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The dynamic properties for electrons in the localized coherent Langmuir wave fields have been inves-
tigated numerically. The Poincaré map and the absolute diffusion coefficient account for the existence of
regular islands embedded within stochastic regions of phase space. The relative diffusion behavior illus-
trates that the localized coherent Langmuir wave packets can lead to the formation of a microscale
correlation for electrons in phase space. The time evolution of relative quantities further shows that
such a microscale correlation has the characteristic of phase-space particle-density granulations, al-
though the electric fields are regular. Finally, the two-point correlation function has been measured by
use of the particle simulation technique. That the strong peak behavior of the correlation function can
occur only for sufficiently small 7° and u° has been displayed by the simulated results. All these phe-
nomena indicate that the microscale correlation effects (defined also as “clumps”) indeed exist in our dy-

namic system.

PACS number(s): 52.35.Mw, 52.65.+z, 05.45.+b

I. INTRODUCTION

An important subject in nonlinear plasma physics is
the study of the dynamic properties of particles due to
the acceleration of charged particles by localized
coherent Langmuir wave packets. In a previous paper [1]
we have obtained a relative diffusion coefficient for elec-
trons interacting with coherent wave fields. It is revealed
that the coherent fields can derive the formation of the
microscale correlation. The lifetime of the microscale
correlation diverges logarithmically when the relative po-
sitions become closer.

On the other hand, many results had also been ob-
tained in the study of acceleration of electrons by local-
ized fields. Fuchs et al. [2] used a quasilinear diffusion
model to describe particles interacting periodically with
coherent wave packets. Colunga, Luciani, and Mora [3]
studied the acceleration of electrons by the fields pro-
duced during resonance absorption of laser light.
Rozmus and co-workers [4,5] and one of the present au-
thors [6] discussed the particle dynamics. Their theoreti-
cal model for the absolute diffusion coefficient accounts
for the existence of large adiabatic islands, embedded
within the stochastic region of the phase space.

In turbulence plasma, a very important phenomenon,
clumps, in which particles are granulated by random
electric fields, has been investigated extensively [7-13].
Dupree [8] has pointed out that the microscale random
phase-space granulations or clumps arise because the
Vlasov equation preserves phase-space density along par-
ticle orbits. The densities at neighboring phase-space
points may originally have been widely separated in
phase space. The granulations are due to the mixing of
“fluids” of different densities that do not interpenetrate
owing to Liouville’s theorem.

In Ref. [1], we reported that the coherent Langmuir
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wave fields may lead to the microscale correlation, where
the characteristic is similar to that of clump effects, and
defined this microscale correlation as ‘“‘clumps.” The
main purpose in this paper is to study the dynamic prop-
erties of electrons interacting with the localized coherent
Langmuir wave packets, systematically. In particular, we
want to know whether the features of clumps discussed
by Dupree and others can indeed be exhibited in our dy-
namics systems, even where the electric fields interacting
with electrons are regular.

In Sec. II the theoretical model is discussed. The abso-
lute diffusion, the relative diffusion, etc., dynamic proper-
ties, have been discussed in Secs. III and IV, respectively.
In Sec. V the two-point correlation function has been
measured by the particle simulation technique. Finally
some conclusions are given in Sec. VL.

II. DESCRIPTION OF LOCALIZED COHERENT
LANGMUIR WAVE PACKETS

The coupled nonlinear equations, known as Zakharov
equations [14], describe the nonlinear interaction between
a high-frequency Langmuir wave and a low-frequency ion
acoustic wave by the ponderomotive force. Under the
subsonic regime, Zakharov equations can be reduced to
the cubically nonlinear Schrodinger equation. The elec-
tric field E (X,t) that may be obtained from a stationary
solution of the Zakharov equations or the cubically non-
linear Schrodinger one can be expressed in the following
form:

E(X,1)=Esech(gX)cos(w,?) , (1

where
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1 E, III. ABSOLUTE DIFFUSION
§=—= —_—,
V3kp V87 n.kgT The numerical solution of Eq. (2) is depicted in the
kT 172 phase-space plots in Fig. 2(a), which is produced by map-
Ap= —B—2 , ping the particles velocities and positions at intervals of
4me’n, T,=2m. Figure 2(a) clearly illustrates that the stochastic
4meln V2 regions are not uniformly filled with the phase space.
0= |—2 , Several areas with the trapped orbits, characterized by
d m, regular trajectories, exist within the stochastic region.

E, is the amplitude, T the electron temperature, n, the
electron number density, and m, the electron mass.

Consider a model for describing electrons interacting
with the localized coherent Langmuir wave packets, as
discussed by Rozmus and co-workers [4,5]. The wave
packets in each structure are of the form of expression
(1). Extending sech(gx) with a periodic length L, we
have the equations of motion for the test particles in the
dimensionless form

dx(t)
T Ve
avt)

dt

()

N
— Y E,cos[K,X/(t)—t],
n=—N

where K,=2wn /L, E, is in units of V/8mn,kyT, and
space and time are in the Debye length A, and 1/w,, re-
spectively. In the following numerical discussions, we
choose parameters E3 /8mn, kz T=0.4, L =32. In order
to exhibit the characteristic of the soliton envelope (1) in
each periodic structure in terms of the Fourier modes E,,
we truncate the summation in Eq. (2) as
E . n/Ey~(1073). The soliton structure and the spec-
trum of the wave packets are presented in Fig. 1.

as T T T T
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FIG. 1. (a) Soliton envelope. (b) Spectrum of the wave pack-
et.

According to the resonant overlapping criterion
[15,16],

Dp Dp

, (3)
Kn Kn+1

LAV, +AV, . )>

where AV, =4(E,/K,)"/? corresponds to the width of
the unperturbed trapping region of the nth mode. We
find that all modes except n =0 satisfy the overlapping
criterion. The trapping regions of the n =0 mode are
separated from the stochastic bands by intervals with reg-
ular untrapped orbits. The regular islands embedded in
the stochastic regions are the first-order resonances relat-
ed to the overlapping criterion [17]. The influence of the
high-order resonances can also be observed in Fig. 2(a).
Thus the irregular motion, trapped orbits, secondary res-
onance, and the Kolmogorov-Arnold-Moser (KAM) sur-
faces must simultaneously be considered. The chaotic
motion of electrons arises from the coherent Langmuir
wave packets. The absolute diffusion of the random par-
ticles can be measured as follows:
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FIG. 2. (a) Poincaré surface of the section plot, based on nu-
merical solutions to the equations of motions (2). (b) Absolute
diffusion coefficient.
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D(V0)=~1—<[V(t)—Vo]2) , 4)
2Td

where 7,=L /V, is the approximated time for one pass
through the periodic structures, and the symbol ( )
denotes an ensemble average. The ensemble average in
all the numerical discussions is computed by averaging
over a set of particles with different start times but with
the same initial velocities and positions.

Figure 2(b) shows the numerical results for the absolute
diffusion coefficient calculated from Eq. (4). The stable
islands in the stochastic region [see Fig. 2(a)] have also
been displayed in Fig. 2(b). When the particle’s veloci-
ties are close to zero, particles experience a ponderomo-
tive potential and are trapped by this potential well. The
diffusion coefficient near zero velocity is zero. The
diffusion increases in the stochastic region and decreases
near the stable islands. With the increase of the initial
velocity (which depends on the energy in the system), the
separation layer forms in phase space and the diffusion
coefficient also tends to zero.

1V. RELATIVE DIFFUSION PROPERTIES

The absolute diffusion coefficient only displays the dy-
namic behavior of one particle in phase space. To de-
scribe the features of the neighbor particles, we introduce
the relative and barycentric motion coordinates

r=X,—X,, R=X,+X,, (5
qul—VZ’ U:V1+V2.
The equations of the relative motions become
n K,r
%=u R %=§2Ensin 2 —t |sin - |
(6)
dR dU K,R K,r
—_— —_— ———t
o U, o % 2E, cos > cos | —

First, we discuss the relative diffusion behaviors and
define the relative diffusion coefficient as

D* (Ror Uyt) = — ([u (1) — ") 7)
27'd

for the velocity space, and

D’_(R,r,U,u)-‘—L([r(t)—rO]z) (8)
27,4
for the configuration space, where 7,=1(L/ V9

+L /V9). In the previous study [1], we only considered
the relative diffusion in velocity space; here, we also do
the relative diffusion in configuration space. From Figs.
3 and 4 we see that D'_. (i =u,r) decreases for small ro
with decreasing #°. In other words, it shows that the rel-
ative diffusion slows down considerably when the relative
motion trajectories become closer and closer. These nu-
merical results for the relative diffusion coefficient indi-
cate the existence of the microscale correlation. The fact
that D’ has a nonzero minimum means that the lifetime

log,g(D*)

log,,(D*)

FIG. 3. Relative diffusion coefficient in velocity space. (a)
Relative diffusion coefficient vs the relative velocities when
r°=0.01. (b) Relative diffusion coefficient vs the relative coor-
dinates with #°=0.01.

is finite. The lifetime 7 (also called clump lifetime) may
be obtained from [§-10]
KXrir ) =1, )

where K, is the characteristic wave number. For our dy-
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FIG. 4. Relative diffusion coefficient in configuration space.
(a) Relative diffusion coefficient vs the relative velocities with
r°=0.01. (b) Relative coefficient vs the relative coordinates
with ©%=0.01.
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namic system we have [1]
Tg=a—blnr®, (10)

where a,b are positive constants. We find that 7
diverges logarithmically as r° vanishes, and is much
greater than the coherent time 1]
1/3
_ 2

== (11)
KXD,+D,)

where D, and D, are the absolute diffusion coefficients
for two neighboring particles.

The lifetime may also be analyzed in terms of the time
evolutions of the relative quantities. In the stochastic re-
gime, the neighboring particles are of the exponential
separation type [17]. For plasma turbulence, Dupree
[7-9] showed that the exponential separation trajectories
occur over most of the clump scale. Misguich and Bales-
cu [18] even illustrated that the relative diffusion of
charged particles in turbulent electric fields can be divid-
ed into three time regions, i.e., a short-time regime (of or-
der 7,), a trajectory renormalization regime, and a long-
time regime. The clump behavior is associated with the
trajectory renormalization regime. In the second region,
there exists a universal behavior for the relative evolu-
tion, that is,

t/7y

(r’(n))~e " °, (12)

where 7, corresponds to the diffusion time scale. They
pointed out that this exponential behavior is due to an ex-
trinsic turbulence field [18]. This extrinsic stochasticity
leads to a finite clump lifetime.

In Fig. 5(a), we give the time evolution of the neighbor-
ing particles. Obviously, the exponential separation also
exists in our dynamic system, where chaotic behavior re-
sults from an intrinsic stochasticity. The evolution of the
separation of neighboring trajectories permits a deter-
mination of the lifetime of microscale correlation. From
Fig. 5(a), we observe that In{r%(¢)) ~t as t <70. On the
other hand, Fig. 5(b) indicates that the relative velocity of
neighboring particles basically remains invariable as
t <70. In a sense, the neighboring particles in sufficiently
small phase-space cells suffer the same force, which is just
the property of clumps.

Another characteristic quantity that can account for
the clump effects is K= (&*) /(€)% When a random
quantity £(¢) is a Gaussian process, the magnitude of the
fourth cumulant {(£*) —3(£?)? vanishes. The kurtosis of
K is associated with the clump lifetime [19]. Pettini et
al. pointed out that the clump time scale (at which the
peaks of K, occur) can be related to the Kolmogorov-
Sinai (KS) entropy. Figure 6 clearly displays a strong
peak behavior around the lifetime of microscale correla-
tion. With the evolution of time, K, tends to a constant.

Now, we simply summarize our numerical results and
give a basically physical picture. For homogeneous or
weak inhomogeneous plasma, the stochastic electric fields
leads to the chaotic diffusion of particles. When regions
of different phase-space density are mixed by the fluctuat-
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ing electric fields or magnetic fields, the microscale ran-
dom phase-space granulations or clumps are produced
[7-13]. For our dynamic system, the particle stochastici-
ty arises from the localized coherent Langmuir wave
packets, where the phase velocities of the modes satisfy
the overlapping criterion. The numerical results show
that the microscale correlation also exists in our dynamic
system. Now we can conclude that such a microscale
correlation has indeed the characteristic of clumps. In
order to illustrate this feature, we further investigate the
statistical behavior, where the two-point correlation func-
tion will be measured by the particle simulation tech-
nique.
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FIG. 5. (a) Time evolution of {r2%(¢)). (b) Time evolution of
(u%(t)). The parameter values correspond to r°=0.001 and
1°=0.0002.
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FIG. 6. Time evolution of K,, where the kurtosis is associat-
ed with the lifetime of the microscale correlation.

V. TWO-POINT CORRELATION FUNCTION

To finish the particle simulation, we must choose an in-
itial background distribution function. In the work dis-
cussed by Hui and Dupree, they only involved the spatial
homogeneous or weak inhomogeneous plasmas. Thus an
initial Maxwellian distribution was considered. For our
system, the initial Maxwellian distribution is obviously
not available due to the existence of spatial structure for
electric fields.

In nonlinear plasma theory, the fact is that the soliton
fields developed by modulational instability can well be
explained in terms of Zakharov equations or the cubically
nonlinear Schrodinger equation. However, the particle
distribution function trapped by wave fields cannot be
given by these equations. On the other hand, if we divide
the Vlasov distribution function into three parts: §f, 8F,
and F,, where §f is a fast varying fluctuation and corre-
sponds to a high-frequency (HF) oscillation, and 8F is a
slowly varying coherent part and corresponds to a low-
frequency (LF) oscillation. Also, the electric fields should
include the HF field E; and the LF field E,. Considering
the second-order beat frequency interaction between the
LF field and the HF Lagmuir wave, one of us had derived
the equations of the HF field and of the slowly varying
electron distribution function by use of the Vlasov-
Poisson equation {20]. The HF Langmuir field obtained
from the above ideal is completely consistent with that
obtained from the Zakharov equations or the cubically
nonlinear Schrédinger equation. The LF oscillation elec-
tron distribution function consisting of 8F and F,, can be
approximately expressed into the following form [20]:

|E(X)]?

1 13
SnnekBT(V 21 a3

F(X,V,0)0=FyV) |1+

where V is dimensionless velocity and

—_ 1 iy

Fo(V) Ve e (14)
is a Maxwellian distribution. In simulation, we have re-
placed electric fields E (X) by the Fourier modes struc-
ture.

It is clear that the distribution function remains posi-
tive as 0<E} /87n,kz T <0.5. From Fig. 7, we observe
that the initial distribution function F(X,V,0) at X =0
has a symmetrical double-peak structure, which results
from particles interacting with low-frequency fields and
ponderomotive potential [20]. In addition, this structure
would be destroyed with the particle trajectory stochasti-
city. He [21] had shown that spatially inhomogeneity
plays a dominant role in a certain range of velocity for
clump formation. These particles would run out of the
soliton and carry the interaction information between
particles and waves, i.e., cause a rearrangement of the
average distribution function.

In the study of clumps, usually people try to discuss
the correlation function through a renormalization of the
two-point correlation from the Vlasov equation [9-11] or
using a particle simulation technique [12,13]. For our in-
homogeneous plasmas; however, the renormalized tur-
bulent technique is no longer valid. Hence, we consider
the two-point correlation function that exhibits the mi-
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FIG. 7. (a) Contours of the initial electron distribution func-
tion F(X,V,0). (b) Plot of the initial electron distribution func-
tion F(X,¥,0) with X =0.
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croscale correlation behavior by the particle simulation
technique. In simulation, we assume that the initial elec-
trons are localized in a soliton envelope, i.e.,
X, €[—16,16], V;€[—3,3]. The initial size of each cell
is taken as (AX,A¥V)=(0.1,0.1).

The particles in the ith cell can be calculated by in-
tegrating

X, +AX/2 (V,+AV/2

Nilt =0)=n0fX1—AX/2 fV‘.—AV/z F(X;,V;,0)dX/dV; .

(15)

To measure the correlation function (§f(X L
Vi,t)8f(X,,V,,t)) for small r°=X,—X, and
u®=V,—V,, we define the fluctuation 8/ of the distribu-
tion function as §f;=N;—(N;)/{N;). The simulated
correlation function can be expressed as

1
(8f(1)8f(2))=;2[8f(1)8f(2)],~ , (16)
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FIG. 8. Two-point correlation function calculated from the
particle simulation vs r® with 2°=0.4. The asterisk represents
the correlation function {(8f(1)8f(2)). The plus shows the
coherent part (§/'(1)8'(2)). (a) X,=100.0, V,=2.25; (b)
X,=100.0, V,=1.25; (c) X,=125.0, ¥V, =2.0.
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where m represents the experimental ensemble average
times. The whole calculation is repeated 50 times. From
the numerical results given in the above section, we have
known that the microscale correlation time (or so-called
clump lifetime) is finite. Here, we measure the correla-
tion function at  =60. The particles at £ =60 can be ob-
tained by way of tracing the orbit of each particle lying in
the initial cells. In addition, we simultaneously calculate
the coherent correlation function {8f‘“(1)8f'9(2)),
which is obtained by use of the method of unperturbed
particle orbits, and define C(1,2)=(8f(1)8f(2))
—{(8f9(1)8f'“(2)) as the correlation function of
clumps.

Figures 8 and 9 are the simulated numerical results.
Comparing the correlation function (§f(1)5f(2)) with
(8£%1)8f'9(2)), we observe that the peak behavior of
(8f(1)8£(2)) only occurs for very small r® and u° As
far as the coherent part (8 °(1)8£'°(2)) is concerned,
it is nearly a smooth function for r° and u? that is,
(8£1)8f'“(2)) does not have peak phenomena as r°
and u° become smaller and smaller. Obviously, the
whole correlation is much greater than that for coherent
parts with sufficiently small #° and »°. With »° and u°
increasing, (8 (1)8f(2)) tends to {8f'(1)8f'°(2)).

As to the relative diffusion [see Figs. 3(b) and 4(b)], we
know that the correlation length of neighboring particles
is less than A,. The same conclusion can be given in
terms of the current simulation results (see Fig. 8). In ad-
dition, we find in simulation that the peak behavior of the
correlation function depends on the barycentric positions
in phase space, i.e., is associated with the diffusion in ve-
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FIG. 9. Two-point correlation function calculated from the
particle simulation vs u° with 7°=0.4, the symbols are as indi-
cated in Fig. 8. (a) X,=125.0, V,=2.0; (b) X,=100.0,
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locity space as well as that in configuration space. Al-
though the theoretical work for discussing the two-point
correlation function of the inhomogeneous system has
not been obtained as yet, we can conclude from current
numerical results that the equation of the two-point
correlation function would also contain terms to describe
the relative diffusion behavior in configuration space,
which is different from that discussed by Dupree and oth-
ers [8-11] for spatially homogeneous plasmas. In their
equation, only the relative velocity diffusion coefficient is
exhibited.

VI. CONCLUSIONS

A numerical simulation of the dynamic properties for
electrons in localized coherent Langmuir fields has been
given. It is shown that these coherent wave packets lead
to particle stochastic diffusion. The coexistence of irreg-
ular motions, trapped orbits, secondary resonances, and
the KAM surfaces can be illustrated by the Poincaré
mapping and the absolute diffusion coefficient. In plasma
turbulence, the random fields derive particle trajectory
stochasticity. The mixing of “fluids” of different densities
would lead to the formation of microscale random
phase-space granulations or clumps. These microscale
structures may be an important mechanism in anomalous
transport [7].

For our dynamic system, on the other hand, the intrin-
sic stochasticity is due to the phase velocities of the
modes satisfying the overlapping criterion. Liouville’s
theorem also preserves the different densities from inter-
penetrations. When neighboring particles lie in the
sufficiently small cell, however, they may be subject to the
same force and behave like a single large discrete particle
or macroparticle during a finite time. The basic proper-
ties for such a “macroparticle” can be described by the
relative diffusion of neighboring particles and the two-
point correlation function. From the numerical results,
we find that the microscale phase-space granulations for

electrons can also occur due to the interaction of the
coherent Langmuir wave packets. The time evolutions of
relative quantities further show that the lifetime of the
microscale correlation is finite. In particular, the strong
correlation behavior for sufficiently small #° and «° has
been exhibited by our particle simulation.

Finally, we should mention the main difference be-
tween our results and those obtained by some authors. In
the work of Rozmus and co-workers [4,5], they only dis-
cussed the one-particle diffusion. Although the reso-
nance structures can well be explained in terms of their
theoretical and numerical work, the dynamics behaviors
of neighboring particles has not been analyzed. In our
previous work [1], we analytically gave the relative
diffusion coefficient and lifetime of the microscale corre-
lation by considering the Wiener ensemble average [22],
but the time evolution of relative quantities and the two-
point correlation function were not discussed. In addi-
tion, Dupree and co-workers [7-13] were only involved
with the spatial homogeneous or weak inhomogeneous
plasmas. Their theoretical or numerical work is of great
significance in the study of plasma turbulence and the
mechanism of anomalous transport. In our current work,
we systematically investigate the dynamics behaviors of
one particle and two particles, while, on the other hand,
the spatial inhomogeneous plasmas are dealt with. It is
also worth noting that the interaction of particles with
coherent wave packets is the central problem of plasma
turbulence and laser plasmas, etc. We expect that our
analysis, therefore, can prove to be useful in understand-
ing the basically physical picture.
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