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Iterative determination of invariant tori for a time-periodic Hamiltonian
with two degrees of freedom
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We describe a nonperturbative numerical technique for solving the Hamilton-Jacobi equation of a
nonlinear Hamiltonian system. We find the time-periodic solutions that yield accurate approximations
to invariant tori. The method is suited to the case in which the perturbation to the underlying integrable
system has a periodic and not necessarily smooth dependence on the time. This case is important in ac-
celerator theory, where the perturbation is a periodic step function in time. The Hamilton-Jacobi equa-
tion is approximated by its finite-dimensional Fourier projection with respect to angle variables, then

solved by Newton s method. To avoid Fourier analysis in time, which is not appropriate in the presence
of step functions, we enforce time periodicity of solutions by a shooting algorithm. The method is tested
in soluble models, and finally applied to a nonintegrable example, the transverse oscillations of a particle
beam in a storage ring, in two degrees of freedom. In view of the time dependence of the Hamiltonian,
this is a case with "2

z degrees of freedom, " in which phenomena like Arnol'd diffusion can occur.

PACS number(s): 41.75.—i, 03.20.+i, 46.10.+z, 41.85.6y

I. INTRODUCTION

Examples of nonlinear Hamiltonian systems abound in
applications of classical and semiclassical mechanics: the
problem of N bodies interacting via gravitational or elec-
tromagnetic forces, the beam-beam interaction in storage
rings with colliding beams, and the control of magnetic-
field configurations in plasma containment devices, to
name but a few. Most of these problems are not soluble
by quadratures and not completely integrable in the tech-
nical sense of the Liouville-Arnol'd theorem [1]. Interest-
ing examples of completely integrable systems have been
studied intensely, but they are essentially different from
generic problems of nonlinear mechanics [1,2].

We are concerned with systems that may be viewed as
perturbed integrable systems. If the perturbation is
sufficiently small, and the unperturbed Hamiltonian
satisfies a nondegeneracy condition, the Kol'mogorov-
Arnol'd-Moser (KAM) theorem may apply [3]. The un-
perturbed system has toroidal surfaces in phase space
that are invariant under time evolution, and these tori
foliate the space. That is, the trajectory passing through
any point in phase space lies on an invariant torus. The
KAM theorem asserts that certain of these tori, those
that have rationally independent perturbed frequencies,
survive in a slightly distorted form when a sufficiently
weak perturbation is imposed. These are called KAM
tori; they form a set of large measure, but they are inter-
leaved by regions in which tori need not exist, the so-
called resonant regions of phase space corresponding to
rationally dependent unperturbed frequencies. Reso-
nances exist in an arbitrarily small neighborhood of a

KAM torus, so that the tori no longer foliate phase
space.

For systems of sufficiently small phase-space dimen-
sion, the existence of invariant tori has a direct implica-
tion for stability of the motion. The effective dimension of
phase space is D=2d+~, where d is the number of
mechanical degrees of freedom, and ~=0 for an auto-
nomous system, while ~=1 if the Hamiltonian depends
periodically on the time (we exclude nonperiodic time
dependence). If D~4, an invariant torus divides the
space into two disjoint regions, an inside an outside. It is
clear that an orbit beginning inside the torus must stay
there forever. This amounts to a useful statement of sta-
bility, if the inside is a bounded domain representing a
desirable region of phase space for the problem at hand.

If D &4, the KAM tori have too few dimensions to
separate regions of phase space, just as a point does not
divide a two-dimensional plane into disjoint regions. In
this event, an orbit initially close to an invariant torus
(though not on one) can follow a "stochastic web" associ-
ated with resonances, and eventually deviate greatly from
the torus. Such an effect was demonstrated by Arnol'd in
an example with D =5, and similar phenomena are re-
ferred to broadly as Arnol'd difFusion [4].

For the study of stability of nonintegrable systems, it is
useful to compute approximations to invariant tori, even
in cases with D )4. In contrast to exact invariant tori, a
family of approximate invariant tori, corresponding to
various values of an approximately invariant action, may
foliate a region of phase space. Such a family is
equivalent to a canonical transformation to new action-
angle variables, such that the action is an approximate in-
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variant. By studying the relatively weak variation in time
of the new action, one can set bounds on the motion for a
long but finite time [6]. This argument is in the spirit of
the Nekhoroshev theorem [7], and proceeds in the same
way for any D.

In a less formal way, a nearly invariant torus is useful
in giving information on the dominant resonances. When
the torus is represented as a Fourier series in angle vari-
ables, the magnitude of the Fourier coefficient in a partic-
ular mode measures the strength of excitation of a reso-
nance in that mode. Also, the derivatives of the Fourier
coefficients with respect to action, which determine the
Jacobian of the transformation of angle variables in an
associated canonical transform, have been identified as a
sensitive indicator of the onset of large-scale chaos, at
least for a class of models [5] with D =3. Generally
speaking, a difficulty in finding good approximate invari-
ants is associated with the approach to strongly unstable
regions, and for that reason it is informative to see what
happens to good invariants as some measure of nonlinear-
ity is increased.

Perturbative methods to compute approximate invari-
ant tori have been employed over many decades. Since
the advent of the computer, one tendency has been to
adapt and improve classical perturbative algorithms for
machine calculation, so as to carry the perturbation
series to relatively high orders. Another tendency has
been to invent nonperturbative techniques, again taking
advantage of computers. Even with the power of com-
puter implementations, perturbative methods may be
ineffective in interesting parts of phase space, particularly
near the onset of strong instability. Appropriate nonper-
turbative methods may have a larger region of validity,
and even present some advantages in cases for which per-
turbation theory is adequate.

This paper describes a particular nonperturbative tech-
nique [8,9] based upon iterative solution of the
Hamilton-Jacobi equation. The method is designed to
handle a Hamiltonian with periodic time dependence, al-

lowing for the possibility that the time dependence may
not be smooth. Following the pattern of canonical per-
turbation theory, the technique makes use of the action-
angle variables of the underlying integrable system, and
finds a transformation to new action-angle variables so
that the new action is nearly constant. The generator of
this transformation, an approximate solution of the
Hamilton-Jacobi equation, provides an explicit represen-
tation of a nearly invariant torus.

The generator is represented as a Anite Fourier series in

angle coordinates. Departing from the method first used
in iterative solution of the Hamilton-Jacobi equation [5],
we avoid Fourier analysis in time. Since the perturba-
tions of present interest are discontinuous functions of
time, a Fourier analysis would be inefficient and poorly
convergent. Lacking the automatic periodicity of
Fourier analysis, we enforce periodicity of the generator
in time by a "shooting method" in which initial condi-
tions are varied systematically until periodicity is
achieved.

We illustrate the procedure with examples from ac-
celerator theory with D =3 and 5. The examples deal

with oscillations of particles transverse to the direction of
the beam, the so-called betatron oscillations. Nonlineari-
ty of the motion arises from fields of sextupole magnets,
which are introduced to counteract dependence of the os-
cillation frequencies on the longitudinal momentum of
the beam. In these examples the method has a large
domain of convergence, including regions of strong non-
linearity. It produces close approximations to invariant
tori; this is checked by following single orbits, originating
on the tori, through accurate numerical integration of the
equations of motion.

A comparison to related work requires some awareness
of technical features of our approach; for that reason we
defer comparisons to the Anal section of the paper.

In Sec. II, we derive the Fourier projection of the
Hamilton-Jacobi equation in a form suitable for the
shooting algorithm. The shooting method is formulated
as a Axed-point problem in Sec. III. Iterative, numerical
methods used to solve the fixed-point problem are briefly
discussed. In Sec. IV, the technique is tested on two solu-
ble examples. In Sec. V, the method is applied to a non-
trivial example, the problem of betatron oscillations in a
model of an accelerator with strong nonlinearities. Cal-
culations of tori for both D =3 and 5 are discussed. We
give conclusions and try to place the method in a context
of related work in Sec. VI. The Appendix contains a
proof of convergence of the shooting algorithm for
sufficiently weak nonlinearities, based on the contraction
mapping theorem.

II. FINITE FOURIER PROJECTION
OF THE HAMILTON-JACOBI EQUATION

In this section we derive the projected Hamilton-Jacobi
equation for charged particle motion in a transverse mag-
netic field. The discussion is applicable, however, to any
time-periodic Hamiltonian representing a perturbed in-

tegrable system. We write the Hamiltonian in the
action-angle variables of the integrable part and describe
the time-periodic canonical transformation to the action-
angle variables of the entire, nonlinear Hamiltonian. The
equation requiring that the new Hamiltonian be indepen-
dent of angles is the Hamilton-Jacobi equation, a partial-
differential equation for the generating function of the
transformation. We project it onto a finite Fourier basis
in the angle variable and find a set of equations and
boundary conditions for the Fourier amplitudes of the
generator.

For a single charged particle moving in the static,
transverse magnetic field of a cyclic ("circular" ) accelera-
tor or storage ring, the Hami1tonian describing the trans-
verse motion can be written in the action-angle variables
of the unperturbed (linear) Hamiltonian as [10]

H(@,I,s)=Q(s).I+ V(4, I,s) .

The timelike variable s is the independent variable of
Hamilton's equations; it represents the particle's azimu-

thal location in the accelerator, measured by arc length
along a closed reference orbit of circumference C. Bold-
face characters indicate d-component vectors, where
d =1 or 2 in all of our numerical examples. For d =2
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each component of any vector corresponds to one of the
directions transverse to the reference orbit. The unper-
turbed Hamiltonian Q(s).I is defined in terms of
P,.(s)=1/Q, (s), where P, is the Courant-Snyder beta
function which characterizes entirely the linear aspects of
the applied magnetic fields [11]. Both P; and the pertur-
bation V are periodic in s with period C.

The Hamiltonian (1) is derived from an initial formula-
tion in terms of phase-space coordinates (x;,p;), where x;
is the transverse displacement of the particle from the
reference orbit, and p;=dx;/ds. These coordinates are
related to the unperturbed angle-action variables (4;,I;)
by a canonical transformation

x; =+2I;P, (s) cos4;,

p;= +2I;—/P;(s)[ sin@;+a;(s) cos4;], i =1,2
(2)

where 2a;(s) = —dP;(s)/ds. In terms of (x;,p;), the un-

perturbed Hamiltonian takes the form

p xH= g +K, (s)
2 2

(3)

The function f„(s) is zero everywhere except inside the
nth magnet where it is unity. The sextupole strength 5„
has units of inverse length cubed, and is defined as
S = (e /ego )8 Bp /Bx, in cgs units, where po is the refer-
ence rnoeettur, and the second derivative of the vertical
magnetic field 82 is evaluated at x

&
=x2 =0.

We now consider the full nonlinear problem and seek a
canonical transformation to new action-angle variables
[12],

(@,I)~(%',J), (5)

such that the new action J is invariant. The generating

where the functions E;(s), periodic with period C, de-
scribe linear focusing forces from quadrupole magnets.
The definition of K; and the determination of P; from E;
is explained in Ref. [11].

When V =0 the motion is integrable, since it follows
immediately from Hamilton s equations that J; is con-
stant, and that 4, (s)=4, (0)+f ado. /P, .(o ). With V=O
it is possible to make a further canonical transformation
to variables that represent simple harmonic motion, but
it is not convenient to do so in the following work.

Synchrotron oscillations and synchrotron radiation of
the particle are ignored. Synchrotron oscillations (oscil-
lations in energy associated with the electric rf accelerat-
ing field) occur on a time scale much longer than the be-
tatron (transverse) oscillation time. They can have an im-
portant effect on long-term stability, but lead to a more
complicated problem than the one we wish to study here.
Synchrotron radiation tends to damp the betatron oscilla-
tions in electron accelerators, and in fact improves stabil-
ity.

The form of V for a string of normal sextupole magnets
distributed about the circumference of the ring is

N

V(x„x2,s)= g f„(s), (x, —3x,xz) .
n=1

function of the transformation is denoted as

Fz(C, J,s)=4 J+G(4,J,s), (6)

where the first term represents the identity map. The
equations defining the transformation are

%'=4+GJ(N, J,s),
I=J+Gq, (@,J,s ),
H, (J,%',s ) =H(4, J+G@,s )+G, .

(8)

The subscripts represent partial differentiation, for in-
stance G@=[BG/8@;]. The Hamilton-Jacobi equation
expresses the requirement that the new Harniltonian be a
function of J and s alone:

G(4,J,s)=g(O, J,s)+ g g(m, J,s)e', (l l)
mEMUM

g(m, J,s)= f de
' ' G(4', J,s) .

(2~)'
(12)

In Eq. (11), the mode index vector m=(m „mz, . . . , md )

runs over a finite set denoted as M UM, which does not
include m=(0, 0, . . . , 0).

The set of indices for the independent, complex
Fourier modes is M. The set M is simply related to M
and represents Fourier modes that are not independent of
those with indices in M. In the case d =2, the set M is
the set of all integer vectors ( m &, m 2 ) such that
m, E[O,M, ], and m2E[ —M2, M2] when m, )0, while

m2E[1,M2] when m& =0. The set M is just the negative
of M: M= [(m, , mz):( —m, , —mz)CM]. Since G is
real, the Fourier coefficients with indices in M, are relat-
ed to those with indices in M, g( —m&, —mz)
=g*(m, , m2).

For ease of notation, Fourier series are written using
indices in the union of the two sets M UM, even though
the corresponding amplitudes are not independent. Writ-
ten using just the set M, the summation in Eq. (11) be-

H, (J,s)=Q(s) (J+G@)+V(@,J+G@,s)+G, .

If 6 satisfies this partial differential equation, then J is in-
variant, as a direct result of Hamilton's equations in the
new variables.

We seek a solution G of Eq. (10) that is periodic in 4
with period 2~, and periodic in s with period C. Such a
solution provides an explicit representation of a (2+ I)-
dimensional invariant torus, through Eq. (8). Since J will
be constant along an orbit (4(s), I(s)}, all points of the
orbit lie on the surface I=I(@,s;J) specified by Eq. (8).
The surface is toroidal, which means that I(@,s) is
periodic in 4 and s. The value of the constant vector J
serves to distinguish different tori. Since only approxi-
mate solutions of (10) can be achieved numerically, our
computations will lead to tori and actions J that are in-
variant only to a certain accuracy, as verified over a finite
interval of s.

Because of the periodicity in the angles, it is natural to
study Eq. (10) in a Fourier basis in 4. Accordingly, we
expand the generator in a finite Fourier series, thus
guaranteeing periodicity in 4:
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comes

g 2Re[g(m, J,s)e' ];
mEM

this formula is used in numerical computations.
A projection of the Hamilton-Jacobi equation onto the

above Fourier basis gives

h(m, J,s)=e' "g(m, J,s) . (21)

The periodicity of g in s implies the boundary condition
on the new variable h:

B,h(m, J,s)= —e' ' "v(m, J,s;g(h)), m EM (20)

where

B,g(m, J,s)+im. Q(s)g(m, J,s)+u(m, J,s;g) =0, h(m, J,C) =e2"™vh(m,J,O} . (22)

m&M . (13)

G@(@,J,s)= g img(m, J,s)e'
m&MUM

(15)

Recall that the set MUM does not contain the mode
m=O, so that Eq. (13) does not involve m=O, and is in-
dependent of the choice of H, (J, )s. Hence it can be
solved for g(m, J,s) with mAO subject to the s-

periodicity condition. This completely determines G@
when J is specified.

Projection of the Hamilton-Jacobi equation onto the
m=0 mode gives

H, ( Js)= Q( )sJ+B,g(O, J,s)+v(O, J,s;g) . (16}

Since u(O, J,s;g ) is determined by Gz, alone, and the solu-

tion of Eq. (13) gives G+, we determine H, by an arbi-

trary, s-periodic choice of g(O, J,s).
It is convenient to choose g (0,J,s ) to be zero.

Different choices give different definitions of the new an-

gle 4', but the differences are innocuous, in that the
change of 4 during a period of s is always the same. The
perturbed tune, or winding number, v' gives the change
in 4 in one turn normalized by 2ir: %'(C) —%(0)=2mv'.
From Hamilton's equation for the evolution of 4, the
tune is

f a,a, (J,s)ds=v+ f a,v(O, J,s;g)ds,c ]. c
27T 0 2& 0

(17)

where v is the tune of the unperturbed motion,
C2~v= f Q(cr)do .

0

Owing to periodicity in s, the term B,g in H& does not
contribute to the integral (17), and the tune is invariant to
changes in the choice of g (O, J,s ).

The linear term in Eq. (13) can be eliminated by using
the integrating factor exp[im. X(s)], where

X(s}=f Q(cr)der

is the linear phase advance, @(s)—4(0). Equation (13}
becomes

Here v(m, J,s;g ) is the Fourier transform of the pertur-
bation and is a functional of the Fourier coefficients
[g(m, J,s), mEM] through the action transformation in

Eq. (8):

u(m, J,s;g)= 2~ d@ —;m.@
d

e ™V(@,J+Gz, (4,J,s),s),
o (2ir )"

(14)

Notice that h has the nice property of being constant
over any interval of s in which the perturbation vanishes,
i.e., any region in which magnetic fields are linear or
zero.

Periodicity of a solution g(m, J,s) of (13) implies
periodicity of its derivatives with respect to s, at least at
generic points where V and Q are sufficiently smooth.
Suppose, for instance, that Q(s) and V(@,J,s) are con-
tinuous in s in a neighborhood of s0, and that V is con-
tinuous as a function of J. Then (13) shows that
B,g(m, J,s) is continuous near so, and periodic in s with
period C. By differentiating (13), and assuming more
smoothness of V and Q, one can make similar con-
clusions about higher derivatives. In the accelerator
problem, smoothness will be lacking only at sharp edges
of magnets.

The differential relations and boundary conditions for
the h coefficients are summarized below:

B,h (m, J,s ) = —e' "v(m, J,s;g(h)), m&M (23)

u(m, J,s;g(h))= f e ™~V(N,J+G+,s),2~ d4;m@
o (2 )d

(24)

G = ~~ imh (m, J,s )e'4
mGMUM

h(m, J, C)=e ' '"h(m, J,O) .

(25}

(26)

In the following section, we describe a method to find
solutions of Eq. (23) consistent with Eq. (26}.

III. SOLUTION BYTHE SHOOTING METHOD

In this section, we discuss the solution of Eqs.
(23)—(26) for the Fourier amplitudes h(m, J,s }. We for-
mulate the problem as one of finding the fixed point of a
nonlinear map. We close this section with a discussion of
the numerical methods for evaluating the map and for
finding its fixed point.

Equations (23)—(25} define the evolution of the initial
conditions h(m, J,s=0) to the final values h(m, J,s =C}.
The integration of Eq. (23) from an arbitrary initial con-
dition h (0) to a final value h (C) defines the map U:

h (C)—h (0)= U(h(0)) .

Here and elsewhere we suppress reference to m and J,
and write h (s) for the vector with components h (m, J,s ).
The boundary condition (26) is not satisfied for an arbi-
trary h (0). In terms of the evolution map U, the bound-

ary condition demands that h (0) satisfy the equation
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h(m, J,O)=
2

. U(m, J,h(0)) .1
(2&)

study of fixed points of nonlinear maps [13,14]. We de-
scribe these methods in detail below.

In other words, we seek a fixed point h (0) of the map A,

h (0)= A(h(0)), (29)

where

A(m, J,h(0))= 2,. U(m, J,h(0)) .1

~ 2&1II1'v (30}

An essential property of this formulation is that A is pro-
portional to the perturbation strength V. This makes it
feasible to solve the fixed point problem by iteration,
when V is sufficiently small, and the divisor e2~™v—1 is
bounded away from zero by an appropriate choice of the
mode set M and the unperturbed tune v. The change of
variable from g to h was needed to create an operator
proportional to V; the corresponding step in quantum
mechanics is to use the interaction picture.

To solve Eq. (28), we use standard techniques from the
I

l 1TID'V (
h (m, J 0)= . 8' ~ ~v(m J s)ds,

2S1nvrm v 0

with

(31)

A. Simple iteration

The most obvious method to find the fixed point of Eq.
(29) is referred to here as simple iteration. The iteration
proceeds in the following manner, h'+'(0)= A(h'(0)),
with the superscript i labeling difFerent iterates. A proof
of convergence to a unique fixed point is described in the
Appendix.

Our initial guess h (0) will be the approximate solution
of Eqs. (23}—(26) to lowest order in perturbation theory.
This is obtained by putting G@, equal to zero in the right-
hand side of Eq. (24). Then Eq. (24) can be evaluated ex-
plicitly using Eqs. (2) and (4). The resulting initial iterate
1s

N

v(m, J,s)= g f„(s)S„[5(m—(3,0))—,'(J&P, (s)) ~ +5(m —(1,0))[—,'(J,Pt(s)) ~ —(J,P&(s))'~ J2P2(s)]
n=1

—[5(m —(1,2) )+5(m —(1,—2) )]—,'(J&P&(s) }' J2P2(s)], (32)

with m CM. The 5(m —(j,k) ) are Kronecker delta func-
tions with the value 1 when m=(j, k) and 0 otherwise,
and the summation is carried out over N sextupole mag-
nets of strength S„;see Eq. (4). Notice, at s =0 the h and

g coefficients are equal.
The notorious problem of small divisors near reso-

nances can be seen in the leading factor in Eq. (30). The
denominator vanishes when m v=p, where p is an in-
teger. The iterative procedure cannot succeed unless the
mode set M and the unperturbed tune v are chosen so
that the denominator is nonvanishing. The smaller the
minimum value of the denominator, the smaller the per-
turbation V must be to secure convergence of the itera-
tion. It follows that for a fixed V this method cannot pro-
vide arbitrary accuracy. If one attempts to increase accu-
racy by expanding the set of Fourier modes, the
minimum divisor tends to zero, since there are vectors v„
with rational components close to any v whatever. As we
shall see, this deterioration of convergence is clearly ob-
served in computations.

B. Newton iteration

To expand the domain of convergence, we turn to
Newton's method. The small divisors have the same im-
pact in this method, even though their role is a bit less
obvious. Nevertheless, for a given M and v, the Newton
method succeeds for much larger V than can be handled
in simple iteration.

The desired fixed point is the solution to the complex-
valued vector equation,

F(h(0)) = A (h (0))—h (0)=0 . (33)

F(m, h')+ g D(m, n, h') [h'+'(n) —h'(n)]=0,
nEM

with

(34)

D(m, n, h )=

8 ReF(m, h ) 8 ReF(m, h )

8 Reh (n) 8 Imh (n)
8 ImF(m, h ) 8 ImF(m, h )

8 Reh (n) 8 Imh (n)

(35)

This system of equations is solved for the new iterate
h ' ', given h ', by a direct method (Gaussian elimina-
tion). The Jacobian D of the map is approximated nu-
merically by divided differences. Each component of h is
perturbed separately by a small amount, and F computed
at perturbed and unperturbed points. The matrix ele-

In Newton's method we make a first-order Taylor expan-
sion of F around a given iterate to define the next iterate
as a solution of linear equations.

The derivative of F is not well defined in the sense of
complex function theory: F is not an analytic function of
h (0). Equation (33) should be written as two real equa-
tions, then the derivative of F with respect to Reh and
Imh is well defined. We use a compact notation for the
real equations F= (ReF,ImF) and h (0)= (Re
h(0},Imh (0)) . Then Eq. (33) takes the form F(h(0)) =0.
To state equations in components, we write h(m} for
h (m, J,O). Then Newton's method is defined by the equa-
tions
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ments of the Jacobian are then found as

5F(m, h ) F(m, h+(e(n), 0) 5h )
—F(m, h )

0 Reh (n) 6h

QF(m, h) F(m, h+(O, ie(n)) 5h) —F(m, h)
8 Imh (n) 5h

(36)

where 5h is a small real number and e(n)= I5(p —n),
p CM } is the unit vector in the direction corresponding
to mode n. In practice, we take 6h
=(10 —10 ) h(n)~.

The larger domain of convergence of Newton's method
is achieved at a computational expense that becomes
significant for d ~2. The expense is mainly due to the
Jacobian evaluation. With d =2 the total number of in-

dependent modes in the set M is 2M, M2+ M, +M2. In a
typical calculation we might have M, =M2=15, hence
480 independent modes and 960 map evaluations to ap-
proximate the Jacobian. For a general d-dimensional

mode vector the number of independent components is a
little more than 2" 'M, M2 Md. The calculation of
the Jacobian quickly becomes untenable as the mode set
or the number of degrees of freedom is increased. In con-
trast, the simple iteration requires only one evaluation of
the map A (h) at each iteration.

We employ two methods to reduce the time for the
Jacobian calculation. First, Broyden's update method is
used to approximate the Jacobian. Second, we discard
many modes within the mode set M.

C. Newton-Broyden iteration

For the Newton-Broyden iteration, the Jacobian of the
map is calculated fully only once and is afterward updat-
ed using the Broyden algorithm [15—17]. If D' is the
Jacobian at the ith iteration then the update of the Jaco-
bian at the (i + 1)th iteration is

D, + i D, + [F(h'+') F(h')—D'(h'—+' —h')] (h'+' h')—
(h' ' —h') (h'+' —h')

(37)

The h are treated as column vectors, and the h as corre-
sponding row vectors. The costly computation (36) is
used only to find D; each subsequent iteration requires
only one new map evaluation F(h '+ ').

The domain of convergence of the Newton-Broyden
iteration is still large while computation times are much
more reasonable than those of a full Newton iteration. In
practice it converges for strong effective nonlinearities, in
particular, for initial conditions close to the dynamic
aperture in accelerator problems.

A more daring and still more economical approxima-
tion can be attempted. If A were zero in Eq. (33), the
Jacobian would be —1. Putting D = —1 in (37), we were
surprised to find that the Broyden updates still provided
a region of convergence substantially larger than that of
simple iteration. In comparison to the calculation with
D from divided differences, the region of convergence
was somewhat smaller, and more iterations were required
for adequate convergence.

D. Mode selection

To achieve a certain accuracy, one has to choose a
minimum value for the maximum mode numbers M;. On
the other hand, for a given choice of M, there are usually
many amplitudes of modes with

~ m, ~
(M, that are quite

negligible. We apply a simple technique to identify and
eliminate the negligible modes within the set M.

We carry out one simple iteration using the full mode
set M, as in Sec. III A. We then compute the evolution in
s of the resulting h (0), and for each m the maximum over
s of ~h(m, J,s)~. When the latter is less than some fixed
small fraction of max„max, ~h(n, J,s), we throw away
mode m in all subsequent computations. In our examples
with d =2, no more than 130 to 200 complex amplitudes
are retained. Since the time to approximate the initial

Jacobian goes down with the square of the number of am-
plitudes, a great deal of time is saved.

E. Numerical integration

The nonlinear map U of Eq. (28) must be evaluated by
numerical integration of Eq. (23). We use a fourth-order
Runge-Kutta algorithm. Recall that h(m, J,s) changes
only over the support of the nonlinear perturbation V.

Thus, in our example the numerical integration need be

performed only over the extent of the sextupole magnets.
The final value h(m, J,C) obtained by the integration is
used in Eq. (27) to calculate the map U. After the itera-
tion converges to the fixed point h(m, J,O), the
coefficients can be evolved in s using the same fourth-
order Runge-Kutta algorithm.

It has been observed that the number of Runge-Kutta
integration steps per nonlinear element must be increased
to maintain accuracy as the effective nonlinearity is in-

creased by going to large amplitudes J. Similarly, the
number of 4 modes must increase. The number of in-

tegration steps in the s-direction along the (d+1)-
dimensional torus is analogous to the number of Fourier
modes to represent variation along the 4 direction. As
the nonlinearity increases, the invariant torus becomes
more distorted in both the s and the @directions, so that
both the number of steps and the number of modes must
go Up.

Working at large amplitudes and using the above stat-
ed guess for h, we find that the iteration can reach a
fixed point only for a relatively small number of integra-
tion steps. To perform the calculation at a large number,
the result from an intermediate number of steps must be
used as the starting point. The fixed point found at the
intermediate point is then used as the initial iterate for a
calculation with a larger number of integration steps.
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This has the added advantage of calculating the initial
Jacobian with a smaller number of integration steps and
thus saving computing time.

IV. TESTS OF THE METHOD

r+&a2+r2
r —&W2+r2

with

genvalues of K, are

1 /P2

1 /P2 (42)

We test the technique introduced in the previous sec-
tion on two model problems that can be solved analytical-
ly. For the case of two autonomous, linearly coupled
harmonic oscillators, we compare the exact invariant sur-
face with that from numerical solution of the Hamilton-
Jacobi equation. We also compare the analytic and nu-
merical tune shifts for a linear example in which uncou-
pled betatron motion is perturbed by a quadrupole term.

A. Linearly coupled harmonic oscillators

For two linearly coupled harmonic oscillators, the
Hamiltonian can be written as

H(x, p, )=—,'p„p„+—,'x K, x,
1/P2, r

1 /P2

(38)

Now the P; are constants, but they are defined in analogy
to the P;(s) of Eq. (1). The x and p„are column vectors
of coordinates (x„x2) and momenta (p, ,p2), respec-
tively. Since Eq. (38) is independent of s there exists a
canonical transformation producing an uncoupled Ham-
iltonian. This is equivalent to a transformation diagonal-
izing the matrix K, .

For the numerical solution of the Hamilton-Jacobi
equation, the coupling term I x&x2 serves as the pertur-
bation. Written in the action-angle variables of the un-
perturbed Hamiltonian, the full Hamiltonian has the
form

H(4, I ) =0 I+2I QP,P I,I cos4, cos4, (39)

x, =+2P,I, cos4, ,where 0„=( 1/P„ 1 /P2) and

p, = —+2I; /P, sin@;.
Let (u, p„) be variables in which the Hamiltonian ap-

pears uncoupled. They are related to the original vari-
ables (x,p„) by the orthogonal transformation S that di-
agonalizes K, ; we let Kd =S K,S, where
E ddiag(1/Pf„, 1/Pz„). The new beta parameters P;„
for the uncoupled case are related to the eigenvalues of
the matrix K, through the above definition of Kd. The
matrix S is

1 1 1X=— +
P& P2

(@„,I„)~(u, p„)~(x,p„)~(@,I), (43)

we finally obtain points I(4) with invariant action I„ to
compare with the numerical solution of the Hamilton-
Jacobi equation. The action-angle transformation is

XI. P].
I; =— +P,p, , tan@; = —P,.—,i =1,2 . (44)

xl

As a measure of the difference between the Hamilton-
Jacobi solution I and the analytic solution I", we com-
pute the normalized sum of deviations

y IIH'(C (e„))—I,"(e(e„))l

g ~I,"'(e(e „))—I„,~

i=1,2. (45)

The summation is over the 40X40 grid in the 4„space.
Table I gives the values of 5; found for several coupling

strengths I with I„=(10 m, 10 m), P, =0.50336 m,
P2=1.29322 m, and a ring circumference of 1 m. The
mode spectrum was truncated to M, =M2 =7, giving 112
independent complex modes. A subset of significant
modes within this set was selected by the method de-
scribed in Sec. III. The analytic and Hamilton-Jacobi in-
variant solutions agree very well. Notice that at I =0.50
m more modes are kept and a significant increase in ac-
curacy over the other cases is achieved.

The parameters are chosen so that the right-hand side of
Eq. (42) is positive. The P;„are defined to be positive.

We take the following steps to generate points on an
invariant surface I(4) to compare with the numerical
solution of the Hamilton-Jacobi equation. We introduce
the action-angle variables (I„,4'„) of the uncoupled
motion. To generate points on the torus, we hold I„ fixed
and allow 4„ to vary on a uniform 40X40 grid. Work-
ing through the transformations

where

A —I
(40)

TABLE I. Comparison of surfaces from the Hamilton-Jacobi
equation with analytic surfaces for the linear coupling model
with different coupling strengths I . The parameters 5;, defined
as in Eq. (45), measure the discrepancy. C=1.0 m, I„=(10
m, 10 m), Ml =M2=7.

~N
~

-'=2[6,'+ r'+ b, &b,'+ r']
~ =a+&a2+12 (41)

I (m ) Modes
selected

1 1 1

p2 p2

The beta parameters for the u motion found from the ei-

0.04
0.10
0.50
0.65

1.406x10-'
5.799x 10-'
5.430x 10-'
3.782 x 10

2.881 x 10
6.606x 10-'
6. 186x 10-'
11.480 x 10

5

7
42
38
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FIG. 1. The I& /I&„surface for linear coupling with strength
1"=0.65 m

quadrupole strength K (m )

FIG. 3. The normalized tune shifts Av& '/E as a function of
the normalized quadrupole strength. The dotted line is the ana-

lytic result, and the X mark data from numerical solution of the
Hamilton-Jacobi equation.

Figures 1 and 2 show the two components of the in-
variant surface, normalized by I,„and I2„, at any s
(time-independent problem) and for I =0.65 m . They
are displayed as functions of the angles 4, normalized by
2m. , and on a vertical scale with 0 at the origin. In terms
of the generating function, we are plotting
I; /I;„=1+G~ (4,I„)/I;„, with i =1,2. The constants

I„serve to distinguish different surfaces. Notice that the
departure from a plane surface is quite pronounced. In
Fig. 1 showing the I, surface, the distortion is +61%,
and in Fig. 2 showing the I2 surface, it is +55%. This
nonlinearity displayed by the coupled variables I; is of
course not an essential feature of this basically linear
problem. In problems with genuine nonlinearity one
must be careful to separate any effects of linear coupling,
which can be confused with the real effects of interest in
plots like those of Figs. 1 and 2.

B. Quadrupole perturbation

For a quadrupole perturbation, it is interesting to corn-
pare the tune shift found by matrix methods with that
from the numerical solution of the Hamilton-Jacobi equa-
tion. The perturbation due to a quadrupole is
V=II:(s)(x y)/2, wh—ere II:(s) is constant within the
magnet and zero elsewhere. In action-angle variables, it
takes the form V=X(s)(P,I, cos 4, P2I~ c—os 42). The
strength K is measured in units of m

From Eqs. (16) and (17) we see that the tune shift in the
Hamilton-Jacobi formalism is

v' —v= f ds J V(4, J+G@(@,J,s),s) .
2m BJ o o (2~}N

(46)

I I I l Ill

-0.145 —'' ' x

N -0, 150

—0.155S
N

E
0

I I I I III

10 10-4
I I I I lllll I

10 10—2 10—1

FIG. 2. The I, /I2„surface for linear coupling with strength
I =0.65 m

quadrupole strength K (m )

FIG. 4. The normalized tuneshifts Avz /E as a function of
the normalized quadrupole strength. The dotted line is the ana-

lytic result, and the X mark data from numerical solution of the
Hamilton- Jacobi equation.
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Given G+, the integral is calculated with a Simpson's
rule for the s integration and with a fast Fourier trans-
form for the N integration. The derivative is estimated
with a simple divided di6'erence.

According to lowest-order perturbation theory, the
tune shift for a weak quadrupole magnet with strength E
1S

c X

hv= J ds K(s) (47)
4m o

This can be found using Eq. (46) and setting Gz, to zero.
An exact analytic result for the tune shift can be found

using matrix methods. Consider two magnetic lattices,
one where the first element is a drift (i.e., it corresponds
to free particle motion} and another where the drift is re-
placed by the quadrupole perturbation. The 4X4 matrix
representations of the full-turn maps of the two lattices
can be compared, and the tunes extracted using the traces
of the matrices. If the full-turn map for the lattice that
begins with the drift element is T, then the full-turn map
for the same ring, but with the drift replaced by the quad-
rupole perturbation, is T'=T.TD

'
TQ, where TD is the

matrix representation for the drift and TQ is the matrix
representation for the quadrupole perturbation:

1 d 0 0
0 1 0 0

D 0 0
0 0 1 1

TQ

cos&Kd

&K sin—&Kd

1—sin&EdE
cos&K d

cosh&Ed

&K sinh&K d

1—sinhv Kd
K
cosh&K d

(48}

(49)

again with 2a; = —dp;/ds. The analytic forms for the tune shifts are found to be

(1+a, )
cos2n vI = cos&K d cos2n.v +d sin2m v1 2P 1

These matrices act on the phase space vector (x&,p»x2, p2) . The length of the drift, and the quadrupole, is d and the
quadrupole strength is E.

If there is no coupling between x, and x2 motions, the matrices T and T' are block diagonal; we label the blocks as
T", i = 1,2. The perturbed tune v',. is obtained from the trace of T" through the formula 2 cos2m v'; =TrT" [18]. The
matrix T" is represented in a standard notation as [18]

cos2av;+a; s1n2m v; P, sin2m. v,.
T(i)— —(1+a;)sin2m. v;/P; cos2nv; —a; sin2nv;

(1+a[)+—,
' sin&K d v K d cos2n.v, + &K da& —&K P&—

&K P)

(1+a2)
cos2n v2= cosh&Ed cos2m. v +d sin2n. v2 2p 2

s1n2m'vl (&0)

1 (1+a2)+—sinh&Kd &Kd cos2mv ——&Kda &KP + — sin—2n.v
2 2 2 2 QKp 2

The lattice functions a;(s),p;(s) are evaluated at the be-
ginning of the drift.

We studied several cases with a single quadrupole of
strength varying from 10 to 0.3 m . The lattice used
for T is that given in Sec. V in Table II with the sextu-
poles removed, i.e., replaced by drifts. The first sextupole
space is either the drift or the quadrupole perturbation in
the above discussion. The values of the tune shift from

the Hamilton-Jacobi solution, normalized by the quadru-
pole strength, are compared with the analytic formula
given above. The results are in Figs. 3 and 4. The dotted
line follows the analytic formula, Eq. (50), and the X
marks results from the numerical solution of the
Hamilton-Jacobi equation. The relative error of the
Hamilton-Jacobi results, defined as [g(w —w ) /
g( w HJ

) ]'~, is 9.97 X 10 for b,v, /K, and 9.73 X 10
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for Avz/K. The sum runs over the points marked by X,
and w =6v, /K is the normalized tune shift from the
Hamilton-Jacobi equation, and w =Av, /E is the ana-
lytic result from the matrix method.

The distortion of the invariant surfaces for the largest
quadrupole strength of I( =0.30 m is +5.9% for the
Ii surface and +36% for the I2 surface. The constant
actions chosen for the above study are J=(10 m, 10
m). The results for the tune shift seem to be independent
of J for several different values that were checked.

V. A NONINTEGRABLE EXAMPLE:
SEXTUPOLES IN A STORAGE RING

We present some examples of numerical solutions of
the Hamilton-Jacobi equation in nonintegrable cases with
d = 1 and 2, with Hamiltonian periodic in the timelike in-
dependent variable s. The examples are based on a
simplified model of an electron storage ring, with the
nonlinearity provided by strong sextupole magnets. The
behavior of this system is generic, in broad characteris-
tics, for storage ring models with d ~ 2, even for models
with more elaborate and realistic representations of the
magnetic lattice. Indeed, the behavior is fairly generic
for a large class of nonlinear systems in various fields of
physics.

The sextupole magnets, always present in a modern
synchrotron or storage ring, serve to correct the energy
dependence of the focusing from the quadrupole magnets.
They are placed in a dispersive region of the ring, where
particles of different energy have different transverse po-
sitions. Since a sextupole field gradient is proportional to
the transverse displacement, and since the latter is pro-
portional to the energy deviation, a sextupole can be used
to counteract the effect of weaker quadrupole focusing
for particles of higher energy. This is called chromatic
correction of the focusing.

In addition to the desired chromatic correction, the
sextupoles cause undesired nonlinear effects, even though
they are arranged with appropriate spacing and strengths
so that nonlinear effects cancel to a large extent. At
sufficiently large amplitudes of transverse oscillations, the
residual nonlinear effects dominate, and lead to unstable
motion in which particles are lost from the beam.

The example considered here is a single "cell" of the
magnetic lattice for the Berkeley Advanced Light Source
(ALS), an electron storage ring operated as a synchrotron

radiation source. The cell contains four sextupole mag-
nets. The actual lattice of the ALS contains twelve such
cells, now somewhat modified from the early design that
we use, and complications from other magnetic elements
and errors, all of which we ignore. Our cell is taken from
the Berkeley Advanced Light Source Conceptual Design
Report [19]. Table II gives the relevant parameters
describing the cell, in both linear and nonlinear aspects.
The position (leading edge), strength, and length of each
sextupole magnet is listed, together with the linear lattice
parameters P;(s),a;(s),X;(s) evaluated with s at the lead-
ing edge of the sextupole. The phase advance X, is
defined in Eq. (19). The linear tunes v;, the ring cir-
cumference (cell length) C, and the initial values of P; and

a, are also listed.
To gain a broad understanding of single particle

motion for this Hamiltonian, a stability plot is made giv-
ing initial conditions for trajectories stable or unstable
within 5000 turns. Each point in Fig. 5 represents the ac-
tion I of the initial condition for a trajectory. The initial
angles N are zero. The equations of motion are integrat-
ed over the nonlinear elements by means of an explicit,
fourth-order, symplectic integrator [20]. On each turn
the trajectory is tested; if the position x, is greater than 1

m, or the angle dx,-/ds is greater than 1 rad, that trajecto-
ry is considered lost or unstable. The asterisks and dots
represent initial conditions of trajectories that are lost or
not lost, respectively, after 5000 turns. The boundary be-
tween the regions occupied by stars and dots is called the
"5000-turn dynamic aperture. " More loosely, the "short-
term dynamic aperture" usually refers to a few thousand
turns. The "physical aperture, " imposed by the dimen-
sions of the vacuum chamber in which the particles
move, is preferably smaller than the short-term dynamic
aperture.

A. One-dimensional example

We first treat one-dimensional motion —only the coor-
dinate x& is allowed to vary. The trajectories should be
stable, under the definition of Fig. 5, out to an initial ac-
tion around I&(4&=0,s =0)=2X10 m. The corre-
sponding maximum value of the constant action J, will

have roughly the same order of magnitude. This yields
an approximate upper limit on the constant action that
could yield approximate invariant tori from the numeri-
cal solution of the Hamilton-Jacobi equation.

TABLE II. Parameters for a single cell of the ALS storage ring. At s =0, P, = I I m, P, =4 m, and

ui =F2=0. The first four columns specify the sextupole magnets, while the remaining columns give the
linear lattice functions, evaluated at the leading edge of the sextupole. C =16.4 m, —,'~ of ring,

vi = 1.189 73, and vq =0.681 58.

Name

Parameters

(m) (rn ) (m) P, (m) f3, (m)

Position Strength Length Phase

Xl (rad) X7 (radj

SD
SF
SF
SD

5.775
6.875
9.325

10.425

—88.090
115.615
115.615

—88.090

.20

.20

.20

.20

1.472
3.984
3 ~ 137
2.297

10.696
1.580
1.443
7.603

—1.779
2.272

—1.963
2.345

8.401
0.417

—0.268
—7.062

2.480
2.819
4.600
4.886

0.866
1.222
2.928
3.395
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FIG. 6. Approximate one-dimensional invariant curves

ll (4~ Jl 0) found from the numerical solution of the
Hamilton-Jacobi equation. The angle variable is normalized by
2m. See Table III and text for details.

FIG. 5. Initial actions I(4=0,s =0) of trajectories stable ( )

and unstable (~ ) after tracking for 5000 turns in the ALS cell.
Points A -D mark two-dimensional solutions that are discussed

in some detail in the text.

is taken over a set of 16 initial angles which are uniformly
distributed. Notice that 5, is normalized so that it mea-
sures the error in the departure from linear motion. In-
stead, one could normalize by replacing the denominator
in (51) by J„so as to measure the error in I, itself; this
would give considerably smaller values.

Several other parameters are given in Table III. The
distortion of the invariant surface from a plane gives a
measure of the strength of the nonlinearity; a similar
quantity is called "smear" in accelerator physics [21].
We define the distortion to be the average of the max-
imum excursion above the mean and the maximum ex-
cursion below the mean, divided by the mean J1 ~ A
characteristic displacement of the trajectory is the value
of x

&
at 4, =0, s =0: x,o

=+2@,(0)I,(0). The non-
linear tune shift as defined in Sec. IV, and the CPU time
to find the fixed point on the IBM 3090 Model 200 E
computer, are also shown.

As the amplitude J& increases, a larger mode set (all

modes in the set are being selected) is required to main-

tain even moderate accuracy. The tune shift is approxi-
mately linear with action, as is expected for sextupole
magnets. The initial offset x,0 for case c comes close to
the value 22.5 mm given in Ref. [19] for the maximum x,
coordinate of the short-tenn dynamic aperture of the
ideal lattice (i.e., the configuration of magnets that we
study, without errors).

In Fig. 6, three representative solutions (approximate
invariant tori) with different constant actions are plotted.
These curves are sections of the 2-torus
I, =J, +6@, (4„J&,s) at s =0 and are plotted as a func-

tion of 4&/2n. . The s dependence can be found by evolv-

ing the Fourier coefficients with the nonlinear time evolu-
tion map as defined in Sec. III. Several items characteriz-
ing each solution of the Hamilton-Jacobi equation are
given in Table III.

In Table III, the accuracy of the solution 5, is estimat-
ed by comparing the curve with the result of accurate nu-
merical integration of Hamilton's equations ("tracking"),
again using an explicit fourth-order syrnplectic integrator
[20]. Sixteen initial conditions are chosen on the invari-
ant surface, and each is tracked for 1000 turns, thus
defining a trajectory. To compare the values of action on
the trajectory I"(s =nC) with the corresponding values
on the computed surface I (4", (s =nC)), we define an
error parameter

1000

g ~IP (4&'(s=nC)) —I, (s =nC)~

51=max
I+)pI

(51)1000

g ~I, (4", (s =nC)) J) I

n=1

The summation is over the number of turns the trajectory
was followed (1000 turns in this case), and the maximum

Initial
offset

x „(mm)

Tracking
comparison

6,

Mode
set
Ml

CPU time
IBM 3090

(s)

Tune
shift
Av

Constant
action
Jl (m)

Distortion
(%)

Case

2X 10-'
2X10
2X 10-'

1.51 X 10
1.04 X 10
3.67X 10-'

—1.068 X 10-'
—1.073 X 10-'
—1.22P X1P—'

15
31
63

+2.8
+9.0
+31.6

2.1

7.5
21/4

5

19
28

TABLE III. Parameters for numerical solutions of the Hamilton-Jacobi equation with d =1. The
corresponding approximate invariant curves are given in Fig. 6.
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FIG. 7. Contours of constant nonlinear tune shift 1000hv~.
Points where numerical solutions were found and used in the

global fit are marked with X.

FIG. 9. The I&(4,J,O)/J& projection of the invariant surface
for J, =J,=2X10 'm. This corresponds to A in Fig. 5 and in
Table IV.

B. Two-dimensional example

We present several results for the full two-dimensional
sextupole problem. We discuss the tune shifts found
from a family of approximate solutions and show that
they are almost linear in the constant actions. We also
present two solutions in detail: one for small J and one
for large J.

In Figs. 7 and 8, the nonlinear tune shifts, found from
several numerical solutions, are plotted in a contour plot
as functions of the constant actions J& and J2. The X
marks points where numerical solutions of the
Hamilton-Jacobi equation were found. The tune shifts
were fitted to a global, cubic polynomial in the constant
actions, and this was used to make the contour plots.
The discrepancy between the fit and the data, measured
by the root mean square of the deviation normalized by
the data, was 2.61X10 for Av& and 2.27X10 for

Av2. From the figures and the fit, it is clear that the tune
shifts are nearly linear functions of the actions. This is
what is expected for sextupole nonlinearities from low-
order perturbation theory.

The solutions found for Figs. 7 and 8 used the modest
mode set of M, =M2=7. Of the 112 modes only the 30
largest were selected to do the calculation. This kept the
computation time for the solution at the largest value of
the action J=(6X10 m, 6X10 m) to 271 sec on the
IBM 3090 computer. Comparison with short-term track-
ing, as described above, gives 5, 0.31 and 52~0.56, and
these large values only for the largest J. The majority of
the solutions in the figures give 5; ~10 . The two-
dimensional 6; are defined in analogy to the one-
dimensional case. In the two-dimensional definition, the
initial angles (4,0, C!20) are distributed evenly in a 4X4
grid in the 4 plane.

In Figs. 9—12, we give three-dimensional plots of in-

6.00—
-Q. 00 - 11.00

-7. 00 -11.00

CO

4. 00--
5. 00

-Q. OO

CJ

20 l 3.00 -7. 00

1.00 -5. 00

0. 00 -1.00 -3.00

0. 00
I

2. 00 4. 00

constant action J 1 (10 m)

6. 00

Flax. 8. Contours of constant nonlinear tune shift 1000hv~.
Points where numerical solutions were found and used in the

global fit are marked with X.

FIG. 10. The I,(W, J,O)/J, projection of the invariant sur-

face for J, =J,=2X10 ' m. This corresponds to A in Fig. 5

and in Table IV.
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FIG. 11. The I&(4,J,O)/J, projection of the invariant sur-
face for Ji =J2=4X10 m. This corresponds to B in Fig. 5

and in Table IV.

FIG. 12. The I2(@,J,O)/J2 projection of the invariant sur-
face for J

&

=J2 =4X 10 m. This corresponds to B in Fig. 5
and in Table IV.

variant surfaces, showing I,(4,J,O) /J
&

and
I2(C,J,O)/Jz as functions of (4&/2n. , @z/2n. ) for
J& =J2 =2 X 10 m and J, =J2 =4X 10 rn, respective-
ly. As expected, the distortion from a planar surface is
greater for the case with larger constant action. In the
initial action space of Fig. 5, these two solutions corre-
spond to points A and 8.

Table IV gives some relevant parameters for the two-
di, mensional solutions shown in Figs. 9—12, as well as two
other solutions, indicated as C and D, whose invariant
surfaces we do not show. The corresponding initial ac-
tions for C and D are given in Fig. 5. All solutions have
M& =M2. The number of modes actually used in the cal-
culation is shown, along with the total number of in-

dependent modes in the set from which they were select-
ed. The initial number and final number of integration
steps per sextupole are given under N„K (number of full
Runge-Kutta steps, each requiring four evaluations of the
right-hand side of the differential equation). The parame-
ters giving the comparison to short-term tracking are
shown as 5;. The distortion from a planar surface is re-
ported for each case; it is defined as the average of the ex-
cursions above and below unity of the ratio I, /J;. Finally
we give the total computation time, including both the
surface calculation and program diagnostics, on the
SLAC IBM 3090 Model 200 E computer; the time is
dominated by the surface calculation.

We see from Table IV that for larger actions, and
greater distortions, a larger mode set must be used and
more modes must be chosen to represent the surface ac-
curately. Larger actions also require more integration
steps per nonlinear element to get numerical convergence
to a fixed point. This leads to a big increase in the com-
putation time.

We compute the offsets in (x|,x2) for the surfaces of
cases A and B. For 4=0, we use x;0=+2P;I;; the beta
functions at s =0 are given in Table II. For
J]=J2 =2X 10 m, case A, we find x&0 =2.2 mm and
x20=1.3 mm. For J& =J2 =4X10 cm, case B, we find
x&0=10.8 mm and x20=6. 1 mm.

The approximate solutions can be sensitive to the mode
set used for the calculation. As the set is increased, the
likelihood of encountering a resonance increases and the
technique can break down. For a suitable mode set, not
so large as to spoil convergence, the Fourier amplitudes
of G@ appear to follow, with considerable scatter, a trend
of exponential decrease with increasing

~ m, i and ~m2 ~.

One expects this for a function that is analytic in a strip
about the real axis in the complex plane of 4, or 4z.
That is, the Fourier amplitudes of such a function should
be bounded in modulus by an exponentially decreasing
function of ~m, ~

and im2i, and the rate of decrease is
conditioned by the width of the strip. In KAM theory,
Gz, is indeed analytic in strips. An argument based on

TABLE IV. Parameters for representative numerical solutions in two dimensions including those in
Figs. 9—12. These correspond to the initial conditions marked in Fig. 5.

Case J„J, Set Modes N«
(10 m) M;

Tracking Distortion (%%uo) CPU time

IBM 3090

A

B
C
D

0.2,0.2
4,4
1,3
3,1

15 50/480 2/10 2.66 X 10 4.37 X 10 +6.2
31 180/1984 7/16 3.88 X 10 1.62 X 10 +33 3
31 125/480 5/16 5.64X 10-' 5. 16X 10-' +35.4
31 180/1984 4/16 5.73 X 10 9.59 X 10 +15.3

+4.6
+27.9
+12.2
+20.3

14 min, 57 s
3h, 13 min, 10s
1 h, 37 min, 28 s
2h, 45s
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FIG. 13. Modulus of Fourier amplitudes of one-dimensional
surfaces shown in Fig. 6 with J~ =2X10 ' m, case c. Notice
the fast decrease of the Fourier amplitudes with mode number
typical of good solutions.

analyticity is not directly relevant in our approximation;
however, since our G+ has only a finite number of modes

and is analytic in the entire complex plane of 4;.
In Figs. 13 and 14, we give a logarithmic plot of the

normalized modulus of Fourier amplitudes of G@, , name-
1

ly I m i h ( m t,J„O)I /J, vs
I m, I

for two one-dimensional
solutions, cases b and c of Fig. 6 and Table III. As ex-
pected, the magnitudes of the Fourier coefficients do not
decay exactly exponentially, but roughly follow an ex-
ponential trend. Moreover, the rate of decrease of
Fourier coefficients diminishes with increasing J„
reflecting the general expectation and experience that
more and more modes are needed for accurate computa-
tion of invariant surfaces at large actions.

For two-dimensional surfaces, the graphic representa-
tion of the decrease of the Fourier amplitudes with mode
index is not as obvious as in the one-dimensional case.
For a graphical display we have made a least-squares fit

I I I I I I I I

f

I I I I

10-3

C)
II

N

10

of the moduli of amplitudes, for cases 3 and 8 given in
Table IV, to an exponential function
Im;h (m, J,O)

I /II JII = C exp( —a
I m, I

b
I mz —

I
). In Figs.

15—18, we plot the logarithms of the data and the fitted
function (crosses and dashed line, respectively), versus
a

I m, I
+b I m 2 I. As in the one-dimensional case, an ex-

ponential trend is evident, albeit with considerable
scatter. Again, the decrease is slower at the relatively
large action of Figs. 17 and 18.
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FIG. 15. Decrease of the Fourier amplitudes with mode
number for J, =J,=2 X 10 ' m, case A of Table IV. The figure

shows values of Im, hI/QJ', +J2, plotted with crosses on a
logarithmic scale, vs a Im, I+b Im2I with a =0.396 and
b =0.485. The constants a and b were determined by a least-
squares fit to the function logC —a Im, I

b Imz I, w—hich is plot-
ted as a dashed line.
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FIG. 14. Modulus of Fourier amplitudes of one-dimensional
surfaces shown in Fig. 6 with J& =2 X 10 m, case b.

FIG. 16. Decrease of the Fourier amplitudes with mode
number for J, =J2 =2 X 10 m, case 3 of Table IV. The figure

shows values of Im2h I/QJ, +J2, plotted with crosses on a
logarithmic scale, vs aIm, I+bImzI with a =0.493 and
b =0.438. The constants a and b were determined by a least-
squares fit to the function logC —a Im, I

—b Imz I, which is plot-
ted as a dashed line.
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FIG. 17. Decrease of the Fourier amplitudes with mode
number for J, =J,=4X 10 m, case 8 of Table IV. The figure

shows values of Im, hI/V J~+J&~, plotted with crosses on a
logarithmic scale, vs a Im, I

+b Im, I
with a =0.0456 and

b =0.154. The constants a and b were determined by a least-

squares fit to the function logC —a
I m, I

+b
I
m 2 I, which is plot-

ted as a dashed line.

In this section, we have shown that the technique for
solution of the Hamilton-Jacobi equation works well in
nonintegrable s-dependent cases with d =1, even in re-
gions of phase space close to domains of large scale insta-
bility. In similar cases with d =2, it was difBcult to ap-
proach such domains in reasonable computation time.
Nevertheless, rather accurate invariant surfaces could be
obtained under conditions of substantial nonlinearity.
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FIG. 18. Decrease of the Fourier amplitudes with mode
number for J, =J2=4X10 m case 8 of Table IV. The figure
shows values of I m, h

I /Q J~ +J22, plotted with crosses on a
logarithmic scale, vs aIm, I+bIm2I with a =0.107 and
b =0.0999. The constants a and b were determined by a least-
squares fit to the function log C —a

I m, I +b
I
m 2 I, which is plot-

ted as a dashed line.

We have demonstrated a nonperturbative method for
numerical solution of the Hamilton-Jacobi equation when

the nonlinear perturbation is a periodic function of the
independent variable, in particular a periodic step func-
tion. The primary goal of such a solution is to construct
approximations to invariant tori. Consequently, any
method that yields invariant tori, whether based on the
Hamilton-Jacobi equation or not, should be evaluated in

competition with the present method.
We have found that the technique described is quite ex-

pensive in computation time when applied for d =2 at
large amplitudes of oscillation, at least when high accura-
cy is required. This means that it is not very promising
as it stands for a fully realistic model of accelerators,
which must have d =3 to allow for synchrotron oscilla-
tions as well as betatron oscillations. It is therefore im-
perative to find a more economical approach, either by
improving the present method or by other means, if one
is to study long-tenn stability of higher-dimensional sys-
tems along the lines mentioned in the Introduction.

A well-established method in nonlinear mechanics is to
work with the Poincare return map, which takes a sur-
face of section in phase space into itself. In this way one
effectively eliminates one dimension of phase space, and
one can hope that there are corresponding advantages in
computational cost. In accelerator physics a convenient
surface of section in the (2d+I)-dimensional extended
phase space is defined by specifying a point on the refer-
ence orbit, say s =0. The return map then propagates
the other 2d phase space variables once around the ring,
to s =C; it is called the "full-turn map. " An invariant
surface of the return map is a d-dimensional section of
the (d + I )-dimensional torus. It is represented by Eq. (8)
restricted to s =0. This section of the full torus usually
provides all necessary information on stability. In any
case, the full torus is easily found from the section by a
simple integration of the Hamilton-Jacobi equation with
respect to s, taking Gz, (@,J,s =0) as initial condition.

We review two approaches to determination of invari-
ants of the return map. In the first approach, which
might be called the "many-orbit picture, " one states
equations that an exact invariant surface or invariant
function must satisfy. Describing the invariants by ap-
propriate parameters, for instance, Fourier or Taylor
coefficients, one finds approximate solutions of the equa-
tions through perturbative or nonperturbative determina-
tion of the parameters. In the second approach, the
"single-orbit picture, " one takes advantage of the fact
that a single orbit is transitive on an invariant surface;
i.e., it comes arbitrarily close to any point on the surface.
Knowing the orbit, it should be possible to fit a surface to
a subset of points on the orbit, again by determination of
appropriate coefficients describing the surface. Notice
that the many-orbit and single-orbit pictures correspond
to the historical viewpoints based on partial- and
ordinary-differential equations, respectively, that is, the
Hamilton-Jacobi equation for consideration of all orbits
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at once, and the Hamilton equations for single orbits.
An obvious necessity in applying the return-map

method is to have a representation of the map that embo-
dies the dynamics of the system with sufficient accuracy.
For studies of real laboratory systems such as complex
accelerators, simple formulas for maps like those popular
in the literature of nonlinear dynamics (standard map,
quadratic map, etc. ) are usually not adequate. One has to
adopt formulas allowing greater complexity, for example,
a po~er series in Cartesian phase-space variables with a
substantial number of terms [22], or a finite Fourier series
in angle variables with some flexible representation for
the action dependence of the coefficients (say through po-
lynomials or spline functions) [23]. Such representations
are being studied for accelerator theory [22,23], along
with necessary corrections to enforce the symplectic con-
dition [24,25]. A more cautious and currently more reli-
able approach is to define the return map as the result of
symplectic numerical integration through one period in s.
In fact, formulas for maps are best derived as approxima-
tions to maps defined by symplectic integrators.

Let us first consider methods based on the many orbit
picture. The requirement that a surface in phase space be
left invariant by the return map can be formulated as a
functional difference equation. As formulated by Moser
in his original paper [3] on the twist theorem (KAM
theorem for area-preserving maps of the plane), this is an
equation for the canonical transformation that conjugates
the map to a pure rotation. For proof of the twist
theorem, Moser solved the equation by a sequence of
transformations, using an algorithm that has come to be
known as "superconvergent perturbation theory. " Since
the superconvergent perturbation theory is awkward to
implement in numerical computation, it is interesting to
consider either ordinary perturbation theory or nonper-
turbative methods for numerical solution of the function-
al equation.

There are at least two ways to formulate the functional
equation, corresponding to different ways of parametriz-
ing the invariant surface [26]. If the surface is
parametrized by the angle variable 4 of the underlying
integrable system, as in the representation of Eq. (8), then
the functional equation is quite analogous to the
Hamilton-Jacobi equation, in that the constant action J is
an input parameter, and G&, (now evaluated at s =0 only)
is the unknown function. On the other hand, the surface
may be parametrized by the new angle variable 4, in
which case the unknown is a pair of functions
J(@,I),%(N, I) defining the canonical transformation to
new variables. This latter formulation gives Moser's
equation, generalized to systems of arbitrary dimension.

Experience to date in nonperturbative solutions of the
functional difference equations is quite limited. A pro-
gram was written to solve the equation for G+ for beta-
tron motion with d =2, for the same model that we treat-
ed here in Sec. VI. The results, reported briefly in Ref.
[27], confirmed that considerable computation time could
be saved in comparison to the present method, even if the
return map is represented by a syrnplectic integrator
rather than by an explicit formula. Nonperturbative
solutions of the generalized Moser equation would be in-

teresting, but have not yet been attempted for d =2.
That equation allows, in principle, a better control of
small divisors. In practice it gives a transformation that
is not precisely canonical, however, since the transforma-
tion is obtained in explicit form rather than in the impli-
cit form determined by a generating function.

When the map is given as a power series, the perturba-
tive calculation of invariants of the return map may be
cast in the language of Birkhoff normal forms, leading to
a recursive algorithm that allows a practical generation
of the perturbative series to rather high order [28,29]. In
applications to accelerators this approach has been much
aided by a new method to compute the Taylor coefficients
of the map [22,28], given a symplectic integrator for the
accelerator model at hand. The method uses automatic
differentiation ("differential algebra" ) to generate deriva-
tives of the map defined by the integrator, to machine
precision.

A drawback in principle for this type of perturbation
theory is that it aspires to compute an invariant function
defined globally on the phase space, rather than a single
invariant surface. No such function exists in an exact
sense, and the formal series for the function diverges.
The series has an asymptotic character at best. Indeed,
in practice one finds that computed invariants improve in
quality initially, but finally deteriorate as the order of the
calculation is increased. Since Moser's method aspires to
find only an isolated invariant surface, on which invariant
functions can be defined, it avoids this limitation in prin-
ciple.

A more direct way to find a globally defined and ap-
proximately invariant function is to solve the defining
equation of the function in a least-squares sense. If
z=(q, p) is a point in phase space, an invariant function
E of the return map A, is one such that K(z) =K(JR(z) ).
In Ref. [30], this equation was solved in a least-squares
sense on a finite mesh in z space, with K represented as a
linear combination of monomials in the components of z.
For an example in 1 —,

' degrees of freedom, the Henon

map, it was found that curves around the origin and a
fifth-order island chain could both be described by the
same function.

Turning next to the single-orbit approach, we consider
the problem of determining a surface so that it passes
through a subset of points on a single orbit of the return
map. As in the case of functional equations, the fitting
algorithm will depend on the choice of parametrization
of the torus. Suppose that the torus is parametrized as in

Eq. (8), so that the "curve parameter" is the unperturbed
angle W. Then the problem can be stated as one of fitting
a function I(N), represented as a finite Fourier series, to
orbit points (I(s),4(s) ), s =0(mod C). An efficient
method to perform such a fit was described in Ref. [31].
When applied to the problem of Sec. V, at amplitudes J,
close to those of case D in Table IV, the method produces
an invariant torus with all modes such that

~ m, ~

~ M, = 30 in 2 min on the IBM 3090 computer,
versus 2 h for the calculation of Table IV. Moreover, the
calculation is much more accurate, since fewer modes
were discarded; it gives 5& = 2 X 10, 6z =2 X 10 . The
fitted orbit was calculated by the same symplectic in-
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tegrator used in Sec. V. A further saving in time might
be attained by using an explicit formula for the map,
rather than the integrator.

Since the Hamilton-Jacobi method seems uneconomi-
cal in comparison to surface fitting, is there any reason to
consider it further for practical computations? There
could very well be a reason, if the method of integrating
the Hamilton-Jacobi equation with respect to s could be
made more efficient. Our primary interest in this paper
was to show that the shooting method for s periodicity is
convergent and workable. We gave little attention to
making the s-integration efficient, and in fact used a
method that was familiar from earlier work but probably
far from optimal. It involves making a d-dimensional
Fourier transform and also an inverse Fourier transform,
for every evaluation of the right-hand side of the
ordinary-differential equation (23), i.e., for such trans-
form pairs for every Runge-Kutta step. These myriad
transforms might be avoided by using values of G on a
mesh, rather than its Fourier coefficients, as unknowns.
One has to enforce periodicity in 4, but that might be
done by using periodic 8 splines to interpolate the func-
tion values. A point in favor of the Hamilton-Jacobi
shooting method is that it seems to have a bigger region
of convergence than the analogous algorithm based on
the functional equation [27].

If the invariant surface is parametrized by the new an-

gle 4, conjugate to the constant action J, then the surface
to be fitted to orbit data at constant J is given by two
finite Fourier series,

(52)

seem to deserve further investigation. The examples
given in Refs. [32—34] are for autonomous systems with
d ~2, thus considerably less difficult than our nonauto-
nomous case with d =2.

As is emphasized in Ref. [32], orbits close to reso-
nances (within islands, in case d =1}may lie on invariant
surfaces that can be parametrized as in Eq. (52), always
with the same choice of (q, p). By contrast, the represen-
tation (8) is useful only for surfaces that "surround the
origin, " i.e., that can be deformed continuously into sur-
faces I=const, @E[0,2n] . To treat surfaces associated
with resonances by our methods, one has to make a pre-
liminary change of coordinates, and some dynamical in-
formation is required to choose those coordinates. More-
over, in the Poincare framework, one may be seeking in-
variant surfaces of higher powers of the return map, rath-
er than of the map itself.

The foregoing brief review, which is far from
comprehensive, should give the impression that the ques-
tion of how best to compute invariant surfaces is not a
closed subject, particularly when the surfaces in question
do not surround the origin. The present study adds to
the list of possible techniques for studying this long-
standing problem.
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Here (q, p) are globally defined phase-space coordinates;
they could be Cartesian coordinates or angle-action vari-
ables of the underlying linear system; their values along
orbits should be given directly by the return map. On a
nonresonant orbit we should have %(nC)=2m. vn,
n =0, 1, . . . , for some tune v that has to be determined.
Substituting this on the right-hand side of Eq. (52), and
orbit points [q(nC), p(nC), n =0, 1, . . . ] on the left-hand
side, we get a set of equations to determine v and the
Fourier coefficients (qm, p ). Because v is initially un-
known this is not a standard problem in Fourier analysis,
backed up by a sound mathematical theory. Neverthe-
less, authors working in molecular dynamics [32], plasma
theory [33], and celestial mechanics [34] have dealt with
a similar problem in an heuristic way, by an adroit use of
windowing functions with discrete Fourier transforms. It
is not clear that the methods used to date are accurate
and efficient enough for our purposes, especially for s-
periodic perturbations in d =2, but the problem would

APPENDIX: CONVERGENCE
OF THE SHOOTING METHOD

h0(m)= . f ds f(m, h(s;h0), s),c
(A1)

where the function f is defined by

In this appendix we discuss the convergence properties
of the shooting algorithm, as realized by solving the fixed
point problem (29) through simple iteration. We show
that under certain restrictions the iteration is governed
by the contraction mapping theorem [35]. It follows that
there exists a unique fixed point of A in a certain metric
space. The argument is valid only when the set of
Fourier modes of the generating function is finite, and in-
cludes no resonant mode.

Recall that the fixed point problem h0= A (ha) has the
following form expressed in terms of vector components
labeled by the model index m:

f(m, h(s;h0},s)= —e' 2n.

0 277
e ' '

V N, J+ ginh(n, s;h )e'" ",s (A2)
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and h(m, s;ho) is the solution of the following differential
equation with initial condition hp:

x(s) = f do f(x(o )+ho, cr }, (A8)

dh(m, s;ho)
=f(m, h(s;ho), s) .

ds
(A3)

To indicate that a function depends on an entire vector
having components labeled by the mode index, we
suppress reference to the index.

1. Model problem

For the discussion of contractive properties, we consid-
er an analogous problem with a complex hp that has only
a single component (mode). We thereby simplify the no-
tation without losing any essential features. A later gen-
eralization to cover the full system with many modes will
be immediate. The equations for the model fixed-point
problem take the form

ho= —f ds f(h(s;ho), s),
0

dh (s;ho)=f(h (s;ho), s),
ds

(A4)

(A5)

with h(0;ho)=ho. The dependence of the solution of the
differential equation on the initial condition is displayed
explicitly. The small divisor is represented by D and is
analogous to the divisor exp(2rrim v) —1 that appears in
Eq. (Al).

The contraction mapping theorem, which will be ap-
plied at two different levels to solve this problem, is as
follows. Suppose that an operator F maps a complete
metric space 4 into itself, and is contractive on S. Then
there exists a unique fixed point x =F(x) in S. More-
over, x may be computed by iteration, x'~+''=F(x[~'),
where x' ' is any element of S. The contraction condi-
tion is that

d(F{x,),F(x2)) & ad(x„x2) (A6)

for all x„xzES and a fixed aE(0, 1). Here d(x[, xz) is

the distance between x
&

and x2 in the metric of 1, and
the iteration converges to the solution x in the sense
d(x'~', x ) =O(a~).

We suppose that the complex function f(h, s) is piece-
wise continuous as a function of s on [0,C], and is bound-
ed and Lipschitz continuous as a function of y, as follows:

f(y, s}I &fo

If(y„s) f(y„s}l&f& y~
——y~l,

ly I, Iy, I, Iyz I
& r, s e [O, C] .

(A7)

The positive constants r, fo,f ~
will be restricted to meet

the requirements of the proof.

2. Solution of the dift'erential equation

We first discuss existence and uniqueness of solutions
to the differential equation (A5), and estimate the depen-
dence of a solution on the initial condition. We work
with the equivalent integral equation. After the substitu-
tion x (s)=h (s; h 0)—hp it has the form

or x =F(x) with the integral operator F defined by the
right-hand side of (AS).

For analysis of (A8) by the contraction mapping princi-
ple, the complete metric space S will be a ball IIx II & r, in

the Banach space of all continuous complex functions
x(s) on [O, C] with normIlxll sup. E[o,c}lx(s)l; the dis-
tance is d(x&, x2)=IIx, —xzII. Suppose that IhoI &ro
Then F will take 4 into itself if

(t) ro+ri &r

(ii) C'fo&r, .
(A9)

For later account of the boundary condition, we have
to know how the solution of the differential equation de-
pends on the initial condition ho. Suppose that Iho, I

& ro
and Ix(s;ho, )

I
& r„i = 1,2, and form the difference

h (s;ho, ) —h(s;ho2)

=ho] ho2 +f do'[f (h( c'rh&o) cr )
0

—f(h(cr;ho2}, o )] .

Since Ih(cr;ho, }I &r we have

(A13)

h(s;ho, }—h(s;ho2)I

—Iho& "o2I+fi sup lh(a hoi } "(cr'ho& }I

(A14)

thus

'"oi) h( '"o2 II—
1 f,C—(A15)

in view of Eq. (A12}.

Here C' is the sum of the lengths of intervals within [0,C]
on which f (y, s) is nonzero. (Recall that in the accelera-
tor problem, the analogous function is nonzero only over
the extent of sextupoles, so that C' is much less than C it-
self. ) Conditions (A9) are evidently sufficient, since

Ix(s)I & f do
I f(x(o )+ho, cr)I

0

&C sup If(x(s)+ho, s)I
s 6 [O, C]

(Qf (A10}

if Ix(s)+hoI &r, whereas Ix(s)+hoI & Ix(s)I+IhoI( l'i +10.
To show that F is contractive on 1, assume that

& r, and note that

IF(x„ho)(s)—F(xz, ho)(s)I

& f do
I f(x[(cr)+ho, o ) —f(xz(cr)+ho, o )I

0

f) f'«Ixi(cr) ——x2(cr}l —fillx2 —
x2II

0

if Ix, (o. )+hoI &r, which is implied by (A9). The contrac-
tion condition is guaranteed by adding the condition

(A12)
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3. Solution of the fixed point problem

Having learned enough about solutions of the
differential equation, we can now apply the contraction
mapping principle to solve the one-dimensional fixed
point problem (A4) for the initial condition ho that meets
the boundary condition. Here the complete metric space
4 is a disk in the complex plane, all complex numbers z
with Izl &ro. We assume the conditions (i), (ii), and (iii)
derived above, so that the solution of the differential
equation satisfies lx(s;ho)l & r, with lhol & ro, and condi-
tion (A15).

If lhol &ro, then

I &(ho)l & J—ds f(x(s;ho)+ho, s) ( fo,D 0

(iv) fo (ro
D

(A17)

Finally we verify the contraction condition, with the
help of the (A15). Supposing that lho, l, lho2I &ro we
have

I A(hoi } A(ho2)l

(A16)

which is to say that A maps 4 into itself provided that

lf(m, y, s)l &fo,
If(m, yi, » —f(m, y2, »l &fill» —

yell

Ilyll llyill lly211 «s&[0 C] .

(A20)

The norms for the extended spaces are defined in the ob-
vious way,

llyll =sup ly(m s}l llholl=sup lho(m)l .
m, s

(A21)

(A22)

To complete the argument, we have to find conditions
on the Hamiltonian perturbation V such that require-
ments (A20) will be met. We assume that V(4,J,s) is
continuous in RE[0,2n], piecewise continuous in
s E [0,C], and has a continuous derivative with respect to
J in a region to be specified presently. Sums on mode
numbers m run over the set M UM; let JV be the number
of elements in this set, and JR the largest value of m~ I

for
elements of the set. Then

It is now easy to check that all the steps of the proof
for the model problem go through for the full problem
under conditions (A20), if one merely takes the
supremum over m as well as s, whenever a norm is to be
estimated. We of course require that there be no reso-
nant modes within the finite set of modes allowed, and
define ID I as the minimum value of the small divisor:

f dslf(h(s;ho, ),s)—f(h(s;ho2), s)l
D o

1

sup lh(s;ho, )—h(s;ho2)lD s

fi
~ I o,

—
o21 .

1

(A18)

The operator is contractive if the coefficient of Ihoi hopi
is less than one, or

sup Jim y(m, s}e' ' '" &AtJVIIyll,
4, s

and by (A2) the first inequality of (A20) will hold if

sup I V(C, J+K,s ) I
&fo, IEJ I

(AUVr .
4, s

By the mean value theorem,

If(m, y, s ) f(m, y2, s ) I—
& sup I V(@,J+K„s)—V(@,J+K2 s) I

4, s

& sup & I VJ (@,&+K,s)l IEij —E2, 1,

(A23)

(A24}

(A25)
1

1+ DI
(A19)

where

To summarize, under the conditions on f stated in sub-
section 1 there is a unique solution of our problem with

llxll &r, and lhol &ro provided that conditions (i)—(v)
hold. Iff (y, s} contains an adjustable multiplicative con-
stant, like the sextupole strength in the example of Sec.
V, then the constant can be adjusted to make fo and f,
so small as to satisfy all the conditions (i) —(v).

4. The original problem

The original problem defined by (Al) and (A2) can be
treated in close analogy to the model problem. Now f is
a vector, with components labeled by the mode index m,
and has a vector argument with similarly labeled corn-
ponents. Boundedness and continuity conditions are as
follows:

E~l =g im y~(m, s)e' (A26)

and the supremum with respect to K is over
IE I &max[IE, I, IE2 I] & JMJVr Since .IE, E2 I

&—
IIy,

—
y2 II, we v'erify the second inequality of (A20) if

ALAdsup
I VJ (@,J+K,s)l &f, , IEJI &&Jeer,

j,N, s
(A27)

where d is the number of degrees of freedom.
Thus, apart from reasonable conditions of continuity,

our main sufficient conditions for the shooting method to
succeed are that V and dV/d J be su%ciently small. Of
course, the conditions we have derived are very far from
necessary, being based on pessimistic upper bounds. The
point of the above discussion is to show that the shooting
algorithm has a solid theoretical basis, at 1east under
favorable circumstances.
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