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The Josephson relation V=nhv/2e has been verified experimentally to 3 parts in 10' [A. K. Jain, J.
E. Lukens, and J.-S. Tsai, Phys. Rev. Lett. 5$, 1165 (1987)]. Motivated by this result, we propose a
differential-frequency-readout system by two sets of hysteretic Josephson junctions rf biased at millime-
ter wavelengths. Because of the Josephson relation, the proposed differential-frequency-readout system
is not limited by photon fluctuation, which limits most photon-detection schemes. In the context of the
Stewart-McCumber model [W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968); D. E. McCumber, J. Appl.
Phys. 39, 3113 (1968)] of Josephsou junctions, we show theoretically that the difFerential frequency of the
two milliwave biases can be read out by the proposed system to unprecedented accuracy. The stability of
the readout scheme is also discussed. The measurement uncertainty of the readout system resulting from
the intrinsic thermal noise in the hysteretic junctions is shown to be insignificant. The study of two sin-

gle junctions can be extended to two sets of Josephson junctions connected in series (series array) in this
measurement scheme provided that junctions are separated by at least 10 pm [D. W. Jillie, J. E. Lukens,
and Y. H. Kao, Phys. Rev. Lett. 38, 915 (1977)]. The sensitivity for the differential frequency detection
may be increased by biasing both series arrays to a higher constant-voltage step.

PACS number(s): 06.20.—f, 07.62.+s, 85.25.—j

I. INTRODUCTION

The Josephson voltage-frequency relation has been
confirmed to be the same within two different Josephson
junctions to an ultrahigh accuracy [1]. In such experi-
ments [1,3—6], two Josephson junctions in series opposi-
tion are biased on the nth microwave-induced voltage
step with the same microwave source. Any dc voltage
difference between the two Josephson junctions will
create a current within the superconductive coil connect-
ing them. This current can be measured by coupling the
magnetic fiux generated by the coil into a superconduct-
ing quantum interference device (SQUID) magnetometer.
The null result [1] obtained by one of these experiments
indicates that the Josephson relation V=nhv/2e differs
by no more than 3 parts in 10', where V is the dc voltage
of the junction, n is an integer, h is Planck s constant, v is
the frequency of the microwave bias, and e is the elemen-
tary electric charge. The profound impact of this mea-
surement technology on our understanding of fundamen-
tal physics has been reviewed by McDonald [7].

This unprecedented accuracy has motivated us to pro-
pose an interferometric readout at millimeter wave-
lengths [8]. In brief, the system consists of two sets of
Josephson-junction arrays biased by two different mi-
crowave frequencies generated by an active interferome-
ter [9]. The differential frequency of the interferometer

can be measured by the scheme described above and di-

agrammed in Fig. 1. If the highly accurate results of the
previous null experiments [1,3—6] were due to the rigidity
of the superconductor, the proposed new interferometric
readout scheme could have failed to respond to the small
frequency difference. However, Bracken and Hamilton

[4] have used different frequency microwaves to bias each
individual junction. They have reported the linear rela-
tion between the frequency difference and the voltage
difference of two Josephson junctions and achieved an ac-
curacy of 6V/V ( 5 X 10 . Since then the realization of
this kind of scheme has not been clarified. A question
concerning the intrinsic limit due to the thermal noise in
the junctions still remains unanswered. In this paper we
theoretically analyze in detail the system of two hysteret-
ic junctions according to the Stewart-McCumber model
[2]. In the following section, we will show that the dc
voltage difference between two junctions which are both
locked on the nth voltage step does indeed respond
linearly to the difference of the two microwave bias fre-
quencies. The theoretical implication of a comparison of
microwave-induced constant-voltage steps in Josephson
junctions with the same microwave source is also ad-
dressed in this section. In Sec. III we consider the stabili-

ty of the scheme when it is biased by two different mi-
crowave frequencies on the same integer step. The
response time to detect a change in the differential fre-

46 3617



3618 L. Z. WANG AND ROBERT V. DUNCAN 46

I01 + I ~
S1Ilmf

SQUID

I~2 I02 + I~sin(m2t+ 8)

iris',
V,-= for each i =1,2 .

2e

&ottnt-tnttttg
442

The bias currents can be written by

Ib I IP~ +I
&

Since& t (2.3)

|6 (R, C2 (R, Ib2 —IO2 +I~ 2 Sln(6 2t +8) ~ (2.4)

FIG. 1. The schematic circuit for the differential-frequency-
readout system.

quency of the microwave biases is estimated by using
realistic junction parameters and coupling inductance.
The intrinsic uncertainty of this measurement scheme is
mainly due to the thermal noise at the junctions. In Sec.
IV we have derived a Fokker-Planck equation for two
junctions with Johnson noise which comes from the
quasiparticle current tunneling in each junction. The
voltage roundoff due to the fluctuation of the dc bias
current for each junction at nonzero temperature can be
analyzed according to these equations. With a real mea-
surement situation and with the previous results obtained
by Biswas and Jha [10] for a single junction, the measure-
ment uncertainty of this scheme due to the thermal junc-
tion noise has been estimated. The optimized operation
for this measurement scheme is described in this section
as well. Finally, Sec. V contains our summary and con-
clusion.

where Io; and I; are the dc current bias and the mi-
crowave current amplitude, respectively, and 0 is the rel-
ative phase between two microwave sources. Equations
(2.1)—(2.4) are our basic equations for this readout
scheme.

To solve Eqs. (2.1) and (2.2) analytically, we consider a
hysteretic junction whose parameters are in region I in
Fig. 2 of Kautz's paper [11]. In this junction parameter
region we have R; )co;L; & I/co;c;, where L, =Pi/2eI„ is
the Josephson inductance for each junction. Therefore
most of the microwave current flows through the junc-
tions' capacitive reactances. For experimental interest,
the impedance between the two junctions at microwave
radiation frequencies is large compared with the indivi-
dual junction impedances (the inductance between two
junctions, L =pH —nH; the junction capacitance,
c;=100—10 pF, the junction resistance, R, =1—100 0,
and the junction critical current, I„=10—1000 p,A, for a
hysteretic junction; the biased microwave frequency is
about 100 GHz [12]). That is, co, L )&Z, for i =1,2,
where co, and Z; are the microwave angular frequency
and impedance for the ith junction. The circuit between
the two junctions is approximately open at the biasing
microwave frequencies. Thus the microwave bias for
each junction can be considered to be approximately in-
dependent. %e have the following approximation for
each junction [12,31]:

H. MODEL FOR THK MEASUREMENT SCHEME

The Stewart-McCumber model [2] for our system is
shown in Fig. 1. It consists of two ideal Josephson ele-
ments with critical current I„shunted by a resistance R;
and a capacitance c;, and driven by a current source Ib,
for each junction i =1,2. The inductance L between two
junctions generates magnetic flux due to the voltage
difference between the two junctions. The junction volt-
age V, and phase P; obey the following differential equa-
tions:

Ac; ..
P, =I, sin(co, t +8, ),

2e ™

~here

After a simple integration, one has

2eI,
AC; CO

cos(co, t +0, )

0, =0 for i =1 and 0;=0 for i =2 .

(2.&)

(2.6)

Ac,

2e 2eR, ' 2eL o
P, + P, +I„s'nP, =I»+ (P~.

—P, )dt,

(2.1)

and

2eI;
P, =Po, +Po, t — sin( co; t +0; ) .

AC CO

(2.7)

Substituting Eqs. (2.5), (2.6), and (2.7) into Eqs. (2.1) and
(2.2), we obtain(2.2)

$2+ f2+I, 2 sin/2 =Ib2+ (pi $2)dt, —
2e 2' 2

' 2eL o
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and J„(x) is the nth-order Bessel function. Taking the
time average and assuming that both junctions are locked
on the same integer step n, we obtain

fi 2eIPp&+I„J„2 sin/0,
2eR ) Ac i coi

oi+
" f'((t 2 0/01)dt', (2.10)

2eL o

2eI z
$02+I,2J„2 sin($02+ n8)

2 ACpcop

=Ip2 + f ($0] $02)dt (2.1 1)
2eL o

po, =no), and $02=nto2 .

That is,

n fico, 2eI~
&

Ip) = +I„J„2»neo,+ (to) —t02)d2eR
~ 2eL p

n %co~ 2eI z
I02

2
+ c2Jn 2 sin(402+ n8)

2 fiC scop

nfi+ (co2 —to, )dt' .
2eL o

(2.12)

(2.13)

From Eqs. (2.12) and (2.13), we clearly see that if both
junctions are locked on the same integer step n, there is a
current in the third term of each equation [Eqs. (2.12)
and (2.13)] linearly proportional to the difference of the
two microwave frequencies with opposite sign. This
current comes from the dc voltage difference between the
two junctions. Accordingly, the magnetic flux generated
in the inductance between two junctions is

nh f (v —v )dt',
2e 0

(2.14)

Here we have used the well-known relation

2eI;
sin $0; +$0; t sin(co; t +8; )

Ac; co;

2eI;J„sin[$0, n8—;+(p; nto; —)t],
AC) co]

where v, =co;/2m is the microwave frequency. We also
notice that Eq. (2.14) depends only on the physical con-
stant nh /2e, that is, a number n of fundamental units of
flux (fluxons). The magnetic flux resolution of a typical
SQUID is about 10 'h/2e per &Hz. Thus, provided
that no other noises are significant, the resolution of the
frequency difference is

5(hv)=10 '/n(&t)' ' », (2.15)

where ht is the measurement time in seconds. According
to Eq. (2.15) we see that the resolution of the differential

frequency is proportional to the quantum number n.
This is because the phase of the Josephson junction oscil-
lates n periods during one microwave period on the
phase-locked state and the phase differences of two
Josephson junctions have been compared by detecting the
magnetic flux in the inductance. Thus the differential fre-

quency of the microwaves is resolved by the relation be-
tween the phase difference of the Josephson junctions and
the phase difference of the two microwave signals during
a measurement time. Notice that the resolution of the
differential frequency is proportional to (ht) ~. The
power of —,

' of the measurement time results from the fact

that the number of periods read by the scheme is propor-
tional to the measurement time and thus the phase
difference of the two microwave sources is linearly pro-
portional to the measurement time; and an addition —,

'

power of the measurement period results from the
SQUID noise.

Finally, we shall discuss the theoretical implication of
comparisons [1,3—6] of microwave-induced constant-
voltage steps in Josephson junctions. There have been a
number of discussions on the validity of the Josephson
voltage-frequency relationship ( V„=nh'v/2e). This rela-
tionship has been shown to be independent (to a high de-

gree) of both the types and the materials of the links and
superconductors comprising the junction. However,
several authors [13,14] have proposed possible correc-
tions to the Josephson voltage-frequency relation. It has
been argued on very fundamental grounds that the ac
Josephson relation must be exact [15,16]. Thus any evi-
dence that the Josephson relation is not identical for all

types of Josephson junctions could cause a fundamental
change in our understanding of their behavior. If the ac
Josephson relationship is not universal, then

which may be measured by a SQUID magnetometer, V„=K(nh/2e)v, (2.16)
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6V„=(K, K2—)(nh /2e}v= hKV„. (2.17)

Thus from the best result obtained by Jain, Lukens, and
Tsai [1],b,K is no more than 3 parts in 10' .

where K could not be a universal constant (K%1). That
is, we replace h/2e by K, h/2e in Eqs. (2.1) and (2.2).
Suppose that we bias two Josephson junctions on the
same integer step n with the same microwave frequency.
Then following the same analysis above, the voltage
difference between two junctions would be

inc i ..
52+ 52 +I~p cosgpp 52

2e 2eR2

(5, —5, )+ b5(0), (3.3)
2eL ' 2eL

where 65(0)=52(0)—5&(0). Here we have made a linear
approximation for 5;. Since both junctions are hysteretic,
cosP, can be replaced by the time average (cosP; ) [11].
To solve Eqs. (3.2) and (3.3), we transform into four cou-
pled first-order linear differential equations:

III. THE STABILITY
OF THE MEASUREMENT SCHEME

—1

Rici
1

Lci

The stability for a single hysteric junction on a phase-
locked state has been studied by Kautz [11,17]. Howev-
er, because of the nonlinear nature of the Josephson junc-
tion, the scheme considered here is not obviously stable
during its operation. That is, the inductance coupling the
two junctions may induce an instability for both phase-
locked junctions. We shall now examine the stability for
this scheme in detail.

The local stability in the presence of infinitesimal per-
turbations is determined by the largest Liapunov ex-
ponent. When the largest Liapunov exponent is negative,
all small perturbations will decay and the system will re-
turn to the same phase-locked state. If the largest
Liapunov exponent is positive, then the system wanders
away from the original phase-locked state and will either
reach a new phase-locked state or go into a chaotic state.

We begin our approach by defining

P=P;p+5; for each i =1,2, (3.1)

3.0

2.0

1.0

0.0 (b) (C)

I I I

where p,~ is the phase of the phase-locked state, and 5; is
the infinitesimal perturbation. Introducing Eq. (3.1) into
Eqs. (2.1) and (2.2), one obtains

Acl
5, + 5, +I„cosg, 5,

2e 2eR
&

fi
(52 —5, ) — 55(0), (3.2)

2eL 2eL

Bt 52

52
J

0 0
1 —1

Lc2 R2c2

0 1

0

—K 2
52

52

—b,5(0)
Lci

0
b,5(0)
Lc2

(3.4}

where

2eI„(cosP,z )

for i =1,2;', +—' (3.5)
c; LJ; L

here LJ; =h/2eI„(cosp, z ) . is the generalized Josephson
inductance. We study the eigenvalues of Eqs. (3.4) and
(3.5) numerically with the parameter range R; = 100—1 &,
C, =100-1 pF, LJ,. =+100-+1 pH. We found that the

sign of the largest real part of the Liapunov exponent
strongly depends on the sign of LJ, . The largest real part
of the Liapunov exponent is independent of the coupling
inductance, when L ~Lz;. For L &&LJ;, the largest real

part of the Liapunov exponent changes dramatically.
However, the sign of the largest real part of the Liapunov
exponent is still the same for a fixed sign of LJ;. Figure 2

shows the largest real part of the Liapunov exponent (in

units of 1/RC) versus the coupling inductance L (in units
of Lz; ) for (a) LJ, =100 pH, (b) LJ, =10'o H, (c)

LJ, = —10' H, (d) .LJ, = —10 nH with R;=40 Q and

C;=100 pF. We see that the largest real part of the
Liapunov exponent changes sign from —1/~L~, ~

to

The eigenvalues of the above matrix are the Liapunov
exponents, which are the roots of the following quartic
equation:

0.0 200.0 400.0 600.0 800.0 1000.0
L Rici

1 1

R2c2
+ K, +E +

R )c)R2c2
FIG. 2. The largest real part of the Liapunov exponent (in

units of 1/RC) vs the coupling inductance L (in units of LJ; ) for
(a) LJ; = 100 pH, (b) LJ, = 10' H, (c) LJ, = —10' H, (d)
LJ; = —10 nH with R; =40 0 and C; = 100 pF.

+ + x + E)E~-
R, c& R~c2 c,czL 2

(3.6)
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Then if the k; are the eigenvalues, i.e., the Liapunov ex-

ponents, we have

1 1

R2C2Rici
(3.7)

and

4

P A, , =K,K2-
c )c2L

(3.8)

IV. INTRINSIC NOISE

We notice that if the generalized Josephson inductances

LJ; ~0, the coefficients of the quartic equation are all

greater than zero; then, the curve of Eq. (3.6) monotoni-
cally increases for x &0. The interceptions between Eq.
(3.6) and the x axis must be on the left side of the y axis.
Thus the solutions of the quartic equation must be less
than zero. When LJ; &0, one can shift the x axis such
that the new x axis intercepts the curve at the origin.
One can see that there exists at least one positive inter-
ception with the old x axis. Thus the measurement
scheme is unstable with a positive Liapunov exponent.
This analysis is consistent with our numerical study.
Since (cosP&~ ) and (cosg2& ) are both greater than zero
(provided the two junctions are independently phase
locked on a stable voltage step n [11]),this measurement
scheme is stable when it operates on phase-locked states
initially. The stability of the two junctions will not be de-
graded by connecting an inductance between them. We
notice from Eq. (3.7) that the sum of the Liapunov ex-
ponents equals the sum of the inverse of the junction's
RC time constants. This indicates that for any small dy-
namic perturbation in this scheme, the relaxation time is
about a junction's RC time constant [see curve (a) in Fig.
2]. Typical junction parameters used in a series array of
a voltage standard are R -40 0, C-35 pF, and LJ; "™10
pH. The system response time is on the order of a
nanosecond. Thus the signal for this kind of readout sys-
tem must be slower than nanoseconds. However, in a
practical device the response time of a SQUID becomes
the main limiting factor, with a 3-dB bandwidth of about
10 kHz.

Ib2+, f ( e, e2)dt—+IJv2 (4 3)
2eL o

where I~, and I&2 are Johnson noise, in the form of Eq.
(4.1) for each of the two junctions. To describe the effect
of thermal noise and the phase-locked state, we consider
a situation in which a periodic solution P~; exists in the
absence of noise and calculate the deviation 5,. of the
phase from P~, in the presence of noise. Thus we consider
a solution to Eqs. (4.2) and (4.3) of the form

P=P, +5, for each i =1,2 . (4.4)

Substituting (4.4) into Eqs. (4.2) and (4.3) and replacing
sing, ~ and cosP, by the time average ( sing, ) and
(cosP;~ ), and using the same argument as in Sec. III, we
obtain

Ac& .. g . 2eI
5)+ 5)+I,(J„sin(5)+$0, )

2e 2eR
~

=EIo, + (5~—5, )— 65(0)+Itv, ,2eL 2eL

AC2 .. 2eIm2
52+ 5~+I,2J„2 sin(52+po2+n 8)

fie2co2

(4.5)

=LiIo2+ (5i —5q)+ b5(0)+I~2, (4.6)

white as implied by the 5-function time dependence of
the correlation function. Because the noise power spec-
trum is generally frequency dependent [30] the form used
here is strictly correct only for noise frequencies less than
eV„/h. For present purposes the noise need not be accu-
rately represented at high frequencies since the junction
is insensitive to noise above the plasma frequency [11].
With noise included we rewrite Eqs. (2.1) and (2.2),

Ac) ..
P)+ P, +I„sing,

2e 2eR
&

=Ib, + f (j2 j/)—dt +I', , (4.2)
2eL o

fiC2
p, + p, +I,2 sin/2

2e 2eR2

The effect of noise on the current-voltage characteristic
of a Josephson junction has been investigated by a num-
ber of authors [10,11,18—22]. Since the region of junction
parameters and microwave frequency of interest is far
away from the chaotic regime we will not consider the
noise due to the chaotic motion of the junction phase
[23—29]. The intrinsic thermal noise on a rf-induced step
at a dc voltage V was derived by Stephen [18]. In terms
of the Steward-McCumber model Stephen's result for the
two-time correlation function is

where

n fico)
~Ioi =Ioi-

2eR )

n fico2
EI02 =I02

2eR2

n15 rf ( co i c02 )dt
2eL o

nA f (co,—co, }dt',
2eL o

(4.7)

(4.8)

where AIo, and AI02 are the current deviations from the
centers of the constant-voltage steps, respectively. The
procedure used is similar to that in Sec. III except that
here we do not make a linear approximation. We notice
that Eqs. (4.5) and (4.6} are similar to those for the same
system in the absence of microwave biases. An exact
correspondence can be made by introducing the quanti-

(4.1)

which accounts for the shot noise associated with the
quasiparticle current, where V„ is the dc voltage of the
junction, k is Boltzmann's constant, and T is the ambient
temperature. The assumed noise power spectrum is

eV„
(I~(t, )I~(t, ) ) = coth(eV„ /2kT)5(t, t2), —

R
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ties 5&
=5&+$0&, 52 =52+Pz2+ n 0, and

I,', =I„J„(2eI,/A'c;co;) for each i =1,2. Then, Eqs. (4.5)
and (4.6) become

AC
1

6 ', + 5 ', +I,', sin6',
2e 2eR1

= b, IO, + (52 —5', )
— b 5'(0)+ I~, , (4.9)

AC2 .. fg
5 2+ 5 2+I,'2 sin5z

2e 2eR2

=b,I0~+ (5', —5~) — b, 5'(0)+ I~~, (4.10)02 2L 1 2
-6.28 -3.54 0.00 3.14 6.28

1

R, c1 —
g, sin5', +g, (5~—5', ) +y,

k2 s n52+ k2( 51 52 ) ++2
R2C2

with

+x(t)
.y2. ' (4.11)

(x(t, )x(t, )) =5(t, —t&),

Now we write Eqs. (4.9) and (4.10) in the form of the
two-dimensional Langevin equation. That is, FIG. 3. The mechanica1 analogy of the readout system for

both junctions 1ocked on quantized voltage step.

picture of this system by considering the mechanical
analogy where two particles with masses m, =Ac, /2e
and m2 =hc2/2e are moving down two wavy slopes and
coupled by a spring with a coupling constant 1/L, as il-
lustrated in Fig. 3. The equations of motion describe two
particles undergoing Brownian motion with coeScients
of viscosity A'/2eR

~
and A'/2eR2, respectively. The nor-

malized potentials of the two particles are given by

U, (5'„52)= —y, 5I —
g, cos5', +—(5', —52) + C, ,

1

where 2eI„1 2e AID, g5(0)
Rc; Lc,

and (4.14)

Uz(5'„5z) = —yz5z —
g2 cos5z+ —(5z —5', ) +C2,

e nkv1 n Av
1/2

(4.12)

n Av2 n A'v2
1/2

(4.1 3)

From Eqs. (4.11) to (4.13) one can get a good physical

for i = 1,2. According to Eq. (4.1), y, and yz have the re-
lations (4.15)

where C, and C2 are the trivial potential constants. The
average slopes represent the parameter y; for i =1,2, and
they are proportional to the current differences from the
centers of the constant voltage steps, respectively. Pro-
vided the noise is Gaussian and white, it is straightfor-
ward to obtain the corresponding Fokker-Planck equa-
tion

BP ( 5 '„5'„52, 5', )

c}t
= —5', ,

—5~ —[( —g, sin5I+y, +g, (5~—5', )] . +, aP . . . aP a O', P

aP a &2P, a'P, a'P—[ —(gz sin5z+y2+$2(5', —5z)] . + +~1 2 +~2ai', ai,' R2~2 ai", ai,' ' (4.16)

where P is the probability distribution. In general, Eq.
(4.16) cannot be solved analytically. However, the real
experimental situation we are interested in could further
simplify the equation. Since, in general, the inductance L
(in the range pH —nH) between two hysteretic junctions is
at least 1000 times larger than the Josephson inductance
LJ, =fi/2eI„(in the range pH —10 fH), therefore,
g, =1/c, LJ, »g, =1/Lc, ; and the contribution to the
differential equation from the g, terms is at least 1000

I

times less than that of the g; terms. It is a good appro»-
mation to neglect those coupling terms with g;. Note
that when the Josephson inductance LJ, is compatible

with the coupling inductance L, the two biasing mi-

crowave frequencies wi11 interfere with one another. The
analysis of phase lock on the individual biasing frequency
in Sec. II is no longer true. Since we have assumed that
the Josephson inductance LJ, is much less than the cou-

pling inductance L according to the realistic situation,
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5,'P+
R, c;

gdP+ (4.17)

for i =1 and 2. Equation (4.17) has the same form of the
Fokker-Planck equation for an individual junction. The
Fokker-Planck equation for a single junction has been

the noise analysis in this section should be consistent with
the analysis in Sec. II. Thus Eq. (4.16) can be decoupled
into two independent Fokker-Planck equations; namely,

5P(5l 5;),aP . , aP—( —
g, sin5';+y;)

Bt ' 35';

studied by a number of authors [10,18—201 The more

general treatment for different junction parameters was

given by Biswas and Jha [10]. In their approach, the

basic assumptions are that the phases of both junctions

spend most of their time in the relative minimum, and it

is almost everywhere in equilibrium. For this situation

the deviation currents from the centers of the two

constant-voltage steps must be less than the critical

current, and the ambient temperature should be far

enough below the transition temperature of the supercon-

ductor so that the diffusion of the particles occurs only

within the troughs. By applying Biswas and Jhas' result,

the voltage roundoffs from nh v, /2e and nb v2/2e are

(5v„, )= 1+
2eR;c;

8eI,';
Xexp

ARc y.

8eI,';R; c;
[1 (EI —/I' ) ]'

' 1/2

4~ehI„
sinh

AR c.y
(4.18)

for i =1,2. The magnetic flux created by the deviation of
the junction voltages is

f ((5V„,)+(5V„,))dr . (4.19)

In Eq. (4.18) the voltage roundoff is written as a function
of current deviation from the center of a constant step.
Suppose that both dc bias currents can be locked on the
centers of each constant-voltage step by a feedback loop
to keep the total current flowing through each individual
junction constant (see, for example, Fig. 4). The uncer-
tainty of the voltage difference is limited by the fluctua-
tions of the feedback bias current, that is,

5 V( b Ioi, EIO2 ) = ( 5 V„,( EIO, ) ) + ( 5 V„2(b I02 ) ) . (4.20)

In Fig. 4 we plot the logarithm of the voltage uncertainty
5 V versus the bias fluctuation b I =b Io, =EIo2 from
AI =0.005I,'; to AI =0.995I,'; with junction parameters

I

R, =R2=40 0, c, =c2=35 pF, and I,', =I,'2=100 pA,
and the voltage of the junction at about 1 mV at a tem-
perature T=4 K. Notice that the uncertainty of the
differential voltage due to thermal noise in the junctions
is so tiny that even though the bias current fluctuates
near the critical current of the phase-locked state the
fluctuation of the differential voltage is only tens of pV.
Nevertheless, if the bias current is near the critical
current, the phase-locked state becomes unstable and
phase slip occurs easily. With the scheme illustrated in
Fig. 5, if we can control the current fluctuation to within
0.5 pA, then in the same situation the fluctuation of the
differential voltage is less than 10 V which is com-
pletely negligible.
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FIG. 4. The voltage uncertainty (in volts) vs the current devi-
ation (in unit of induced current amplitude) for junction param-
e«rs cl=c2=35 pF, RI=R, =40 Q, and I,', =I,'g=100 pA
with junction voltage 1 mV and a voltage difference of 1 pV be-
tween the two junctions at temperature T =4 K. FIG. 5. The scheme for constant current bias mode.
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Another experimental realization of this scheme is to
operate with fixed external dc biases. From Eqs. (4.7) and
(4.8), we see that the dc current flowing through each
junction depends on the microwave frequency difference.
If the frequency difference is time dependent the current
deviation from the center of the quantized voltage state is
also time dependent. Thus the deviation of the
differential voltage is a function of the differential voltage
itself. With regard to the accuracy required by experi-
ments, one may set the maximum allowable current in

response to the differential frequency signal according to
the similar result shown in Fig. 5. Also, we note that the
maximum allowable current should not be too close to
the critical current of the phase-locked step since the
junctions become more vulnerable to external disturbance
and more easily lose their phase-locked state.

V. SUMMARY AND CONCLUSiON

We have proposed that the scheme used in the compar-
ison of two hysteretic Josephson junctions can be applied
as an ultrahigh accuracy differential frequency readout at
millimeter wavelengths. An important feature of this
scheme is that since the ac Josephson relation
V=nhv/2e is independent of the microwave power, the
differential frequency readout is insensitive to the photon
fluctuation of the biased microwaves which occurs in
conventional photon-detection schemes. Any fluctuation
of microwave power affects only the critical current of
the quantized voltage step, Eqs. (2.12) and (2.13). If one
biases the two junctions to the centers of the quantized
steps, and if the critical current is large enough, then
such fluctuations are not important. In Eq. (2.15) we no-
tice that the resolution of the differential frequency is
proportional to (b, t) where b, t is the measurement time
period. Therefore, if the signal of the differential frequen-
cy between two sources is a monotonic signal (dc signal)
for a longer period than the measurement time, an unpre-
cedented measurement may be achieved. For example,
the experiment by Jain, Luken, and Tsai [1] is capable of
measuring the earth's gravitation redshift on two Joseph-
son junctions separated in height by 7.2 cm, over a ten-
hour period of measurement time.

The implication of the previous experiments [1,3—5] for
the Josephson junction comparisons has been addressed.
Any deviation from the ac Josephson relation can be ob-
served in this scheme according to the Stewart-
McCurnber model. The phase rigidity of the supercon-
ducting coil between two Josephson junctions does not
induce the phase locking between the two junctions since
the magnetic flux inside the superconducting inductor
responds to the phase change of the two junctions.

The stability of this scheme has been considered. The
inductance between the two junctions does not degrade
the stability of the two independent junctions. In fact,
when the inductance between them is less than the
Josephson inductance of each junction, the stability
would increase dramatically. This effect could be applied
to stabilize the voltage standard, especially the high volt-
age standard. %'e plan to address this point else~here
[31].

The eftect of thermal noise on the Josephson junctions

in this measurement scheme is discussed. The Langevin
and the Fokker-Planck equations for this scheme have
been derived. When the inductance between the two
junctions is larger than the Josephson inductance in each
one of the junctions, the Fokker-Planck equation can be
decoupled into two independent sets of Fokker-Planck
equations, each having the same form as that of a single
junction. By applying the previous analysis for a single
junction by Biswas and Jha [10], we obtain the voltage
roundoff effect for both junctions. For the case of a fixed
junction current (varying the external dc bias current of
each function in response to the signal of the differential
frequency), the uncertainty of the diff'erential voltage is a
function of the fluctuation of the beedback bias current.
For the case of a fixed external dc bias current, the devia-
tion from the idea response to the differential frequency
signal is also a function of the signal itself. However, as
illustrated in Fig. 4, the deviation from the intrinsic
thermal noise in the two hysteretic junctions of this
readout system is not significant.

The Josephson junctions we consider here are the same
as those used in a large array voltage standard. Since in
this array the distance between two adjacent Josephson
junctions is more than 10 pm, the interaction between
two adjacent junctions is negligible [32]. We can thus
consider each of the junctions in the array independently.
Also, due to the large overlap of the center of adjacent
steps in a hysteretic junction, the Josephson-junction ar-
ray can be biased by a single dc current, and the
microwave-induced amplitude of the current step is the
smallest induced critical current of one of the series junc-
tions. The total voltage of this array is the sum of the
voltages of all junctions. The voltage for present existing
arrays can be biased up to 12 V and the phase-locked
quantum number is as high as 60000 [33]. Since the
thermal intrinsic noise of a single junction in the series-
array voltage standard is so small, the total thermal noise
in the series array does not contribute to the measure-
ment uncertainty significantly. Thus we would expect
that the signal-to-noise ratio will improve by using two
large arrays in the readout system.

In conclusion, this proposed differential frequency
readout system at millimeter wavelength has been
theoretically shown to achieve an ultrahigh accuracy.
Possible applications of this active-interferometer-
readout system include experiments for testing general
relativity. The fundamental limitation on active inter-
ferometer schemes is the phase diffusion of the two un-
correlated lasing modes which bias the junctions. A laser
system [so-called correlated spontaneous emission laser
(CEL)] has been proposed [34] and tested [35]. In this
laser system the diffusion of the relative phase of two las-

ing modes can be quenched by leve1 coherence of the
laser transitions. By combining these systems, e.g. , CEL
and Josephson-junction readout system, a dramatic im-

provement on the precision of measurement is expected.
From the experimenta1 side, Josephson-junction series ar-
rays containing 2076, 3020, and 18992 junctions have
been developed and are readily available. However, an
active interferometer near 100 GHz uti1izing a CEL
mechanism still needs to be developed.
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