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The effect of intrinsic fluctuations in systems exhibiting deterministic chaos is analyzed. It is suggest-
ed that the conclusions of the recent series of papers by Fox and Keizer [Phys. Rev. Lett. 64, 249 (1990);
Phys. Rev. A 41, 2969 (1990); 42, 1946 (1990); 43, 1709 (1991)]on the breakdown of the deterministic
description need to be reassessed.
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In a recent series of papers [I—4] Fox and Keizer have
considered the effects of intrinsic (thermodynamic,
molecular-level) fluctuations in systems exhibiting deter-
ministic chaos. Their main conclusions are that, in the
chaotic regime, "the macro variable picture breaks
down, " the macrovariables themselves "cease to be mean-
ingful variables, "and "the breakdown of the autonomous
macrovariable equations associated with large-scale in-
trinsic fluctuations forces a reassessment of the meaning
of chaos in real physical systems. " We feel that these
drastic conclusions are unjusti6ed, and give below some
arguments aimed at clarifying ideas in this important is-
sue.

To get a clear picture of the issues involved, it is help-
ful to have a brief summary of the approach of Fox and
Keizer [1—4]. Consider a set of deterministic equations
for the macrovariables of a dynamical system. Since
molecular-level intrinsic fluctuations are always present,
the "exact" behavior of the system is presumably de-
scribed by some underlying master equation at the micro-
scopic (or at least mesoscopic) level. Under normal cir-
cumstances, when the relative fluctuations scale like e'
(where e is the inverse of the system size N, a very small
quantity indeed for a macroscopic system), a standard ex-
pansion procedure leads to a Fokker-Planck equation
(FPE) for the linearized fluctuations about the mean
values of the variables (which are equal, up to corrections
of order e', to the deterministic or "macroscopic"
values). Now suppose the deterministic equations have a
chaotic attractor, signaled by a positive Lyapunov ex-
ponent in the Jacobi matrix. Fox and Keizer correctly
point out that as the same matrix governs the dynamics
of the linearized fluctuations in the FPE, the latter also
diverge exponentially. From there on, however, it is
claimed that the deterministic equations themselves (the
zeroth-order approximation in this procedure) become in-
valid, since the fluctuation-induced corrections are com-
parable to the values predicted by these equations. The

assertion is thus that while the deterministic equations
can serve as guides that help detect chaos, they are no
longer meaningful in the chaotic regime; one must neces-
sarily go back to the original master equation.

Having come to this conclusion, Fox and Keizer [4]
propose the employment of an alternative reduction of
the master equation as a possible means of handling the
problem. Invoking certain theorems of Kurtz [5], they
claim that a Fokker-Planck equation with nonlinear drift
and diffusion coefficients, frequently referred to as "non-
linear Fokker-Planck equation" (NFPE), Eq. (22) of Ref.
[4], is the correct way of dealing with the large intrinsic
fluctuations in the presence of chaos. While the mean
value of a variable calculated from the FPE differs from
the exact mean value (obtained in principle from the mas-
ter equation) by O(e' ), the corresponding difference in
the case of the NFPE is O(elnl/e). This circumstance,
it is claimed, allows one "not only to handle the large in-
trinsic fluctuations, " but to do so "with even greater ac-
curacy. " Numerical simulations are done for the exam-
ples of the Rossler model and the Josephson-junction
equation (or the periodically forced, datnped, planar pen-
dulum) with additive Gaussian white noise. The changes
observed (relative to the noise-free case) in the shape of
the attractor and the invariant distribution on it are then
claimed to support the above conclusions.

In what follows, we point out that there are flaws in
both aspects of the foregoing: the supposed breakdown
of the macrovariable description, as well as the use of the
NFPE as the way out of the difficulty. Consider a given
set of macrovariable evolution equations with a chaotic
attractor. An essential point to realize in connection
with deterministic chaos is that, because of the sensitivity
to initial conditions, long-term predictions can only be
carried out in a probabilistic sense —even before the in-
clusion of the effects of noise, intrinsic or external. To
formulate this point properly it is useful to consider the
asymptotic (time-independent) properties of the system
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p(x, t) =5(x—m(t) }, (4)

where m(t) are given by the deterministic equations.
This singular distribution generally does not approach
the invariant measure at t~ ~. A smooth initial distri-

rather than the transient (time-dependent) behavior. Let
p(x) be the invariant distribution on the attractor in the
absence of fluctuations, where x denotes the state vector.
A distinct attribute of chaos is that such a distribution
may indeed exist, and be sufficiently smooth —whereas,
for nonchaotic systems, it is bound to be singular. Next,
let p,(x) be the invariant distribution of the system when
intrinsic fluctuations are incorporated (e being the sys-
tem size as before). Typically, p,(x) will be a smooth
function even in the nonchaotic regime. A question of
obvious relevance is whether p,(x) is close to p(x). The
general answer is not known, but some rigorous partial
results are available. Specifically, for discrete dynamical
systems of the form

x„+,= f(x„)+eg„,
where f: R ~R", g' is an uncorrelated stationary sto-
chastic process, and e ((1, it can be shown [6] that

limllp, (x)—p(x)ll =0, (2)
e~O

provided that the Frobenius-Perron operator of the deter-
ministic (unperturbed) system x„+,=f(x„) exists. Here

ll ll denotes the L' norm, llu ll
= j~dlu(x)lp(dx) p being

the measure. An even stronger result can be established
for hyperbolic attractors in which periodic orbits and
fixed points are dense (axiom A attractors [7]). Here, be-
cause of the smoothing action of the noise, the continuity
property of the invariant measure of the attractor (in the
absence of noise) along the unstable direction is preserved
in the presence of noise, a property reflected by the fact
that

liinp, (x}=p(x) . (3)
e~O

In short, under the effect of small fluctuations the system
will visit the phase space with probabilities close to the
ones corresponding to the deterministic attractor, provid-
ed that the above-mentioned conditions are satisfied.
Therefore deterministic chaos fully retains its relevance
and its implications in the presence of noise, in that it
determines (up to a small correction) the probabilistic
structure of the system in the limit of long times. In-
terestingly, in this perspective it is on nonchaotie systems
that fluctuations seem to have the most drastic effect,
since the perturbation of the (now) singular distribution
of the deterministic system by a noise, however small,
leads to a smooth distribution. An intriguing manifesta-
tion of this phenomenon is the noise-induced asymptotic
periodicity in the Keener map [8].

A brief comment on the way the invariant measure is
attained in the course of time may be in order. Consider
first the case of e=O (fluctuations are discarded). The
master equation reduces then to a first-order partial
diff'erential equation [Ref. [4], Eq. (10)]. If the initial
values of x are specified exactly p(x, O)=5(x —mo), then
the solution to this equation is simply [Ref. [4], Eq. (11)],

bution, however, broadens as t evolves and approaches
the correct invariant measure if the latter is unique. An
interesting case is that of a (unique) limit cycle or of a
(unique) chaotic attractor, where lim, p(x, t) is a broad
distribution having the entire attractor as its support.

The inclusion of fluctuation (eWO) will modify the de-
tailed form of this distribution, but under the conditions
discussed above the qualitative characteristics (a broad
distribution centered on the attractor) will subsist. As far
as the validity of the macrovariable equations is con-
cerned, the important point is not p or p, being broad or
not, but rather p, being close to p or not. We note, in-

cidentally, that in the above examples (a) the mean value
of the distribution is unrepresentative since it is close to
the unstable state from which the attractor has bifurcated
and (b) the maxima of the probability distribution occur
on the attractor. This illustrates the fact that macroscop-
ic behavior is generally not associated with the mean (as
claimed by Fox and Keizer), but rather with the most
probable value. The latter can be quite different from the
mean, notably if the system does not possess a single
point attractor.

An interesting situation arises when a system possesses
two simultaneously stable steady states disposed syrnrne-
trically around an intermediate unstable state. In the ab-
sence of fluctuations (e=O) the invariant measure is not
unique. At finite e a unique invariant measure is
recovered if the limit of p,(x, t) for t ~ oo is taken before
the limit of small e. One finds an invariant distribution in
the form of two sharp peaks of equal weight centered on
the two stable states. Again, for such a distribution the
mean is unrepresentative. The physically relevant states
are the most probable ones, and are completely different
from the mean.

Next we turn to the claim that the NFPE provides a
formulation capable of handling large fluctuations even
when the standard reduction of the master equation to
the FPE breaks down. The NFPE has in general state-
dependent drift and diffusion coefficients, and is obtained
by using the limit theoreins of Kurtz [5]. However, it is
important to note that in their general form these
theorems hold good for possibly very long, but Pnite
times. The crucial t~ ~ limit can only be taken in par-
ticular circumstances such as for instance, the presence
of a single point attractor. Equally significant is the fact,
long recognized in the literature [9—11] that an equation
such as the NFPE is in general incompatible with the
master equation. At best, it may give reasonable results
when the system possesses a single point attractor, al-
though even in this case examples are known for which it
can fail badly [12]. The conclusions based on the analysis
of Ref. [4], Eqs. (21)—(31), using the NFPE as the correct
equation in the case of a chaotic attractor, are therefore
unjustified.

In the light of the foregoing comments, how should
one understand the exponential growth of fluctuations
and their effect on the Rossler and forced pendulum at-
tractors reported in Refs. [1—4]? We believe that the
former phenomenon is nothing but yet another manifes-
tation of the sensitivity to initial conditions of chaotic dy-
namics, as a result of which individual trajectories lose



46 COMMENTS 3571

their significance beyond the Lyapunov time. (Actually,
they do so already as a result of external noise and/or nu-
merical round-off errors, independent of thermodynamic
fluctuations. } In contrast, statistical properties will as a
rule remain robust, at least as long as the invariant mea-
sure p(x) in the absence of noise has good regularity
properties.

Finally, as regards the apparently strong efFect of even
very small stochastic forcings on the attractors men-
tioned above [4], we are of the opinion that this mainly
rejects the sensitive dependence of these attractors on
the parameter values [13,14] in the regions explored, and
on the fact that these attractors need not be hyperbolic
everywhere. For instance, at p & 4.23 the Rossler attrac-
tor is known to be in the regime of reverse bifurcations in
which chaotic bands successively merge as p is increased.
Given the fact that noise in general tends to smooth out
the measure of the deterministic attractor [7] it is not
surprising that the reverse bifurcation at @=4.3 is antici-
pated at IM =4.23 itself once the noise increases beyond a
small but nonzero threshold, and band merging occurs
[15]. Similar comments apply, naturally, to the invariant
distribution on the (perturbed} attractor. In this regard,
it may also be worth stressing that any attractor (of a
continuous flow) of dimension larger than zero possesses
a phase-like variable, along which the Lyapunov ex-

ponent is zero. Phase-like variables are known [16] to be
very sensitive to fluctuations even in the absence of
chaos —for instance, as pointed out already above, the
phase variable of a uniform limit cycle exhibits macro-
scopic fluctuations.

To sum up, deterministic chaos in a system does not
imply, by any means, the breakdown of the macroscopic
picture itself owing to the amplification of intrinsic fluc-
tuations. The deterministic system of equations contin-
ues to describe the behavior of the most probable (or typi-
cal} values of the variables and, above all, to generate the
system's attractor. However, as is well known and widely
accepted, individual phase trajectories lose their
significance beyond the Lyapunov time, being supplanted
by the properties of the attractor (the basic structure of
which is determined by the macrovariable system of
equations) and the probability distribution on it in the
presence of noise (of whatever origin, intrinsic or exter-
nal).
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