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We believe that the criticisms of Nicolis and Balakrishnan [preceding Comment, Phys. Rev. A 46,
3569 (1992)] reflect a misunderstanding of the basis of our claims. Here, we repeat a number of points al-
ready made in our papers [Phys. Rev. A 43, 1709 (1991); 42, 1946 (1990); Phys. Rev. Lett. 64, 249 (1990)]

in order to dispel ambiguity and misunderstanding.

PACS number(s): 05.40.+j, 05.45.+b

Nicolis and Balakrishnan [1] have criticized our sug-
gestions (i) that chaotic dynamics can amplify spontane-
ous fluctuations so that the contraction of a master equa-
tion description into a macrovariable description is in-
valid; and (ii) that a nonlinear Fokker-Planck equation of
the sort suggested by a theorem of T. G. Kurtz may be
used to accurately describe these large-scale fluctuations.
These criticisms seem to reflect a misunderstanding, re-
peated throughout the Comment, of the basis of our
claims. We find this surprising since, in Secs. I-IIT of
Ref. [2], these and related issues are addressed rather
thoroughly.

A key point that Nicolis and Balakrishnan seem to
have missed is that the magnitude of the correlation of
the intrinsic fluctuations is not a free quantity but is
uniquely determined by the underlying physics in each
specific case. Thus, while the limits noted in Egs. (1)-(3)
of their Comment are, indeed, true for € approaching
zero, € is not zero for intrinsic fluctuations. It is well
known through numerical simulations by us [2] and oth-
ers [3-5] that the invariant densities in the deterministic
case (€=0) and the stochastic case (e70) are distinct
both for discrete maps and for stochastic differential
equations. The degree of difference between the two den-
sities depends on the magnitude of € and the dynamics of
the chaotic attractor.

Nicolis and Balakrishnan suggest that we incorrectly
identify the macrovariables with the mean values rather
than with the most probable values, and that “macro-
scopic behavior is generally not associated with the
mean. . ., but rather with the most probable values.” In
fact, the most probable values of the variables do not
satisfy the usual system of autonomous macrovariable
equations when the distribution is broad. They do so
only asymptotically in the limit of small fluctuations, in
which case the Gaussian form of the conditional proba-
bility density implies that the mean and the most prob-
able values are the same. When the macrovariable equa-
tions possess a chaotic attractor, conditional fluctuations
are small for only a brief period of time, after which nei-
ther the mean nor the most probable values satisfy the
autonomous macrovariable equations. Nonetheless, our
simulations, which employ a stochastic modification of

46

the macrovariable equations, make it clear that the ma-
crovariable equations provide the skeleton that supports
the flesh of the molecular fluctuations.

Our views about the utility of the nonlinear Fokker-
Planck equation are based on two theorems by Kurtz
[6,7]. Kurtz’s theorems justify various approximations to
sample paths of the master equation in the thermo-
dynamic limit. Kurtz’s “first” theorem justifies the use of
a linear process with a Gaussian conditional probability
density for finite times. For that case the most probable
and mean values are identical. As we have shown [8],
this approximation has a linearly divergent covariance
when the mean has a stable limit cycle and an exponen-
tially divergent covariance when the mean behaves chaot-
ically. In the chaotic case the “finite” time interval,
which is not otherwise determined by Kurtz’s theorem, is
of the order of the reciprocal of the largest Liapunov ex-
ponent.

For limit cycles and for chaotic attractors, Kurtz’s
“second” theorem provides a much improved approxima-
tion in the following senses: (i) the conditional covariance
no longer diverges, despite the fact that the fluctuations
may grow to the size of the attractor; and (ii) in the
mathematical limit of very small noise, simulations of the
probability density derived from the corresponding non-
linear Langevin equation converge to the invariant mea-
sure of the deterministic attractor [2]. In this approxima-
tion the nonlinearities succeed in saturating the growth of
the fluctuations. While Kurtz’s second theorem also has
been proved only for finite times, it is obviously a much
improved approximation to the thermodynamic limit and
would appear to work for times much longer than the re-
ciprocal of the largest Liapunov exponent.

Our confidence in the Fokker-Planck equation (or
equivalent nonlinear Langevin equation) that is given by
Kurtz’s theorem is reinforced by recent work of
Mareschal and De Wit [5]. Using a direct simulation of
the Boltzmann equation, these authors have simulated bi-
furcation to a limit cycle in a chemical reaction and “find
agreement between the microscopic simulation results
and a Langevin description . . . below and beyond the bi-
furcation point [5].” Three types of Langevin description
were used in this work to obtain the asympotic, long-time
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statistical distribution, including that given by Kurtz’s
second theorem. All three gave good agreement with the
Boltzmann simulations.

In our work, we have used Kurtz’s second theorem to
obtain an approximate representation of a master equa-
tion by a nonlinear Fokker-Planck equation [2,9,10].
This Fokker-Planck equation can be equivalently ren-
dered as a Langevin equation. The Langevin equation
happens to be a stochastic version of the macrovariable
equation with a well-defined noise correlation determined
from this correspondence. Unlike external noise with an
arbitrary noise strength, the intrinsic noise is uniquely
determined by the underlying physics. In our investiga-
tion of the effect of this noise we have considered several
classes of examples: two heuristic ones, namely, the
Rossler equations [2] and a “master” map for the logistic
equation [9], as well as hydrodynamic fluctuations for the
Lorenz equations [11], Johnson noise for the Josephson
junction [2], spontaneous emission for multimode lasers
[10], and chemical noise for mass action kinetics [8]. For
each of the examples with a physico-chemical origin, the
nonlinear Fokker-Planck equation comes directly from
an underlying master equation [12].

We know of no examples in the literature, including
those cited by Nicolis and Balakrishnan, which demon-
strate that the nonlinear Fokker-Planck equation suggest-
ed by Kurtz’s second theorem “at best ... may give

reasonable results [for] ... a single point attractor al-
though even in this case examples are known for which it
can fail badly.” While it is true that attempts have been
made to formulate other Fokker-Planck equations using
completely macroscopic ideas [13], in the thermodynamic
limit, even for linear systems, they disagree with the un-
derlying master equation results as one departs from
equilibrium (cf. Ref. [12], pp. 173-175).

On the other hand, we agree with Nicolis and Balak-
rishnan that the growth of molecular fluctuations is “yet
another manifestation of the sensitivity to initial condi-
tions of chaotic dynamics.” The point, however, is that
even in the absence of external noise and uncertainty in
the initial conditions, molecular fluctuations destroy the
utility of predictions based on the macroscopic kinetic
equations within a time of the order of the reciprocal of
the largest Liapunov exponent. Furthermore, if the noise
is sufficiently large, as seems to be true for the driven
Josephson junction [2], the invariant distribution on the
chaotic attractor may be modified significantly. Even in
cases like the Lorenz system, for which fluctuations have
a hydrodynamic origin and are small, one finds an
amplification of fluctuations of approximately two orders
of magnitude above the values for thermal equilibrium
[11]. Such increases in the noise level like that seen near
critical points, should be detectable by experiment.
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