiment, Egs. (2.4) and (2.11) lead to
y=V2Q /47, B=V2ar/850.83, Q<<drw, (2.12)

which shows that the conditions (2.6), imposed by local
realism, are indeed fulfilled. In particular, B is smaller
than 1, as it should be. In fact, for lens systems covering
a small solid angle, B remains close to 0.8, while it de-
creases for large solid angles. On the other hand, y
remains always smaller than 7 /2. These features are also
true if we use the exact form of F(¢), as given by Clauser
et al. [10], instead of the approximation (2.4).

The LHV model is able to reproduce also the
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quantum-mechanical predictions for other quantities not
measured in the experiment, such as coincidence proba-
bilities in the two channels of the same analyzer, predict-
ed to be zero by quantum mechanics, as well as triple or
quadruple coincidence probabilities, also predicted to be
zero. (Actually, the model predicts a nonzero value for
the last coincidence probabilities at very large solid an-
gles, well above those actually used in the experiments,
but very likely a LHV model could be found reproducing
the quantum results also in this case.)

Similar LHV models can be constructed for all other
experiments measuring polarization correlation of
optical-photon pairs, which have used one-channel
analyzers. In these experiments [2-4], besides the coin-
cidence rates N(a,b) with the two polarizers in place, the
coincidence rate was measured with one polarizer re-
moved, N(a,«) or N(w,b), or with both removed,
N(w,o). An explicit model for these experiments has
been proposed recently [11], which allows the calculation
of the corresponding probabilities p(a,b), p(a,x),
p(oo,b), and p(o, ). The model contains, besides the
functions P(A,a) and P(A,b), given by Egs. (2.9) (the new
functions P correspond to the old P, ), the additional
functions

ale)Q/4m if v;<a !, j=1or2
Pi(A, =)= |, otherwise ,
(2.13)

which allow the calculation of the coincidence probabili-
ties with zero, one, or both polarization analyzers in
place. It is a simple matter to check that this model
reproduces exactly the quantum-mechanical predictions
for these experiments.

Some of the experiments [2] have used atomic decays
of type J =1—1—0, instead of J=0—1—0 used by As-
pect, Grangier, and Roger [7], which modifies the depen-
dence on ¢ of the factors @ and F [no longer given by
Egs. (2.4), see Fig. 1]. We have not worked a LHV model
for these experiments, but it is surely possible. Indeed, as
shown in Fig. 1, these experiments lie still farther from
the region forbidden by the Bell inequality (2.5).

III. HOMOGENEOUS AND INHOMOGENEOUS
BELL INEQUALITIES

In this section we exhibit a general LHV model that
agrees with quantum predictions for all performed exper-
imental tests of Bell inequalities. This model is possible
because all inequalities actually tested have been homo-
geneous, comparing several coincidence probabilities
among themselves, while genuine Bell inequalities should
be inhomogeneous, that is, they should compare coin-
cidence probabilities with either single probabilities or
numbers. For instance, the Bell inequality derived by
Clauser et al. [10] is inhomogeneous,

|E(a,b)+E(c,b)+E(a,d)—E(c,d)| <2,
(a,b)

(3.1
E(a,b)=p,  (a,b)+p__(a,b)—py

—p_4la,b),
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where p, , etc. have the same meaning as in Sec. II. As-
pect, Grangier, and Roger [7] quoted this inequality but
the one they actually tested was the homogeneous in-
equality

|E'(a,b)+E'(c,b)+E'(a,d)—E'(c,d)| <2 ,
E'=(N,y+N__—N,_—N_,)N,,+N__
+N,_+N_,)7",

(3.2)

N, 4, etc. being coincidence counting rates. The need of
inhomogeneous inequalities can be seen from the follow-
ing argument.

We define an Einstein-Podolsky-Rosen [3] (EPR) ex-
periment as the preparation of a state of two particles
and the measurement (at spacelike separation) of a finite
set of pairs of observables, one member of the pair be-
longing to the set {a;,j=1,...m} of observables of the
first particle and another member to the set
{by,k=1,...n} of the second particle, all observables
having range {0,1}. The observables a; are not pairwise
compatible, in general, and the same is true for the b, so
that different pairs should be measured in different runs
of the experiment (with identically prepared two-particle
systems). Thus, as a result of one run we should obtain
the following three independent probabilities: pla;by),
that both observables take the value 1 and p(a;) [p(b,)],
that the first [second] observable takes the value 1 with
any value [1 or 0] for the second [first] observable. We
also demand an operational meaning for the observables
involved by requiring that each one corresponds to an ac-
tual apparatus that records a count whenever the observ-
able takes the value 1 for a given pair of correlated parti-
cles produced in the source.

We argue that all performed experimental tests of Bell
inequalities, at least those in the optical domain, have
tested homogeneous inequalities of the form

S ciplab) >0, (3.3)
ik

where ¢, are real numbers. That is, these inequalities do
not include the single probabilities pla;) or p(by). (As
stressed above, genuine Bell inequalities are always inho-
mogeneous.)

The probabilities p(a;b; ) should be measured as ratios
between coincidence counting rates and the production
rate in the source. However, the homogeneous nature of
(3.3) allows tests of that inequality measuring only coin-
cidence counting rates, which involve far less uncertain-
ties than measuring single rates. Also, the inequality is
insensitive to many scale factors, such as detector
efficiencies, angular apertures, etc. All these features are
extremely convenient from the practical point of view,
and this fact explains why all performed experiments
have tested homogeneous inequalities. In contrast, test-
ing inhomogeneous inequalities demands devices close to
ideal.

We define a scaled-LHV model of an EPR experiment
as consisting of one (or several) real variables A and
several real functions p(A), P(k,aj ), and P(A,by),
fulfilling the conditions [compare with (2.6)]
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[p(Mdr=1, p(1)20, P(X,a;)20, P(A,b,)>0,
(3.4)

and such that the model predictions for the functions
pla;b,) are obtained as

pla;b)= [ p(MP(A,a;)P(A,by)dA . (3.5)

Instead of (3.4) we may write the conditions in the form
p'(A)20, 0=P'(A,a;)=1, O=P'(A,b)=1, (3.6)

with p’, P'(A,a;), and P’(A,b;), giving the same predic-
tion Eq. (3.5). In fact, for a fixed p(a;b;), it is always
possible to find p’, P'(A,a;), and P’(A,b;), fulfilling (3.5)
and (3.6) given p, P(A,a;), and P(A,b;), fulfilling (3.4)
and (3.5), and vice versa.

Following Bell, a LHV model is defined as a scaled-
LHYV model fulfilling, besides (3.4) [or (3.6)] and (3.5), the
conditions

[p(M)dr=1, P(ra;))<1, P(Ab;)<1. (3.7

We can prove the following results.

Theorem 1. Every EPR experiment admits a scaled-
LHYV model.

Proof. We associate with the pair of observables
{a;,b, } the real number

rx=[n(j—1)+k]/[mn+1] (3.8)
and define the functions involved in (3.4) by

_J1 if A€[0,1]
pA)= [0 otherwise , 3.9)

P(Aa;)= 3 qla;b)8(A—ry), P(A,by)=3 8(A—ry),
i i

(3.10)

where g(a;b; ) is the quantum prediction for p(a;b, ), and
8(x) is the function

(2¢)7 1% if —e<x<e

0 otherwise, with e<[2mn+2]""!. 3.1

8(x)=,

It is easy to see that this scaled-LHV model agrees exact-
ly with quantum mechanics for the considered EPR ex-
periment, which ends the proof.

Theorem 2. If the inequality (3.3) is violated by quan-
tum mechanics, it is also violated by a LHV model.

Proof. We consider the LHV model with p(1) given by
Eq. (3.9) and the functions P(1,q;) by

P(h,a;)=V(2¢) 3 q(a;b)8(A—r) ,
: (3.12)

P(R,b, )=V (2€) 3, 8(A—ry) .

This is a LHV model that violates (3.3) if QM does.
The reader may wonder at the fact that, if we include
the identity observables I (taking always the value 1) then

pla;I)=p(a;), p(Ib,)=p(b;). (3.13)
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In this case the (inhomogeneous) Bell inequalities also
have the form (3.3), which leads to a contradiction be-
tween Bells’ theorem and ours. Actually, if we were in-
cluding the identity observable I, we should add to the
conditions (3.4) [or (3.6)] and (3.7) the following:

P(AI)=1, (3.14)

and our theorems could not be proved. Therefore we
have explicitly excluded the identity from (3.3) by our re-
quired operational definition of the observables. Thus
our theorems hold true for all inequalities that can be
tested empirically by measuring only coincidence count-
ing rates.

We conclude that it is not possible to discriminate be-
tween quantum mechanics and LHV models by means of
experiments designed to test only homogeneous inequali-
ties like (3.3), contrary to frequent claims in the litera-
ture. Consequently, none of these experiments can refute
local-hidden-variable theories.

From theorem 1 we see that the conditions (3.7) are
essential for the derivation of genuine Bell inequalities.
From theorem 2 we see that homogeneous inequalities
are insensitive to the scale and do not properly take into
account the constraints (3.7).

IV. INEQUALITIES INVOLVING
SUPPLEMENTARY ASSUMPTIONS

Many readers may be surprised by the contradiction
between the claimed violation of Bell’s inequalities by the
experiments measuring polarization correlation of
optical-photon pairs, and the existence of LHV models in
perfect agreement with QM for the measured quantities,
as those exhibited in Secs. II and III. The existence of
the models clearly shows that the commented experi-
ments cannot discriminate between quantum mechanics
and LHV theories. What is really surprising is that this
fact was already pointed out by Clauser and Horne [9] in
1974 and, nevertheless, many people have maintained the
view that local realism has been empirically refuted. Of
course, the existence of a “low-efficiency” loophole [2-4]
that could only be blocked with detectors having
efficiency above 82% [12] has been widely recognized.
For instance, at the end of the report of the experiment
by Aspect, Grangier, and Roger [7], commented on in
Sec. 11, it is stated that ‘“Only two loopholes remain open.
The first one, exploiting the low efficiency of detec-
tors. .. . The second one, exploiting the static character
of all previous experiments. .. .”” (The second loophole
was blocked in a subsequent experiment [8].) This state-
ment is clearly wrong, because the LHV model exhibited
in Sec. II relies upon none of these loopholes. In particu-
lar, the model agrees with quantum predictions even for
100% efficient detectors. The emphasis on the low-
efficiency loophole has obscured the most relevant fact,
namely that experiments of the type above described are
not suitable tests of the whole family of LHV theories
even with ideal apparatuses.

The confusion rests upon the unclear physical meaning
of the auxiliary assumptions involved in the interpreta-
tion of the experiments. It is true that any real experi-
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ment involves a lot of assumptions about the functioning
of the measuring devices, the origin of the noise, and so
on. But it is obvious that this fact does not justify the use
of whatever assumption one wants, and that every as-
sumption used for the interpretation of the experiments
should be carefully scrutinized. In any case, I agree that
the role of auxiliary assumptions about hidden variables
is not at all trivial, as shown by the historical develop-
ment of the subject. In fact, as is well known, von Neu-
mann [13] very early proved a theorem of impossibility of
hidden variables. However, 20 years later Bohm proved
by means of a counterexample that the theorem involved
assumptions that were too restrictive. Additional impos-
sibility theorems were proved in the decade that followed
(by Gleason, Jauch, etc.) involving weaker assumptions
than von Neumann’s. These theorems were also criti-
cized for using too-restrictive assumptions, this time by
Bell [14], who proved that general (contextual) hidden-
variable theories are always possible. In view of this re-
sult Bell himself [1] changed his interest to the family of
local hidden variables. The mistake made in the past
with respect to the whole family of hidden variables has
been repeated in recent times with the local ones. It has
been claimed many times that local theories have been
empirically refuted (modulo the low-efficiency loophole).
My aim is to show that, again, these impossibility proofs
involve unnecessarily restrictive assumptions.

When the search for experimental tests of the Bell ine-
qualities began, after Bell’s work [1], it was soon realized
that only extremely difficult experiments might actually
show violations of the Bell inequalities. Indeed, after
several years of work no experiment was found able to
discriminate between quantum mechanics and the whole
family of LHV theories. Then the idea was put forward
[10] of using supplementary assumptions about the be-
havior of the hidden variables in order to derive inequali-
ties able to contradict quantum mechanics in real experi-
ments. The auxiliary assumptions have been discussed
extensively [3], but as some confusion still exists, a
clarification is worthwhile in the light of the models of
Secs. II and III.

Several related supplementary assumptions have been
proposed by different authors. All the LHV models de-
scribed in Secs. II and III violate, like quantum mechan-
ics, some inequality derived from one of these assump-
tions, plus Bell conditions for LHV theories, Egs. (2.6)
and (2.7). As these models do not violate Bell’s condi-
tion, they should violate every one of the supplementary
assumptions. In the following we show explicitly the
violation of the four more popular auxiliary assumptions.

(i) If a pair of photons emerges from the polarizers, the
probability of their joint detection is independent of the
polarizer orientations a and b (Clauser et al. [10]). With
the notation used in Sec. II, this can be written

P (A, a)P,(A,b)=M(L) . 4.1)

Violation of (i): In the models P(A,a) is given either by
Eq. (3.12) or by P, (A,a) or P_(A,a) of Eq. (2.9) [and
similarly for P(A,b), substituting b for a]. It is clear that
the product (4.1) depends on a and b, although its aver-
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age over A, which is the measurable quantity, does not
depend.

(ii) For every pair of emissions (i.e., for each value of
A), the probability of a count with a polarizer in place is
less than or equal to the corresponding probability with
the polarizer removed (no-enhancement assumption of
Clauser and Horne [9]). That is,

Pj(A,a)<P(A, ) . (4.2)

Violation of (ii): Any of the functions P;(A,a) of Eq.
(2.9) surpasses the value of P;(A, ) given by Eq. (2.13)
for some values of A and a, which means that “enhance-
ment” in detection exists in some cases. Again, the aver-
age over A fulfills no enhancement. The violation is also
obvious in Egs. (3.12) if we substitute a () for a, (a,).

(iii) For every photon in the state A the sum of detec-
tion probabilities in the ordinary and in the extraordinary
beams emerging from a two-way polarizer does not de-
pend on the polarizer’s orientation. (Garuccio and Rapi-
sarda [15].) That is,

P (Aa)+P_(Aa)=M(A) . 4.3)

An assumption similar to this one has been extended
by Grangier, Potasek, and Yurke [16] to experiments in-
volving correlated phases, instead of correlated polariza-
tions, and it has become very popular [17].

Violation of (iii): The sum of P, and P_ given by Eq.
(2.9) is sometimes B and sometimes O depending on the
polarizer orientation a. The same happens in Egs. (3.12)
writing P, (A,a) [P_(A,a)] instead of P(A,a;)
[P(A,ay)].

(iv) The ensemble of actually detected pairs is a faithful
sample of all emitted pairs (Faithful sampling assump-
tion of Aspect, Grangier, and Roger [7]). This assump-
tion is somewhat ambiguous, because the meaning of
“faithful” is not sharp. It seems that we should interpret
it as making reference to the polarization correlation of
all emitted photon pairs, but then it is obviously wrong.
In fact, the photon pairs that are actually collected by the
apertures move in opposite (or almost opposite) direc-
tions and they are predicted by quantum mechanics to
have a strong polarization correlation [this is the reason
for the value close to 1 of the function F defined in Eq.
(2.4)]. In contrast, the average polarization correlation of
all photon pairs is much weaker due to the poor angular
correlation and it gives F~1, as shown in Fig. 1 (right
end of the continuous curve). Actually, Aspect, Gran-
gier, and Roger [7] did not use assumption (iv) as above
stated, but a form of “faithful sample” assumption re-
stricted to the subensemble of photon pairs that have
passed the apertures, as should be clear by their state-
ment that the ratio E /E' [this ratio is the sum of four
counting rates divided by the decay rate, see our Eqgs.
(3.1) and (3.2)] is independent of @ and b. This statement
is close to the assumption (iii) above.

Violation of (iv): The assumption would imply that the
probabilities P(A,a) and Pj(A,a) for the “passed
subensemble” would be given by the ratios P;(A,a)/
P;(A, ) (j=+ or —). But these ratios are sometimes
greater than 1, as explained in relation to the violation of
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(i). Therefore the passed subensemble cannot exist and
“faithful sampling” is meaningless in relation with it.

A common feature of these assumptions is that every
one of them follows from:

(A) A linear extrapolation rule, which I state as follows:
If the probability of a single (coincidence) detection event
is P when measured with one detector (two detectors)
having photon efficiency 7, then the probability measured
with ideal detectors would be P /7 (P /7). I propose this
rule as a precise substitute for the faithful sampling as-
sumption.

(B) A mechanistic picture of the photon, which takes it
to be a (billiard-ball-like) particle that, starting in the
source, either passes undivided through, or is stopped at,
the apertures, lenses, filters, and polarizers. When this
assumption is applied to the experiments under discus-
sion, it allows defining the “ensemble of those photon
pairs such that each member of the pair enters the corre-
sponding aperture.” We shall call this the hypothesis of
the passed subensemble.

The combination of (A) and (B) implies (i) to (iv), as we
prove in the following. Assumption (i) follows from the
fact that, given the experimental set-up, all photon pairs
that have both passed the polarizers [hypothesis (B) im-
plies that this “passage” has a meaning], will arrive at the
detectors. With 100% detector efficiency, the joint detec-
tion probability of these photons would be, therefore,
P=1. With detectors of efficiency 7, the corresponding
probability would be P=1?, i.e., a constant independent
of polarizer orientations. Similarly for assumption (ii).
With ideal detectors, the detection probability of a pho-
ton entering the apertures will be 1 if the polarizer has
been removed. With the polarizer in place the probabili-
ty cannot be greater than 1 and this means no enhance-
ment. Assumption (iii) clearly derives from (A) if the
detectors are 100% efficient, whence it follows also for
n#1 according to (B). The faithful sampling assumption
(iv) seems to be just equivalent to (A) as stated by Aspect,
Grangier, and Roger [7], but we have seen that actually it
involves also the idea of passed subensemble contained in
(B).

We see that, at least, two independent loopholes for the
refutation of LHV theories remain open. The first one,
due to the low efficiency of optical-photon detectors,
makes the faithful sampling hypothesis (A) necessary.
The other one, due to the poor angular correlation makes
the passed subensemble hypothesis (B) necessary. We con-
clude that LHV theories remain possible, after the per-
formed experiments, provided we reject either the
mechanistic or naive corpuscular picture of the photon,
assumption (B), the extrapolation rule (A), or both. We
now comment on the (im)plausibility of these assump-
tions.

The mechanistic view of the photon is so strongly at-
tached to the current quantum paradigm that most
theoretical physicists do not even question its validity
(amongst the exceptions, there are many workers in
quantum optics) in spite of strong arguments against it in
standard quantum theory [18]. Consequently, the auxili-
ary assumptions (i) to (iv) have been considered
equivalent to the faithful sampling hypothesis (A) and
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therefore are taken as very plausible. This has lead to the
erroneous belief that the low-efficiency loophole was the
only one remaining after the celebrated experiment by
Aspect, Dalibard, and Roger [8]. As emphasized before,
this confusion should not exist because the distinction be-
tween the low efficiency and the “poor angular correla-
tion” loopholes was clearly stated by Clauser and Horne
[9]. We think that also the faithful sampling assumption
is very likely false in dealing with photons, as we shall
discuss in Sec. VI.

All these criticisms do not imply that experimental
tests of inequalities involving supplementary assumptions
have been useless. On the contrary, they have been high-
ly valuable, but their real value has been to provide con-
straints on the possible LHV theories. For instance, the
performed experiments on polarization correlation of
photon pairs provide a lot of information about possible
LHY theories of quantum optics. This has allowed us to
develop a local realistic alternative (or reinterpretation)
of quantum optics [19], which explains qualitatively all
phenomena involving the so-called nonclassical behavior
of light. This theory, however, is only at a preliminary
stage and it is not yet possible to know whether it will
agree completely with quantum optics or might be dis-
tinguished empirically from it.

V. ROLE OF LOCALITY
IN THE BELL INEQUALITIES

Genuine tests of LHV theories should always involve
experiments of the type envisaged by Einstein, Podolsky,
and Rosen [3]. In EPR experiments, we should measure
two dichotomic observables (for instance two spin projec-
tions) in two separated regions of space. Now, measuring
“in a region” implies a position measurement, and this
fact has been underestimated until now. Let us consider
a typical EPR experiment: Two signals (that I shall call
particles in the following) arrive at two separated regions,
and if 4; and B; are two observables with range {0, 1} as-
sociated with particle j (j =1 or 2), the experiment con-
sists of measuring the one-particle observables 4;R; and
B;R, and the two-particle ones obtained as a product of
these. Here R; is the observable taking value 1 (0) if par-
ticle j is (is not) inside the corresponding region, and we
define the product of observables to be another observ-
able taking value 1 if, and only if, both terms in the prod-
uct take value 1. With these definitions, the Clauser and
Horne [9] inequality (2.5) should be written

(B,R,)+{A,R,)>{ AR, A,R,)+(B R, 4,R,)

+(B,R,B,R,)—(A4,R\B,R,) ,

(5.1)
where { ) means average value. In order to show a
conflict between quantum mechanics and the Bell in-
equality (3.1), we should find a wave vector |¢¥) and pro-
jection operators 4, B;, R, violating the inequality with

(A4, RY={(Y| AR,V ,
(AR, A,R,)=(¢| AR, A,R,|¢¥) , etc.

(5.2)

The explicit use of the position observables R; may con-
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tribute to clarify the real meaning of the Bell inequalities,
a subject that has been misunderstood many times. For
instance, an inequality like

(B)+(A4,)=(A4,4,)+(B,4;)

+(B,B,)—(A4,B,) (5.3)

might be interpreted without any reference to locality if it
is not explicitly stated that the measurement of 4, and
B, should be made in a region and that of 4, and B, in
another separated region, that is if (5.3) is not understood
as a simplified form of writing (5.1). Indeed, from time to
time, it has been claimed that the Bell inequalities are un-
related to locality, but derive from the mere existence of a
joint probability distribution for four observables, not all
compatible. This error rests upon the confusion between
Bell inequalities like (5.1), valid for all local theories, and
less general inequalities, with the same form of (5.3), valid
only for noncontextual hidden-variable theories. A lot of
misunderstandings should be avoided if Bell’s name were
used only for the first class of inequalities.

Also, the need to antisymmetrize (symmetrize) the
wave function of many-fermion (many-boson) systems has
been considered a source of nonlocality. That this is not
true was pointed out many years ago by Ghirardi et al.
[20] and it can be easily understood with the aid of the
observables R e For instance, it is obvious that if we have
two spin-1 particles localized in two separated regions,
the first particle on the left with spin up, and the second
one on the right with spin down, no problem with locality
exists and (5.1) is indeed fulfilled. Now, if the two parti-
cles are identical and we use an antisymmetrized wave
function (and symmetrized operators), again (5.1) is
fulfilled because the value of every term in that inequality
remains unchanged by the antisymmetrization procedure.
That is, the particle on the left (right) always has spin up
(down), although now the labels first or second are not at-
tached to one position (and spin projection) each. How-
ever, without the introduction of the operators R; we
might be mislead to the conclusion that a Bell inequality
could be violated by the antisymmetrized (entangled)
wave function.

In the proofs of Bell’s theorem it is common to exhibit
a conflict between quantum mechanics and inequalities
like (5.3). However, the proof of a contradiction with
LHYV theories is only valid if (5.3) is understood in the
sense of (5.1), as I have shown. However, this fact is not
clear in most of the published proofs of Bell’s theorem,
which are therefore incomplete. A similar criticism ap-
plies to recent proofs of the theorem without using in-
equalities [21], where only the spin part of some three- or
four-particle system is considered, without any analysis
of the directional correlation of these particles.

In order to test quantum mechanics against LHV
theories it is necessary to find an experiment such that
the quantum-mechanical predictions violate inequality
(5.1). A requirement is that two particles must be pro-
duced with a strong directional correlation, besides good
correlation of spin (or other appropriate quantity). In or-
der to have a good angular correlation we might use
two-body processes and several experiments of this kind
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have been discussed in the literature [2-4], such as
proton-proton scattering, positronium annihilation, dis-
sociation of a diatomic molecule [22], or high-energy
tests. However, all these proposals present great
difficulties, as shown by the fact that 26 years after the
Bell work no experiment has been performed or is
planned for the near future, which is a reliable test of
LHYV theories against quantum mechanics. Therefore, it
is interesting to explore other possibilities. In the domain
of optics it does not seem possible to use two-body pro-
cesses, but a good directional correlation of photon pairs
might be obtained by one of the following two methods.

1. It would be possible to use a three-body decay if the
recoil atom were detected. The proposal is to improve
the performed photon polarization correlation experi-
ments (by Aspect and others) by measuring the polariza-
tion correlation on the restricted ensemble of photon
pairs produced in decays that leave the atom with a well-
defined linear momentum. (This ensemble is well defined
operationally, at a difference with others mentioned in
the literature, like the “ensemble of pairs such that both
photons pass through the apertures,” commented on in
Sec. IV.) These photon pairs will possess a good angular
correlation if the atoms before emission also had a good
definition of momentum.

2. It seems possible to produce entangled photon pairs
with well-correlated wave vectors by parametric down
conversion, and some experiments have been performed
by measuring either phase correlation [23] or polarization
correlation [24]. These experiments might be improved
in order to test genuine Bell inequalities (i.e., not involv-
ing supplementary assumptions).

We comment on the first possibility because it throws
light on the relevance of the LHV models presented in
Sec. II for the atomic cascade experiments. In these ex-
periments we may consider the following set of five com-
patible observables: the two momenta of the photons,
their two polarizations and the momentum of the recoil
atom. In the performed experiments, only the first four
observables have been measured (photon momenta
through the measurement of the angle of emission) so
that the quantum predictions Egs. (2.1) are actually aver-
ages over the final momenta of the recoil atoms. The
question arises whether LHV models exist predicting the
correlation of the five observables in agreement with
quantum mechanics. Equations (2.8), (2.9), and (2.13) of
the models exhibited in Sec. II would then be averages
over the hidden variables of the recoil atom, of the equa-
tions of those more complete models. The answer to the
question seems to be negative, as shown by the following
argument.

We may consider experiments where we select (by a
time-of-flight method, for instance) an ensemble of atoms
having all the same initial velocity. (In the experiments
by Aspect and co-workers [6-8], as well as in most other
experiments, the atoms come from a thermal source and
they have a more or less Maxwellian distribution of ve-
locities.) Then, we select (by recording only coincidence
counts of an atom with one or two photons) those emitted
photon pairs, where the recoil atom has a well-defined
momentum. In this way, we have an operationally
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defined ensemble of photon pairs with known total
momentum. For this ensemble, assumptions (i) to (iv) of
Sec. IV presumably hold [if (A) also holds, which we shall
discuss in Sec. VI]. Choosing the total momentum of the
photon pair in such a way that the photons travel in
directions forming an angle close to 7 [so that the func-
tion F given in (2.4) is close to one], then the quantum
predictions for this ensemble probably contradict a Bell
inequality. This would imply that LHV models for the
experiment are not possible (except relying on the low
efficiency of detectors) so that we have here a possibility
of blocking the “poor correlation” loophole. A detailed
study of this experiment is in progress.

V1. LOOPHOLES DUE TO IMPERFECT
APPARATUSES

Let us now assume that an experiment is possible com-
bining good directional correlation with good polariza-
tion correlation (or correlation of spin or other appropri-
ate quantity) and such that QM predictions contradict
LHYV for this experiment. The counterexample of Sec.
III proves that in order to have a real conflict between
LHYV theories and the results of the experiment, we still
need to use apparatuses close enough to the ideal. (We
should mention that there are two additional loopholes
related to the static nature of the whole device. The first
one is due to the possibility of communication between
the two sides of the measuring apparatus; the third exper-
iment by Aspect, Dalibard, and Roger [8] was devised
with the purpose of blocking this loophole. The second
one is due to possible memory effects in the polarizers
and/or detectors [25,26].)

Imperfections can be associated with both the source
and the measuring devices. There are at least two prob-
lems with the source, which we shall not analyze here,
but we should mention for the sake of completeness. For
clarity we shall consider atomic cascade experiments
such as those analyzed in Sec. II, but the argument is
general. In the first place, if the decay rate in the source
is too high, then different events—each consisting of an
atomic decay followed by a measurement—cannot be
discriminated. The problem of the so-called “‘accidental
coincidences” appears (e.g., detection of two photons,
each coming from a different atom). It is possible to esti-
mate the amount of noise produced by these coincidences
and subtract it, but the procedure is subject to criticisms
[27]. The correct solution is to use a low enough decay
rate, as has been done in several experiments [28]. The
second problem appears if the source is too big and/or
the density of atoms in the source is too high. In this
case some of the photons may suffer rescattering giving
rise to a possible bias in the measured correlation [29].

Difficulties with the measuring devices come either
from the selector (polarizer for optical photons, Stern-
Gerlach for spin-% atoms, etc.) or from the detector, and
it seems that the combination selector-detector is never
good enough. In fact, in the case of photons, where
transmission through a polarizer corresponds to wave be-
havior and detection to particle behavior, it is not strange
that we have better polarizers as the wavelength increases
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(e.g., for optical photons) and better detectors as the
wavelength decreases (e.g., for gamma rays). In the case
of atoms, where the particle behavior is clearly dominant,
the efficiency of the Stern-Gerlach is not enough to make
a reliable experiment (see the end of Shimony’s reply in
Ref. [22]). We have here a hint that the problem of im-
perfections in the measuring devices may have a funda-
mental character rather than being just a practical
difficulty to be solved with future technology. We shall
comment on this in the next section.

From now on we shall discuss only the low-efficiency
loophole, which is most relevant for the atomic cascade
experiments. As is well known, performed experiments
have used detectors with efficiencies in the range
10-30 %, while the violation of the Bell inequality (2.5)
cannot be produced with efficiencies smaller than 82%
[12]. It has been argued that it should be unlikely, almost
conspiratory, if the correlations measured with high-
efficiency detectors were different from the correlations
actually measured with low-efficiency ones [30]. It is not
so. Indeed, the change of correlation with efficiency is
quite natural, almost compulsory, in any hidden-variable
theory, as can be seen by the following argument.

The core of a hidden-variable theory is the assumption
that systems that are identical according to quantum
theory are actually not identical. For instance, two
atoms in the same excited state decay at different times.
According to orthodox quantum mechanics this is a man-
ifestation of the “‘essential acausality of nature.” In sharp
contrast, any reasonable hidden-variable theory should
try to explain atomic behavior causally by assuming that
those atoms are not identical, but our information about
them—derived from what we can control in their
preparation—is identical. In other words, a pure quan-
tum state will correspond to a mixture in the hidden-
variable theory. This is just the meaning of the function
p(A) in the Bell definition of LHV theory, Egs. (2.6) and
(2.7). Obviously, photons having different A will behave
differently, and this includes the whole process of cross-
ing the polarizer and being detected. If one has in mind a
mechanistic picture of the photon, derived from a naive
interpretation of the quantum formalism as discussed in
Sec. 1V, then one is lead to assume that, although the
probability of crossing the polarizer may depend on A,
the detection probability, once the photon has passed,
should not. Hence the assumption (i) of Clauser et al.
[10], discussed in Sec. IV, follows. However, as we have
argued in that section, any LHV theory able to explain
the results of the performed experiments does not allow
writing the full probability as a product of ““probability of
passing’’ the polarizer times ‘‘probability of being detect-
ed” conditional to passage. That is, in any LHV theory
compatible with performed experiments, we must consid-
er that the detection probability of a signal (photon) ar-
riving at a detector does depend on A. This assumption
leads quite naturally to the prediction that the measured
correlation will decrease with detector efficiency, as we
show in the following.

For the sake of clarity I consider a simple hidden-
variable model of a macroscopic detector as consisting of
a sequence of NV atoms with which the incoming signal in-
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teracts one after the other. Let us assume that the activa-
tion of any atom produces a count in the detector. If
o(A) is the (very small) probability that a signal with hid-
den variable A activates an atom (we assume for simplici-
ty that it is the same for all atoms), then the probability
that a signal entering, maybe partially, the detector ac-
tivates the nth atom will be o(1—o )" "' and the proba-
bility of a count

(M= o(l—0)" '=1—(1—0)"=1—exp[—a(AIN] .

(6.1)

We see that for low efficiencies (0N <<1) all single (coin-
cidence) probabilities scale linearly (quadratically) with
the average efficiency n=(¢{(1)),, but it is not so for
higher ones. This means that although correlations
remain the same in the low efficiency (linear) region, they
may drastically change when the efficiency approaches
unity. In order to illustrate this fact more clearly we
present a LHV model for the polarization correlation of
optical-photon pairs, involving the detection Eq. (6.1).

We shall try to reproduce the quantum predictions for
a hypothetical experiment having good directional corre-
lation, such as the experiment involving the detection of
the recoil atom, as discussed in Sec. V. These predictions
are

pila)=py(b)=37,
pla,b)=1Ln’[1+Fcos(2a—2b)],

(6.2)

where for simplicity we consider single-channel polariz-
ers. In order to simplify the model, emphasizing only the
role of the detector efficiency, we have put equal to unity
a number of factors involved in real experiments [com-
pare Eq. (6.2) with (2.1)]. We construct a LHV model
where A consists of two hidden variables {u,u,}, both

with range [0, ], and we use the density function
p(M)=7"2[1+cos(2u; —2u,)] . (6.3)

We begin assuming that our detectors consist of a single
atom each, and the functions P,(A,a ) and P,(A,b) are

Pj(Aa)=0o(A,a)=exp{—Bx],

x=min{|y;—al,lu,—a—nl,lp;—a+wl} . (6.4)
This gives
pila)=p,(b)=(mB) " [1—exp(—7B/2)], 63

pla,b)=p?{1+[B*coth(mB/2)/(B*+4)]
Xcos(2a —2b)} ,
and perfect agreement with QM is obtained by choosing
n=(7B/2)" '[1—exp(—7B/2)],
F=[B*oth(mB/2)/(B*+4)]* .

(6.6)

Now we consider detectors containing a large number N
of active atoms each. Then, combining (6.4) with (6.1),
we get
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Pi(A,a)=1—exp[ —N exp(—fx)]

=] forx<y, Ofor x>y, (6.7)
where
y=B"1nN . (6.8)
[We note that (6.7) is similar to (2.9).] Hence we get
pila)=p,(b)=2y /7,
(6.9)

pla,b)=p?{1+[sin(2y)/2y *cos(2a —2b)} .

We see that perfect agreement with QM is no longer pos-
sible. In fact, if we choose

n=4y /7, (6.10)

in order to have agreement for p,, then we get for N >>1,
pla,b)=1in*{1+[1—7*/124+0(n*)]cos(2a —2b)} ,
(6.11)

which clearly exhibits a decrease in correlation with in-
creasing detector efficiency.

It is remarkable that this LHV model, which is pro-
posed just for illustrative purposes, allows fitting all the
relevant quantities in good agreement with real experi-
ments. For instance, if we take F=0.99, which is a typi-
cal value [see Eq. (2.4)], we get from (6.6) the value
B=30. Then, for the efficiencies used in performed ex-
periments (17~0.3), Egs. (6.10) and (6.8) give N =10
Finally, we obtain from (6.11) departures from QM of the
order of 1-2 %, which are within the statistical errors of
the experiments. Very likely, any reasonable hidden-
variable model of the detection process has a similar be-
havior (it is true, for instance, for the more sophisticated
model described elsewhere [31]).

We conclude that although a linear extrapolation (as-
sumption A of Sec. IV) of the measured polarization
correlations to higher efficiencies would violate the Bell
inequality (2.5), this fact does not imply that a violation
will be produced if the experiments are actually per-
formed with more efficient detectors.

VII. DISCUSSION

We have proved that no experimental test of a Bell in-
equality has shown a true refutation of LHV theories or
local realism. Furthermore, no experiment, performed or
planned, is able to show a contradiction between quan-
tum mechanics and LHV theories. Only highly idealized
(gedanken) experiments have shown that conflict. Conse-
quently I can safely claim that the problem of whether a
local realistic picture of the physical world is possible
remains open. The problem is important and worth
studying. Therefore efforts, both theoretical and experi-
mental, should be addressed to it.

We seek the following possibilities for the future.

(1) No experiment is ever found suitable to show a con-
tradiction between quantum mechanics and local realism.
(ii) An experiment is eventually performed in which the
predictions of quantum mechanics show an actual con-
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tradiction with local realism, and the results contradict
quantum mechanics; and

(iii) The above experiment agrees with quantum
mechanics and refutes all LHV theories.

I shall comment only on the first possibility.

The conflict between quantum mechanics and local
realism is usually shown by exhibiting a state vector and
several projection operators in a suitable Hilbert space,
such that Egs. (5.2) lead to a violation of the Bell inequal-
ity (5.1). It is obvious that with present technology —
with any technology, in fact—it is possible neither to
prepare the states corresponding to all quantum state
vectors nor to measure the observables corresponding to
all quantum projection operators. However, it is usually
assumed that no difficulty of principle exists. In other
words, it is taken as one of the postulates of quantum
mechanics that all vectors in the Hilbert space represent
physical states and all self-adjoint operators represent ob-
servables, except for the superselection rules. If this pos-
tulate is accepted, then certainly quantum mechanics
contradicts local realism.

My conjecture is that the above postulate could be re-
placed by another one, whose precise formulation is not
yet known, stating that only some subset of quantum
states and observables are physical and that these do not
contradict local realism. In other words, some
modification could be introduced in the formalism of
quantum mechanics making it compatible with local real-
ism, but preserving the existing perfect agreement with
all experiments. The fact that no experiment able to
discriminate between quantum mechanics and the whole
family of LHV theories has been performed until now
shows that the conjecture has not yet been refuted.

In order to explain the conjecture more clearly, consid-
er an example. If we want to perform an EPR-type ex-
periment, we must measure observables like A4 ;R j dis-
cussed in Sec. V. Let us assume that we use photons and
and that A4; means linear polarization. Now, polariza-
tion is a wave property, while position (associated to R;)
is a particle property. It might be that the product 4;R;
cannot be measured so accurately as to test locality. For
example, the region associated to R; may be quite small
for gamma rays, but not so small for optical photons
(e.g., if the aperture of the lens system is too small,
diffraction phenomena become important). In contrast,
polarization of optical photons can be accurately mea-
sured, while no accurate polarizer exists for gamma rays.

Using the quantum formalism, the example can be put
this way. QM assumes that it is possible, in principle, to
prepare a single photon signal either with polarization in
the vertical plane, represented by the state vector |V ), or
in the horizontal plane with state vector |H ), or in other
polarization states, with state vectors that are linear com-
binations of the previous two. Similarly, it is assumed
that there exist in principle measuring devices corre-
sponding to the projection operator ¥V (H) having eigen-
value 1 (0) for the state vector |V) and O (1) for the state
vector |H ). In practice, however, such devices will con-
sist of a polarizer and a detector, and they give quite
different results. In fact, when a photon in state |V') is
measured with the device corresponding to V we get the
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number 1 (i.e., a count in the detector) with probability
ne, (typically n=0.2, €, =0.98) and the number O (i.e.,
no counts) with probability 1 —ne,. On the other hand,
if the incoming photon is in the state |H ), we get 1 with
probability ne_ (typically e_~0.2) and 0 with probabili-
ty 1—me_. Then we may say that our polarizer-detector
device does not correspond to the operator ¥V, but to
some projection operator with the same expectations as
the operator 1 (e V+e_H). My conjecture is that the
range of possible values of 7, €., and €_ for real devices
may not include those actually needed to violate a
genuine Bell inequality. It must be taken into account
that maybe the parameters 7 (¢, and €_) cannot be attri-
buted to the detector (polarizer) alone, so that €, and/or
€_ may change when the efficiency 7 is increased.

Of course, this has been just an example. What I con-
jecture is, first, that nature can be interpreted within local

EMILIO SANTOS 46

realism. I am firmly convinced that this part of the con-
jecture is true. The second part is that this fact does not
necessarily imply a failure of quantum mechanics, pro-
vided we restrict the domain of application of the theory
by limiting the set of operators associated to observables
and the set of vectors corresponding to physical states. I
am less sure about this part. A study of new experiments,
as those considered at the end of Sec. V, may allow
disproving the conjecture. In contrast, if these experi-
ments prove to be unreliable, as has happened with all ex-
periments performed or planned in the past, the conjec-
ture will be reinforced.
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