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Analytic solutions of Bloch and Maxwell-Bloch equations
in the case of arbitrary field amplitude and phase modulation
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The matrix exponent method which we applied recently for the solution of the Bloch equations [Sov.
Phys. JETP 62, 1125 (1985)] allows us to obtain in the present paper the Bloch-equation solutions when

the amplitude and the phase of the exciting 6eld are arbitrary functions of time. The solution s validity

conditions are derived. It is shown that one can also apply the matrix exponent method to the solution

of the Maxwell-Bloch equations. The equation describing the evolution of the area of a pulse with

modulated envelope and phase is obtained. This equation has an analytic solution which is a generaliza-

tion of the well-known McCall-Hahn solution.

PACS number(s): 32.80.8x, 42.50.Hz

I. INTRODUCTION

The equations that describe a time evolution of a two-
level system excited by a resonance radiation, taking into
account both collisional and radiation relaxation in the
dipole approximation, are a closed set of three linear
equations of the first order (for the Bloch equations, see,
for example, [1]). If the exciting field amplitude and
phase are constant, the Bloch equations are a set of linear
equations of the first order with constant coefficients and
they can be easily solved (Torrey [2] solved such equa-
tions by Laplace transformations}. The dependence of
the exciting field amplitude and phase on time leads to
variable coefficients in the Bloch equations. In the partic-
ular case of amplitude modulation when the field ampli-
tude is a periodic function of time (such a field can be
presented as a set of monochromatic equidistant fields
with the same amplitude), the Bloch-equation coefficients
are periodic functions of time. Such an equation can be
solved by the so-called Floquet-theorem method [3]. Ac-
cording to this method, the solution of an equation with
periodic coefficients can be presented by an infinite series
of the sidebands. The Floquet theorem was applied for
the first time, we believe, to solution of equations for
wave-function amplitudes by Autler and Townes [4], and
to solution of equations describing the resonance field
propagation through the two-level medium by Stenholm
and Lamb [5]. A multimode case (including the two-
mode cases) of an intracavity field was treated by Ham-
benne and Sargent [6]. Feneuille, Schweighofer, and
Oliver [7] and Toptygina and Fradkin [8] applied the Flo-
quet theorem to the solution of the Bloch equations for
the simplest case of field amplitude modulation (bi-
chromatic field}. Recently [9] Toptygina and Fradkin
showed the Floquet-theorem method allows one to obtain
the solution of the Bloch equations in the case of a po-
lychromatic exciting field, i.e., in the general case of the
periodical amplitude modulation. The Floquet-theorem
method has two essentia1 deficiencies. First, the ampli-
tudes of sidebands are expressed in terms of continuous
fractions which are needed in the numerical calculations.

Second, this method is not applicable in the case of non-
periodical modulation of the parameters of the exciting
field. There are other methods to obtain the solution of
the Bloch equations (see, for example, the Introducton in

[11] and [13]}.We applied the matrix exponent method
which does not have the above-mentioned deficiencies in

[10] for the case of stochastic phase modulation, in [11]
for the case of periodical amplitude modulation, and in

[12] for the case of an arbitrary amplitude of the exciting
field. In Sec. II of the present paper we obtain the gen-
eral solution of the Bloch equations in the case of an arbi-
trary amplitude and a phase of the exciting field. In Sec.
III we use this general solution for the solution of the
MaxweH-Bloch equations, i.e., we take into account the
propagation of the radiation in the resonant medium.
This problem has been solved up to now either by disre-
garding any phase modulation eff'ects (for example, even
in the fundamental work [14])or with the help of the per-
turbation theory or by the inverse scattering problem
[15—19].

II. THE SOLUTION OF THE BLOCH EQUATIONS
BY THE MATRIX EXPONENT METHOD

IN THE CASE OF ARBITRARY PARAMETERS
OF EXCITING FIELD

Suppose that a two-level system is excited by a field,
the electric component of which has the plane-wave form
with modulated amplitude and phase:

6(t,z) =E(t,z)cos[cot —kz+P(t, z)],

where E(t,z), co, k, and P(t, z) are the amplitude, frequen-
cy, wave number, and phase of the wave, respectively.

The equations describing the tixne evolution of the den-
sity matrix elements of a two-level system in the dipole
approximation without taking into account the propaga-
tion (the dependence on z) can be written in the form [20)
(we assume the equality of the frequency co and the tran-
sition frequency of a two-level system}
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cr„(t)=—I 2o2, (t) —(i/R)d A(t)e' 'n(t),

n (t)= —[n (t) —no]I,
—2(i/A)@(t)[o2i(t)e ' ' —o.„(t)e' '],

where o.
&2 and o.

2& are the slowly varying components of
the density matrix elements p, z and p2„respectively,
n (t) =pzi(t) —p»(t) is the level population difference per
unit volume, no=n(t =0),d is the dipole moment of a
two-level system, and I 2

' and I, ' are the polarization-
and population-relaxation times, respectively.

After the substitution of Eq. (1) into Eqs. (2) and
throwing off the items proportional to exp(+2icot) (it is
true at ~P~ ((to) and changing to the Bloch variables u, v

by the replacement o.&i=(u —t'U)/2=a, '2 we obtained the
Bloch equations for the exciting field (1):

where a (t) =Q~ (t)sing(t);b(t) = Qz (t)cosp(t); and

Qz (t) =(d/A)E (t). Provided the commutator
[A (t), expB(t)] is equal to zero, where
8 (t)=

JoA (t')dt', the solutions of Eq. (3) can be written

as [21]

0
X(t)=e '" f e ~" 'L dt'+ 0

0
no

To calculate expB (t) we shall make use of Silvester's for-
mula [3]:

8 —
A2I )(8 —

A, 3I ) i (8 —
A, (I )(8 —AiI )

(A, ,
—A~)(A, , —A, , ) (A~ —

A, , )(Ai —A3)

i, (8 —
A, iI )(8 —

A,~I )

(A, ,—A, , )(A,,—A2)

where

u (t)
X(t)= u(t)

n (t)

= A(t)X(t)+L,
dt

(3)

I t, 1,—,= I t+if—(t), (6)

where A,
~ z &

are the eigenvalues of inatrix 8 (t) and I is

the identity matrix. Assuming the equality I &=I,=I,
the evident expressions for A, , 2 3 can be easily obtained
without making any assumptions concerning the field am-
plitude:

A(t)=

—r 2
—a(t}
b(t)0 —r,

a(t) —b(t) —I,

0
L =noI

&
0
1

where f (t)=[I,(t)+I&(t)]; I, (t)= foa(t')dt'; and

I&(t)= job(t')dt' After su. bstituting Eqs. (6) into Eq. (5)

we obtain

I&+I,cosf (t ) I,I& [1—cosf (t) ] +I,f(t)sinf (t)
+I i

e — '"=
2 I,It, [1—cosf(t)] I, +Iicosf(t) +I~f(t)sinf(t)

+I,f(t)sinf(t) +I&f(t)sinf(t) f2(t)cosf(t)

(7)

The substitution of Eq. (7) into Eq. (4) allows us to obtain the solutions of the Bloch equations for the case of exciting
field (1) in the form

I, [I&+I,cosf (t)) I2I, I&[1—
cosf—(t)]—(I&+I ')I,f(t)sinf (t)

—It
X(t)—n I I,I,I [1—cosf(t)] —I [I,+I cosf(t)]+(I +I '}I f(t)sinf(t)f '(t)

(IiI, +I2I& )f(t)sinf (t)+(I&+I ')f (t)cosf (t)

(8)

where

Ii(t)= e 'I,(t'), dt' Iz(t)= e"'I&(t') m, dt', I3(t)= f e 'cosf(t')dt' .
o

' f(t') o f(t') '
o

Let us clarify the conditions under which the solutions (8) are true. With the help of (7) we obtain

(aIb —bI, )
[A(t), e ~'~]=e

f'(t) fsinf—f sinf

I„(1—cosf ) I, (1—cosf )

I„(1—cosf )

I, (1—cosf )

Hence the solutions of Eqs. (3) in the form (8) are true if
any of the following conditions is fulfilled:

aIb —bI, , (loa)

taboo (10b)

The condition (10a) means that Eqs. (8) are true at any

time t in the range [0,t], but not for arbitrary functions
E(t) and P(t). With the help of obvious forms of the
functions a (t), b (t), I, (t), and I&(t) one can easily see the

condition (i) is fulfilled first when both amplitude and

phase modulations are absent, i.e., when E=const and
/=const; second, when E(t) is any arbitrary function
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but /=const. In the particular case when /=0 we ob-
tain

a (t)=I.(t) =0, b (t)= Q~(t);

I,(t}=f Q~(t')dt'= f(t),
0

I,(t)=0, I2(t)= f e 'sinIb(t')dt',
0

I3(t)=f e 'c osI b(t')dt' .
0

Hence the solutions (8) in this case will read as

P(t)=M sinQt (14)

where M and 0 are the modulation index and modulation
frequency, respectively.

Hence

In 1985 Nayak and Agarwal [22] solved the Bloch equa-
tions by an application of the continued-fraction method
in the case of the periodical phase modulation of the ex-
citing field. Now we can obtain a more general solution
with the help of Eqs. (12}and (13). So we assume

X(t)=nol e
I (t—)cosI (t)+ [I (t)+I ']sinI (t)

I2(t)sinIb(t)+ [I3(t)+I' ']cosIb(t) i.e.,

Qz (t)=CP(t) =CMQ cosQt, (15)

These solutions have been obtained in [12]. In our
opinion the solutions (8) were not obtained up to now.

The condition (10b) means the solutions (8) are true for
any arbitrary functions E(t) and P(t) but for a stationary
state only, i.e., when the condition I t ))1 is fulfilled. If
we assume that the field amplitude E (t) is connected with
the phase P(t) by such a dependence: Qa(t)=C/(t},
where C is any arbitrary constant, we can easily obtain

E(t)=—Q (t)=—CMQ cosQt .
fi

d ' d
(16)

sing(t) =sin(M sinQt)

It is seen from Eq. (16) that the exciting field in this case
is the bichromatic field with the modulated phase of each
component. This is the generalization of the Nayak-
Agarwal case to the amplitude modulation.

By use of the well-known expansions

I,(t}=—C cosP(t), Il, (t)=C sing(t),

and hence

(12)
=2 g Jzz+, ( M)sin[(2k +1) Qt],

Ic =0
(17)

I,(t)= —sinC f e 'cosP(t')dt',

I2(t)=sinC f e 'sing(t')dt',
0

I (t)= (e ' —1) .

(13)

cosP(t) =cos(M sinQt) =2 g cl, J21,(M)cos(2kQt),
k=0

where J is the Bessel function of the first kind, co= —,'',

c, =c2= =c =1,we can easily obtain

I,(t)= —2(sinC) g c&Jzl, (M)
k=0

lt r[I cos(2kQt)+2kQsin(2kQt)]-r'+4k'n' I +4kB (18)

I2(t)=2(sinC} g J2&+&(M) 2 z 2 II sin[(2k+1)Qt] —(2k+1)Qcos[(2k+1)Qt]]+
l~ (2k +1)Q

1, =0 I' +(2k+1) Q I +(2k+1) Q

(19)
After substitution of Eqs. (18), (19), (17), (12), and (13) into the general solution (8) and making the assumption t +m&, —
we obtain the steady-state solutions of the Bloch equations in the case of periodical phase and amplitude modulation of
the exciting field [we write for the sake of simplicity the solution for n (t) only]:

n(t~~)=nocos C

oo
1+2noI (sin C) g cl, ciJ21,(M)J21(M) r'+4k'n'

X I 2k Q sin[2(k + l)Qt ]

+ I cos[2(k +1)Qt]+2k Q sin[2(k —l)Qt]+ I cos[2(k —l)Qt ]]
+Jpl + ~ (M)J2~ + ~

(M)
I +(2k+1}Q

X j (2k + 1)Q sin[2(k l)Qt ]+I' —cos[2(k l)Qt]—
—(2k+1)Q sin[2(k +1+1)Qt]—I'cos[2(k +l +1)Qt]] (20)
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So, we showed that the application of the matrix ex-
ponent method to the solution of the Bloch equations al-
lows us to obtain the analytical solutions in the case of ar-
bitrary amplitude and phase of exciting field subject to
the conditions of Eq. (10) (of course, both the amplitude
and phase must be slowly varying functions in compar-
ison with the field frequency ~ in order that the rotating-
wave approximation can be applied).

III. THE SOLUTIONS
OF THE MAXWELL-BLOCH EQUATIONS

IN THE CASE OF AN ARBITRARY SPATIAL PHASE
MODULATION OF THE PULSE

d6(z) an
cosg(z)sin8(z) .

dz 2
(26)

(27)

Equation (27) in the case of the absence of the phase
modulation ()=0) coincides with the McCall-Hahn solu-
tion. One can find some examples of the concrete forms
of the function P(z) when Eq. (27) has the obvious form:

Equation (26) is the generalization of the well-known
McCall-Hahn area theorem [14] to the case of the arbi-
trary spatial phase modulation of an exciting field. The
analytic solution of this equation has the form

6(z)=2 arctan exp ( —a„/2) f cosP(z)dz
0

When propagating in a resonance two-level medium
the field of the form (1) induces the polarization P(t, z) in
this medium [1]:

P(t, z)=Nd fg(b, )[u(t, z, b. )cos[tot Ez+P—(t, z))

v(t, z, b, )—

(i) P(z) =arctan [ [1—(az ) ]' /az ],
where a is an arbitrary parameter.

In this case Eq. (27) gives

8(z)=2 arctan [exp( —a„az /4) ] .

(28)

(29)

X sin[cut —Kz +P( t, z) ) ]d b, , (21)

where N is the density of a resonance atom, g(h) is the
nonhomogeneous broadening line shape, and u and v are
the Bloch components. The substitution of Eq. (21) into
the Maxwell equation (8 IBz —c r) Ir}t )B(t,z)
= (4~/c )d P ( t, z)Idz and assuming that the amplitude
E(t,z) and the phase P(t, z) are the slowly varying func-
tions lead to the equation [1]

E +——E(t,z)=ok Nd f u(t, z, b, )g(h)db, ,
k 0

Bz c Bt

(22)

(ii) P(z) =arctanaz

then we obtain for 8(z)

(30)

8(z)=2 ract a(n1 [/az +[I +( za}]' I
"

) . (31)

This solution shows that the phase modulation in form
(28) just as in the case of absence of the phase modulation
does not prevent the pulse area stabilization. Moreover
this stabilization comes more rapidly in our case because
the argument in (29) decreases as exp( —z ) while at
/=0, as exp( —z). However, if we assume the following
modulation of phase:

where 4(t,z)=(d lfi) f ' E(t', z)dt'
Carrying out the calculations as in [1],we obtain

d@(t,z) an
)7 (24}

where k =co/c is the vacuum wave vector.
Integrating on time t in the range [ —~, t] and taking

into account for sufficiently long time t that one can as-
sume E =0, we obtain

k'iyd f g(b, )f u(t', z, b, )dt'db, , (23)

In this case the area is stablized more slowly than in the
McCall-Hahn solution.

These effects of the phase modulation which were not
taken into account in [14] may give an explanation (in ad-
dition to the mechanisms mentioned in [14]) to the devia-
tion of the experimental results from the McCall-Hahn
solution.

Now we shall attempt to clear up how the spatial phase
modulation changes the shape of a pulse. Assuming that
g(b, )=5(b, ) and making the substitution of variables t
and z in Eq. (13) for the runing variable r=t —z/V,
where V is the pulse speed in the medium, we obtain, for
the pulse envelope E(r),

where a„ is the resonance-absorption coefficient.
Assuming that the period of the field force on a medi-

um is much less than the relaxation time I ', we can set
I =0. In addition we shall assume the pulse phase P is a
function of z only (a spatial phase modulation). In this
case we can use the condition (10a).

So we obtain under the above-mentioned conditions
from Eqs. (8)

dE(r) K k
hark Ndu(t, z, O—)

d~ V c

an

2
cosP(z)sin@(t, z) .

Since dE/dr=(A/d )(d 4/dr), we have

(32)

v(t, z, O) =nocosP(z)sin@(t, z) . (25)

Then Eq. (24) gives us an equation for the pulse area
6(t) =4 (t ~~,z):

d @(r)
dr'

—cosP(z)sin@(r) . (33}
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When the phase modulation is absent (/=0) this equa-
tion gives the well-known Mccall-Hahn hyperbolic-
secant solution. Equation (24) cannot be solved in an an-
alytic form and needs a nUmerical calcUlation.
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