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Theory of free-wave acceleration
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Laser acceleration of electrons is considered. A general formulation of the problem is developed that
would allow the recently proposed accelerator based on nonlinear amplification of inverse bremsstrah-

lung electron acceleration (NAIBEA) to function with any state of polarization and shape of the laser

pulse, and any kind of applied field. Analytical estimates as well as numerical analysis for the case of an

applied magnetic field are made. It is found that electrons, injected with few tens of mega-electron-volts,
can be accelerated to giga-electron-volt energies using a NAIBEA accelerator of a length of few meters.

PACS number(s): 41.75.Fr
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whereas Ap is microscopic (measured in micrometers), A,

becomes macroscoPic (measured in centimeters) if Pp is

close to unity. The distance Az traveled by the electron

Laser acceleration of particles has been the focus of
significant attention in the past few years. Recently, two
of us [1]have proposed a method of linearly accelerating
electrons with the aid of a powerful laser coupled to an
optimally determined static electric field that is made to
change sign at appropriate places along the accelerator.
With initial electron energy of 35 MeV, a laser power of
10' W/cm for a wavelength of 10 pm, and an applied
field intensity of —10, that of the laser intensity, we
predicted a final electron energy of, say, -400 MeV if
three inversions of the static field are made along an ac-
celerator tube of a length of about 3 m. The advantages
of such a machine obviously call for a more general dis-
cussion concerning how optimal the setup is and the
dependence on the laser parameters as well as the nature
of the applied field.

In the present paper we develop a very general formu-
lation of the problem that allows both semianalytical and
numerical answers to the above questions. Before enter-
ing into detail, we first give some general remarks con-
cerning the acceleration principle, which we called non-
linear amplification of inverse bremsstrahlung electron
acceleration (NAIBEA) in Ref. [1]. First, the new

machine is meant to be a very high-energy booster; the
initial particle energy should already be highly relativis-
tic. The reason is very simple. What sets the macroscop-
ic scale of the machine is basically the Doppler shift of
the laser wavelength as seen in the particle rest frame.
Calling the laser wavelength ko and the velocity of the
particle Uo, then the shifted wavelength obtained with the
appropriate Lorentz transformation is

' 1/2

in the laboratory during a one-cycle encounter with the
laser is then

bz = Up(A, /c)y =Ap
p

(lb)

H =[1+P,+(P —A„)'+(P —A )']' '=y (2)

in our units. In Eq. (2) A= A' '(t —z)+ A pp(t, z). Then
E A

pp
and B, =7 X A, are the external applied

fields that add to those of the traveling laser pulse
A' '(t —z). Hamilton's equations follow from Eq. (1),
1.e.)

Clearly b,z is one of the quantities that would decide the
size of the accelerator.

Second, the rate of change of the particle energy is
determined by v E and thus to keep the particle gaining
energy from the laser, v E should be made always posi-
tive. This calls for another degree of freedom to couple
to the system. A possible simple form for this extra de-
gree of freedom was found in Ref. [1] to be an array of
applied static electric field with interchanging signs
placed at appropriate positions along the accelerator.
Clearly a more general form for this degree of freedom
can be found that would make the machine more
efficient. A combination of electric and magnetic fields,
not necessarily static, could be one of the choices. To
better determine the nature of the applied field, one needs
an equation, and we now turn our attention to its deriva-
tion.

To simplify the presentation, we consider the units of
mass in mc, the vector potential A in mc/e, the distance
x in 1/k, where k is the wave number, and time t in 1/co,
~ being the frequency. We take the direction of wave

propagation and particle acceleration to be along z. The
Hamiltonian of the system, particle plus laser plus ap-
plied field, is (note that we are working in the temporal
gauge)
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Further reduction of P, gives

P, = P —A aA'" aA„P+
Bz Bz

Combining y and P, we obtain

y P, =——[(AXB, „),—A E, ],
y

which, when integrated, yields

[( A XB,pp),
—A.E,pp]f =P +Q, Q =Qo+ ~PP ~ ~PP dt I

cc y
(6)1/2

1+po
uo = (1+pa)

1

'Vo

At this point, we remark, as was done in Ref. [1], that
since A' ' will be the dominant field, it is more con-
venient to use the phase y —t —z as an integration vari-
able. Then since y=1 i and i =8—

7 /BP, =P, /y and
from (6), 1 —z=u/y, we have dq/u =dt/y. Further,
since u =(1 i )du/dy=(u—/y)du/dy, we obtain from
Eq. (6) the following:

u(2p)= u~o+2f [( AXB, ), —A.E, ]dy', (7)

and from y =(P, +u) =1+P, + A [Eq. (2)],

1+ A. +Q2 dz 1+ A2 Qr(e)=
2Q de 2Q

P =Q

r r

z(p)= f 1+ A —u d, q y(tp')
2u' — u(y')

The x and y coordinates of the particle are determined
from the equations P„=O and P~ =0, which yield for the
canonical momenta P„=O and P =0, and thus the physi-
cal momenta are given by

p„=yx= —A„, p =yy= —A (10)

or

A„(tp')d y'
x(y)=-

u (q)')

A (p')dy'
y(q )=-

u (y') (12)

The set of equations (7—11) constitutes the free-wave
accelerator (FWA) equations. These equations are im-
portant generalizations of the NAIBEA equations of Ref.
[1] in that (i} the laser could be in any state of polariza-
tion and have any pulse shape, and (ii) the applied elec-
tromagnetic (em) field E,~~ and B,~~ is quite general
Note that since A is defined to within an arbitrary con-
stant, we have here full freedom in giving the electron a

nonzero initial value of p„and/or p» [Eq. (10)]. The tra-
jectory parameter Q, which was introduced in Ref. [1], is
here generalized to be a vector in the x-y plane and is
defined by the equation

dO = —A. (13)
dg

It is a simple matter to show that the second derivative of
Q can be written as

d Q —dA' '(%)+RE, + &—1 B,
Q

'PP
Q

(14)
B~pp: k X B~pp

and the rate change of y with respect to y

=(p.E)/u = ——A E=— E(p) . (15)
dg Q Q df

Note that Eq. (14) is a nonlinear second-order differential
equation for Q, since u and y depend on dQ/dq& and
d Q /d y . The solution of this equation completely
determines the trajectory of the particle.

For y to increase with q, (dQ/d(p) E(y) must always
be positive [notice that u(p) &0 instead of a maximum]
guarantees that y keeps increasing for y) fj If 8

pp
is

taken to be zero as Ref. [1],then p E=p E' '+p.E, . If
E is taken in the y direction, then we have

p E„"+p Ezpp %0. Since E' ' is the dominant field, ex-
cept when passing through zero, the above condition says
that we use E,pp

to "fine tune" the sign of p~ so that it is
always the same as that of E' '. The fundamental role of
the applied field is to guarantee the validity of Eq. (16).
This can happen even if E,„ /E' ' or 8,&~/B' ' or both
are much smaller than unity. The injection of electrons
with a nonzero p„(0) or p (0), albeit very small, is very
important to set the machine to work. This is so since in
the x -y plane the motion of the electron must be oscilla-
tory in accordance with Eq. (16).

We turn now to specific choices of the accelerator. We
consider a linearly polarized pulse with A taken to be
along the y direction. We first consider a constant ap-
plied electric field E,pp

then

A=[A» '(qr) E, t —p„(0)]j . — (16)

With the A above used in the FWA equations we recover
the NAIBEA equation of Ref. [1]. Inversions of E, are
made at appropriate values of z to assure the validity of
Eq. (16), namely p (no ) =0. This means that the applied
field is inverted at y. 's such that
[dp»(m)/dm]l, =..„=0&.

We now replace E,pp by a constant magnetic field
along x. Then

A=[A» '(qr) B,~~z
—p„(0}]j.— (17)

The resulting NAIBEA equations are almost identical to
those of Ref. [1]except for a change in sign of the second
term in Eq. (8) of that reference (with E, replaced by
8, ~). Further, Eq. (7) reduces to

(1g)

The y component of the momentum is given by [Eq. (10)]
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FIG. 1. The laser pulse vs y used in our calculation of the
width b =3m..
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FIG. 3. The trajectory of the particle in the y -z plane. Inset:
scale of y in mm. The arrows indicate the positions where the
applied magnetic field is reversed.

p (y)=py(0) —
Ay '(y)+B,ppz . (19}
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FIG. 2. The energy of the particle in units of mc vs the trav-

eled distance z.

The continuous acceleration of the particle results if B,pp
is chosen so that p (nn )=0 This .requires changing the
sign of B, at appropriate places [y=(n /2)n. ].

We consider the following numerical example. The ini-
tial value of y, yo =70, P = ,'vo10+ ' —W/cm for
A.0=10 cm. The parameter v0=1 refers to the max-
imum value of electric field of the pulse in our units. We
also take nine cycles within the pulse. The shape of the
pulse is taken to be a Gaussian, A 0 =exp( —gP/5 ), Fig.
1, with 6=3m.. The applied field intensity is taken to be
2.34 T, which corresponds to -5X10, that of the
laser. The electrons are injected at an angle of 0.6' with
respect to the z axis [p (0)=(0 6/180)n. yo] We con. sider
as an example nine changes in the sign of the modulated
applied magnetic field. Since we have not self-
consistently chosen the position of the field reversal, we
have not actually optimized the decrease of u in Eq. (6).
In Fig. 2 we show the change of y versus z obtained by
solving Eqs. (14), (8), and (9}. The gain in energy is a fac-
tor of 35 over a distance (accelerator length} of 7 m. The
accelerator length could be made smaller if full optimiza-
tion is accomplished. The corresponding trajectory of

the particle confined in the (z,y) plane is shown in Fig. 3.
Note that

A,"'(q )dqy=-
u(tp')

(20)

1 Qp Vp
2 2

bz= T+ T=(20)(1+vo)T,
2Qp 2Q0

(22)

where T is hy of the pulse defined as

~

~

A2df' v20T=—2~v20n where n is the number of os-

cillations in the pulse. Thus hz is determined by three
large factors (yo, vo, n) which can easily make it macro-
scopic even though it is in units of A, /2~. This general-
izes the simple Doppler-shift argument concerning the
size of the accelerator.

In conclusion, we have developed here a general for-
malism for free-wave acceleration. A combined powerful
laser pulse plus an optirnally determined em field, which
could be time dependent, was found to be able to ac-
celerate electrons to very high energies with relatively
small accelerator dimensions. Radiation damping has
not been included in our theory and it may modify some
of our conclusions, even in setting a limit to the final en-

ergy of the particle [3,4]. Recently we have also learned
of related work done in Refs. [5] and [6].

Finally we remark that the acceleration principle dis-
cussed above can also be applied to accelerate protons to
tesla-electron-volt energies with the appropriate laser and
applied fields. In fact with y0=500 (initial proton energy

is contained within the laser transversal extension. As we
see from Fig. 2, at the end of the acceleration the disper-
sion in y is -2 mm, which could be within available laser
transversal dimensions [2].

Before ending we comment briefly on the case of the
circularly polarized laser pulse,

A' '= A (y) [icosy+ j sing],
(21)

A(q&)=voexp( —q /2h ) .

Clearly A is just A (y), which does not oscillate. Then
we get approximately for the accelerator length
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0.5 TeV), laser power of P-6X10 W/cm for Ac=50
pm and ten alternating sign magnets of 10 T each placed
at optimally determined positions along a length of 3 km,
one calculates a 6nal proton energy of 20 TeV.
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