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Half solitons as solutions to the Zakharov-Shabat eigenvalue problem
for rational reflection coefBcient with application in the desi~ of selective pulses

in nuclear magnetic resonance
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(Received 6 April 1992)

It is shown how the Zakharov-Shabat (ZS) eigenvalue problem for rational reflection coefficient may
be reduced to the ZS problem with zero reflection coefficient. The soliton solutions to this reduced prob-
lem are obtained using the Backlund transform. Hence the solutions to the original problem are shown
to be half solitons. It is demonstrated how selective pulses in nuclear magnetic resonance may be calcu-
lated using this technique. In particular, almost perfect 90' self-refocused and 180' refocusing selective
pulses are demonstrated.

PACS number(s): 03.65.Nk, 33.25.—j, 42.50.Rh

I. INTRODUCTION

The Zakharov-Shabat (ZS) eigenvalue problem
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Using the notation of Ref. [3], we define P, i}I), g, and f
to be fundamental solutions of Eq. (1) with asymptotic
behavior
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has been used to model two-level systems such as are
found in, for example, optics [1] and nuclear magnetic
resonance (NMR) [2]. It is also used to solve a class of
nonlinear evolution equations [3].

The inverse problem is to determine the form of
q'+'(r) and q' '(r) given the asymptotic behavior of v as
a function of g. For example, in NMR, we typically wish
to determine the form of a radio-frequency pulse to be
applied to a nuclear spin system in order to excite some
spins and to leave others unaffected. It can be shown [2]
that this problem of designing selective pulses is
equivalent to inverting the ZS problem. In that case, the
quantities in Eq. (1) have the following meanings. u (r, g)
is the spinor [4] describing the rotation of a spin at time
t =rT, resonance offset v=2//T (T is an arbitrary scale
factor with dimension time). The complex radio-
frequency pulse is described in frequency units by
co(rT) =(2i /T)q'+)(r). In this example, we require
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where a, b, a, and b are the scattering coefficients of the
system. Under the symmetry of Eq. (2), they are related
by a(g)=a'(g') and b(g)=b'(g').

These symbols will be used consistently to denote a
solution to the ZS problem with that particular asymp-
totic behavior. For example, P( ' would denote the solu-
tion to the ZS problem with pulse q' "+' and with
asymptotic behavior

it(~, g)~ '

a(g}e
b(g)eig~ as ~~~,

(3)
v&(~, g')

Note that if v(r, g)=(„'('&)) is a solution to Eq. (1),
—v2( —~, g)

then vT(2.,$)=(„(',+ } is a solution to
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NMR selective pulses, since the pulse is guaranteed to be
zero for all t )0, and hence we can guarantee the correct
phase of m at t =0 [2].

where qz+'(r)=q' '( r—) and qz '(r)=q'+'( —r).
Hence Eq. (8) has fundamental solution

4z( —& k)
PT r~k —q ( —& g)

(9)

and therefore has scattering coefficients [obtained by let-
ting r~ao in Eq. (9)]

ar(g)=a(g),

br(g)= b(g—) .
(10)

With regard to designing selective pulses in NMR, we
describe the desired effect of the pulse by giving initial
and final magnetizations as functions of frequency offset.
Assuming that the magnetization vector
m ( t, v ) = ( m „m2, m 3 ) equals (0,0,1) at t = —~ for all v,
Ref. [2] shows that the final magnetization vector is relat-
ed to the scattering coefficients by

m(Tr)=m +1im ~22 a'be '&' as r~~,
as r~~ .

If we define r(g), the reflection coefficient, by
r(g) =b(g)la(g) then
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Hence inverting the Bloch equation [the equation of
motion for m(t, v)] for a given magnetization is
equivalent to inverting the ZS eigenvalue problem for a
given reflection coefficient. Several methods have been
described for inverting the ZS problem for a given
reflection coefficient [2,5 —7]. The inversion is particular-
ly simple if the reflection coefficient is zero for real (-
the solutions being known as solitons. Calogero and De-
gasperis [5] described two methods of determining soliton
solutions. One involved a matrix inversion, the other
used the Backlund transform.

We have found a method of reducing the ZS problem
for rational reAection coefficient to one for zero reAection
coefficient. We have then used the Backlund transform
to solve this reduced problem. This method is simple
both conceptually and with regard to numerical im-
plementation. We shall assume that q'+ ' = —

q
'

throughout. However, the results are simply extended to
the general case where q'+' and q' ' are independent.

We note that the pulses corresponding to the class of
rational reAection coefficients are particularly suitable as

II. MAKING THE SYSTEM REFLECTIONLESS

The method is based on the observation that any (in

general complex) pulse q'+)(r } which is zero for r & 0 can
always be made into a soliton pulse (i.e., a pulse corre-
sponding to a zero reflection coefficient) by following it
with a suitably chosen pulse q'+'(r), which is zero for
~ (0.

To prove this, let a"' and b'" be the scattering
coefficients corresponding to the pulse q""+'(r) (which is
zero for r) 0). Further, let a' ' and b' ' be the scattering
coefficients for the pulse q' "+'(r) (also zero for r & 0).

Hence, from Eq. (10), the scattering coefficients associ-
ated with the pulse qr

"+' will be a' )(g) and b' '(g—).
Consider the composite pulse,

q""+'(r) for r ~0q'" =
q(2)(+)(r) for r&0. (14)

This will have fundamental solutions p, p, g, and p. ~e
must have that

P(r, g)=P"'(r, g) for r~0,
P(r, g)=P"'(r, g) for v&0,

Q(r, g)=g'r"(r, g) for r&0,

g(&,g)=f'z"(r, g) for r&0 .

(15)

(17)

(18)

Hence from Eqs. (3) and (15) and since q""+'=0 for
~&0,

and therefore

a(l)(g)

b(1)(g) (19)

y( r & (} g)
—a (1)y(2) b (1)y (2) (20)

From the asymptotic behavior of (I} and (t) as r~ oo [Eqs.
(3) and (4)], and assuming symmetry (2), we can conclude
that

a(g) =a'"(g)a"'(g)+b"'(g)b"'(g)
—a())(g)a(2)(g)[1+1(1)(g)r(2)(g)]

b(g}=—a'"(g)b""(g*)+b"'(g) ""(g')
(22)

=a'"(g)a"'*(g*)[ '"(g)—""((*)], (23)

where r'"=b"'/a"' and r' '=b' '/a' '

Therefore, if we choose q' "+' such that
r( )(g)=r""(g*)(which we can always do) then b(g) =0

[a (1)(g )a (2)(g) +b (1)(
g )b (2)( g ) ]e

—if'

[ a(1)(g)b(2)e(ge)+b(1)(g)a(2)e(ge)]cits

as r~ ~ (21)

and so the scattering coefficients of the composite pulse
are
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and we have a soliton pulse.
a(g) is then given by

g(g) —g(1)(g)g(2)(g)[1+1(1)(g)r(1)e(ge ) ] (24)

We also know $(r=O, q ) [Eq. (19)]. Hence under pulse

qz "+', P has boundary conditions at q.=0 and q.~ao.
Consider instead the system under q' "+'. It will have
boundary conditions

and the bound states of the soliton pulse are located at
the roots q of 1+r"'(g)r('"(P)=0 in the upper half
complex plane. It is assumed that r'"(g) has no factors
of the form (g —a')/(g —a. ). If any such factors are in-

troduced, the algorithm in Sec. III should include addi-
tional "bound states" q~'=aj (which may be in the
lower-half complex plane), but no additional poles pk.

b(g) =0 for»1 (Wqj. . At g=q, a(g) =0 and hence a
solution P(r, q ) of the composite system will have
asymptotic behavior

0;q,
P(q, q )~

b
e ' as'~~ .

iton pulse, it must have the form
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III. CREATING THE SOLITON PULSE
WITH THE BACKLUND TRANSFORM

Therefore, assuming that the q are all distinct, the soli-
ton pulse has residues

v(q~ —~,q~
}= 0 e ' =bPlq T

v(q. =O, q, ) =

(26)

(27)

Let this pulse correspond to an ¹oliton (i.e., there are
N q ). Using the Backlund transform described by Calo-
gero and Degasperis [5], we see that this soliton can be
considered built up from plane waves

Therefore (O) B7 1

(37)
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Comparing Eqs. (28) and (29), we conclude

b'"(q ) ~'"(q ) a"'(q )' ='"( )a'"(q ) b'"(q )
' a("(q )J J J

Now if a'"(g) has zeros at g=p, it must have the
form

(30}

n& —p
&(1)(g)—

k

(31)

since we require a")(g) to be analytic in the upper half
plane, a'"~1 as ~g~ ~ 0(), and a'"(g)a""(g')
+b ' "(g)b"'*(g* ) = 1. Similarly,

are the plane-wave residues. Note that if the pk occur in
complex conjugate pairs, then Eq. (38) reduces to

p, = —ir("(q, ) . (39)

The ¹oliton is built up by constructing the lower tri-
angular half of an (N+1)X(N+1) "soliton lattice. "
The base of the lattice is known explicitly in terms of the
plane waves g' '. Each successively higher row of the lat-
tice is then constructed in an algebraic way from previ-
ously calculated points. Figure 1 shows how the Grst two
rows of the lattice are constructed.

We associate each point (j+,j ) of the lattice with a
pair of values q'+'(j+, j ) and q' '(j+,j ). We define
the base of the lattice by, for j+= 1, . . . , N,

(32)

(33)

We conclude, Eqs. (30)—(32),

pk

b(q )=r'"(q )
pk

k

Furthermore, if a(g) is the scattering coefficient for a sol-

q' '(0, 0)=0,
q'+'(0, 0)=0,
q' '(j+,0)=0,

+
q(+)(j+ 0) 2 y ~(j )

k=1

(40)

(41)

(42)

(43)

where y()~ ' are inductively defined by Eq. (37) and, for
j+ ~1, k=1, . . . , X,
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FIG. 1. Diagram to show how the points of the first two rows
of the soliton lattice are built up. An arrow pointing from one
point to a second point shows that the value of the second point
depends on the value of the first.

+(j —1)
k

if kWj +
qk

(j )
Xk +

~x(J -') ifk=j (44)

To build up the rest of the lattice, we distinguish be-
tween points on and off the diagonal. Points on the diag-
onal are inductively defined, for k = 1, . . . , X,

q '(k, k)=q'+'(k —l, k —1)

Points o6' the diagonal are defined by, for j=1, . . . , X
and k=1, . . . ,j —1,

q'+'(j, k) =q'+'(j —l, k —1)

2/q' '(j, k —1)—q' (j —l, k)/2

q (j,k)=q' '(j —l, k —1)

2/q' '(j —l, k) —q'+'(j, k —1)/2

Finally, the N-soliton pulse is given by q
I '(N, N).

the pulse corresponding to reflection coefficient r"'(g) is
given by q""+'(r)=q'+'(N, N)(r)8( r) w—here

0 for ~(0
1 for r~0 . (49)

Recalling the definition q'+'= —
—,'i coT, we can determine

the pulse co(t) in frequency units. Note that we only need
to store one row of the lattice at a time, and hence this al-
gorithm requires storage of size N and 0 (N ) arithmetic
operations.

We can deduce an upper limit on Iq'+'(N, N) I. Since

(50)

for all complex z
z+ 1/z*

the inductive definition of q'+'(k, k) IEqs. (41) and (45)]
gives

2/q +'(k, k —1)+q + '(k, k —1)/2

q' '(k k)= —q'+'*(k, k) .

(45)

(46)

IV. KXAMPI. ES

(1) Consider the reflection coefficient

Gr" (g) = where P is real .
l

(51)
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FIG. 2. The purely real pulse co(t) which gives rise to the reflection coefficient of Eq. (60) with n =16 (and hence this is a self-
refocused 90 pulse). In all the figures, T= 1 ms.
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The corresponding magnetization profiles will be given by
Eq. (13). There is one root of 1+r'"(g)r"'(g')=0 in
the upper half plane:

1.0— 1.0—

q, =iy=i(aa*+p )'~2 .

The one plane-wave residue is [Eq. (38)]

() q, i—p —a
p( ——tr"'() y)

(52)

(53)

-1.0
-8 -4 0 4 8

Q, (rad ms')

-1.0
-8 -4 0 4 8

Q, (rad ms')

We calculate q'+)(1, 1) from Eqs. (40)—(45),
1.0

q'+'(1, 1)(r)= 2i—y sech 2yr+arctanha
y.

(54)

g 00—

This is the 1-soliton pulse. The pulse with the reQection
coefficient r"'(g) is given by q""+'(r)
=q'+'(1, 1)(r)e( —r). Therefore the pulse in frequency
units is given by

ro(t) = sech 2yt /T+arctanh — 8( t ) . —4y a

. y .
(55)

Note that we inverted the reflection coefficient (51) in
Ref. [2] (and obtained the same result). However, the
solution was obtained considerably more easily using the
method described here.

(2) Consider the reflection coefficient

r( l)(g)—
/+1

This has poles at p, =i and p2= —i. The soliton has
bound states at q =2 e' ~ and q2=2i 4e'5~/8

1

The plane-wave residues can be obtained from Eq. (39),

(56)

P2
(57)

It can be shown that the resultant 2-soliton has the form

q'+'(2, 2)(r) =4iP sech(2')
[sin(2ar)+ (p/a)cos(2am )tanh(2pr) ]

1+[(P/a }cos(2am)sech(2Pr) ]
(58)

10
-8 -4 0 4 8

Q, (rad ms')

where q, =a+i p We t.hen obtain co(t) from

co(t) =—q'+'(2, 2)(t/T)e( —t) .
2l (+)
T

(3}The reflection coefficient

(59)

r( )( )—
(2ll + 1

(60)

tends to a "top hat" form as n ~~, where the top hat
function V(g) is defined by

for (g( &1
() for lg'I & 1 .

It is equivalent [Eq. (13)] to m, =0, m2 being a top hat
and m3 being an inverted top hat. For n &1, it is not
easy to obtain the corresponding 2n-soliton pulse in
closed form. However, we can determine it numerically.

FIG. 3. The response to the pulse of Fig. 2 described as mag-
netization profiles. M„,M~, and M, are the three components
of the magnetization vector as a function of resonance offset 0,.
We can recover the corresponding reflection coefficient from
Eq. (12).
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FICx. 4. The components co) and co2 of the pulse which give rise to the scattering coefficient b(g') of Eq. (61) with n =8. Hence this
is a 180 refocusing pulse.
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The bound states of the corresponding n-soliton pulse are
given by, for j=0, . . . , n —1,

FIG. 5. The real and imagi. nary parts of the second spinor
component, obtained by integrating the ZS problem (1) for the

pulse of Fig. 4, starting with U=(0) at the start of the pulse.

They are plotted as a function of resonance offset 0, .

b( )=
1+(2n

(61)

(In NMR, such a pulse would be a 180' selective refocus-
ing pulse as n ~ ao [8].)

We can find such a pulse by first assuming that it has
the symmetry q'+'( —~) = —q(+"(r). Let

q""+ (r) for r~O
q(i)(+)e(

)
—q(i)(+)( ) for &0

'+'(r)= ' (62)

Then from Eq. (23), we see that

(()(g)a(1)e(ge )[r())(g) r(()+(g+ )]
„())(g) „()*(g

I+r"'(()r ""(g") (63)

and so if we can find r")(g) such that b (g) has the form
(61), then we can find q""+' and hence q'+ .

There are many possible factorizations. The simplest is

Figure 2 shows the (purely real) pulse to(t) obtained
from this reflection coefficient with n =16. It was deter-
mined at 8192 time points in about 2 CPU minutes on
our RISC workstation. The magnetization responses at
t =0 were then obtained from this pulse via numerical in-

tegration of the Bloch equation. They are shown in Fig.
3. We can see that we have an essentially perfect self-
refocused 90' selective pulse.

(4) Suppose we wish to find a pulse q'+'(~) that leads to
the scattering coefficient

and from Eq. (38) the plane-wave residues are given by,
for j=0, . . . , n —1,

&2—1 for even j
—(&2+ I) for odd j . (68)

V. CONCLUSION

We have found a simple and fast method for inverting
the Zakharov-Shabat eigenvalue problem for rational
reflection coefficient. Since it shows how the problem
may be reduced to one where the reflection coefficient is
zero, and hence solutions must be half solitons, it is more
satisfactory than existing methods, where the form of the
solution is assumed.

It also enables us to use the Backlund transform as the
main tool in the inversion —which is both quicker and
simpler to use than techniques using matrix inversion.

We have concentrated on its application with regard to
designing selective pulses in NMR. However, the results
are applicable in any problem involving the ZS problem.
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