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We analyze the transverse dielectric response function and the collective excitations in a strongly cou-
pled one-component plasma (OCP). The collective modes are either photonlike or phononlike. The
latter, which are maintained by shear, are unique to the strongly coupled system. We employ the recent-
ly established quasilocalized-charge model to develop a theory of the shear mode in the strongly coupled
OCP. We examine in detail the dispersion of the shear mode in the 20 <T" <225 domain, including the
supercooled liquid state (I'=2Z2e?/aky T, a is the Wigner-Seitz radius), and compare it with the result of
molecular-dynamics simulations of Hansen, McDonald, and Pollock [Phys. Rev. A 11, 1025 (1975)]. The
agreement between the theory and the simulation results is quite satisfactory in the low-k domain, but
the theory is unable to account for the observed high-k splitting of the shear mode. We also establish the
correspondence between the shear mode of the strongly coupled OCP liquid and the acoustic phonons of

the Wigner crystal.

PACS number(s): 52.25.Mq, 52.35.Lv

I. INTRODUCTION

This is the fourth in a series of papers [1-3] (to be re-
ferred to as Papers I, II, III, respectively), which thus far
have concentrated on the formulation of the longitudinal
dielectric-response function and on the concomitant
problem of plasmon dispersion in a variety of strongly
coupled Coulomb liquids. The longitudinal plasmon ex-
citation constitutes, however, only part of the full collec-
tive excitation spectrum for such systems. The other ma-
jor component of the excitation spectrum comprises the
transverse modes. The transverse modes are either pho-
tonlike (i.e., they represent transverse electromagnetic
waves slightly modified by the presence of the medium)
or phononlike (i.e., they are maintained by particle-
particle interactions and survive even in the ¢ — oo limit).
The transverse excitations are the shear waves, whose ex-
istence in crystal lattices relates to the fundamental prop-
erties of solids; they are also known to exist in dense neu-
tral liquids, albeit in a restricted-wave-number (k)
domain, excluding the k —0 region. As to Coulomb sys-
tems, shear waves (transverse phonons) in Wigner crys-
tals (both in three and two dimensions) have been ana-
lyzed theoretically, and their occurrence in strongly cou-
pled Coulomb liquids (again, both in three and two di-
mensions) has been predicted on the basis of molecular-
dynamics (MD) computer simulations as discussed in
greater detail below. In contrast to the longitudinal
plasmon mode, the transverse shear mode is a prima facie
correlational effect, which obviously does not exist in a
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weakly coupled plasma or liquid. It is the periodic or
quasiperiodic arrangement of the particles induced by
strong correlations that is responsible for the ability of
the system to maintain shear. Thus the description of
shear waves in the one-component plasma (OCP) is possi-
ble only with the aid of a formalism that can handle
strong correlations. Such a formalism has been worked
out in our earlier works [1-3]. The study of the disper-
sion characteristics of shear waves in simple strongly cou-
pled Coulomb liquids, on the basis of the theoretical
model introduced earlier [1] and used for the analysis of
the plasmon mode [2,3], is the principal objective of the
present and the following paper. As such, it is to provide
a theoretical model, based on first principles, for shear-
mode propagation in strongly coupled Coulomb liquids.

From a more formal point of view, the longitudinal
dielectric-response function is only a part of the full
dielectric-response tensor that normally has six indepen-
dent elements when the (three-dimensional) system is per-
vaded by an external dc magnetic field. When an external
magnetic field is absent—which is the situation in the
present paper —the plasma is isotropic and the dielectric
tensor has only two independent elements, the longitudi-
nal and transverse (with respect to the wave vector k) ele-
ments. In contrast to what was done in Papers I, II, and
111, we now focus on the properties of the transverse ele-
ment of the dielectric tensor.

Yet another point of view is provided by observing that
the analysis of the transverse modes or of the transverse
response requires the inclusion of the full (longitudinal
and transverse) interaction in the equation of motion,
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even though it is only the longitudinal interaction that is
responsible for the excitation of the shear waves. In Pa-
pers I, II, and III, we considered only Coulomb interac-
tions and we calculated the linear response of the system
to an external scalar potential perturbation. In this pa-
per, we go further: we include the full self-consistent
electromagnetic response in the microscopic equations of
motion and we calculate the linear response to combined
external scalar and vector potential perturbations. As a
result, the scalar response formalism of Paper I is gen-
eralized to a response tensor formalism and we are led to
the self-consistent formulation of the calculation of the
transverse response in this approximation.

The system we address in this paper is the uniform
background classical three-dimensional (3D) OCP. The
strength of the coupling in the OCP is characterized by
the coupling parameter I' =p(Ze)? /a, where B '=kyTis
the thermal energy per particle and a is the Wigner-Seitz
radius (47/3)a*n =1. Monte Carlo simulations indicate

that the OCP crystallizes into a bcc lattice at
r,=178+1.
Theoretical calculations of shear-mode (acoustic-

phonon) dispersion in the 3D bcc Wigner lattice have
traced the w(k) dispersion curve for a number of princi-
pal directions up to the Brillouin-zone boundary [4] and
for arbitrary directions in the small-k limit [S]. In a real
metallic lattice the electronic screening affects the small-k
portion of the dispersion curve: with these modifications,
computations for the bcc lattice of sodium were carried
out some time ago by a number of investigators [6] and
rather good agreement with the experimental data of
Woods et al. [7] was obtained. As to the question of
whether 3D Coulomb liquids (I'<T',,) can sustain the
transverse shear mode, evidence of well-defined shear
modes in the strongly coupled ionic OCP was reported by
Hansen, McDonald, and Pollock [8] in their molecular-
dynamics (MD) computer simulations for I'=152.4,
which is, however, still well above the melting tempera-
ture.

The observation that serves as the basis of the formal
development presented both in Paper I and in this paper,
is that the dominating feature of the physical state of a
plasma with I" >>1 is the quasilocalization of the charges.
This physical picture leads to a model—the
quasilocalized-charge (QLC) model—which resembles
that of a disordered solid where the particles occupy ran-
domly located sites and undergo small-amplitude oscilla-
tions around them. At the same time, however, the site
positions also slowly change and a continuous rearrange-
ment of the quasiequilibrium configuration takes place.
Nevertheless, .inherent in the model is the assumption
that the two time scales are well separated; consequently,
in the description of the fast oscillating motions, the time
average (converted into ensemble average) of the drifting
quasiequilibrium configuration is sufficient. This condi-
tion can be formulated as wrp>1, where 7, is the
“diffusion time” of the quasisites. The assumption that
this condition is satisfied is quite reasonable for the high-
frequency 3D plasmon mode. The shear mode, however,
has an acoustic-type dispersion (@ < k), and thus the con-

dition is bound to exclude a k <k _;, domain, where k_;,
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is determined by 7,. Since correlations are crucial for
the maintenance of the shear mode and we argue that the
correlations break down over the period of the oscillation
if k <k_,;,, we can conclude that the shear mode does not
propagate in this domain. The assertion that the
wTp >>1 condition is violated for k <k_;, and the ensu-
ing conclusion are just a restatement of the well-known
fact that while in a solid the shear mode is well defined
down to k =0, in a liquid it exists only for finite k.

The QLC model describes the motions of the system
around the average configuration represented through
the equilibrium pair-correlation function, which, in turn,
reflects the effect of the temperature on the probability of
the various microstates. We have referred to this [1-3]
as the “indirect thermal effect” to distinguish it from the
“direct thermal effect,” which represents the slow
diffusion and migration of the quasisites. Even though
the latter is not described by the primitive QLC model,
we have been able to provide a satisfactory phenomeno-
logical treatment of some of its aspects by recasting the
QLC formalism in a static-mean-field-theory (MFT)
language. This method has been used in Paper II to suc-
cessfully predict the behavior of the plasmon dispersion
in a two-dimensional OCP. This approach is able to han-
dle the high-k modifications of the dispersion (mainly due
to thermal motion and Landau damping) but is not able
to describe the low-k effect (due mainly to the disruption
of correlations because of site migration and collisional
damping).

The plan of this paper is as follows: In Sec. II, we es-
tablish the QLC microscopic equation-of-motion basis for
the calculation of the linear response to small external
scalar and vector potential perturbations; straightforward
calculations of the density and current response and of
the dielectric-response tensor follow. The results of Sec.
II are applied to Sec. III, where we calculate the disper-
sion of the transverse—both electromagnetic and
shear—modes. We compare our calculated QLC shear-
mode oscillation frequency with MD data, and we show
the correspondence with results pertaining to transverse
phonon dispersion in the 3D bcc Wigner lattice and also
with experimental data for the sodium bcc lattice. In
Sec. IV, we incorporate the direct thermal effect in the
response tensor by reformulating it into a mean-field-
theory expression. We then recalculate the shear-mode
dispersion and Landau damping rate and again compare
with the MD data. Conclusions are drawn in Sec. V.

II. RESPONSE AND DIELECTRIC TENSOR

In this section we apply the QLC approach of Paper I
to the calculation of the dynamical matrix and of the full
dielectric-response tensor for the strongly coupled OCP.

The OCP consists of N particles, each of mass m and
carrying charge Ze, embedded in a neutralizing uniform
background of N, particles, each carrying charge Z,e.
Overall charge neutrality requires that N,Z, +NZ =0.
The OCP plasma frequency is given by
cop=(47rZze2n/m)1/2, where n=N/V is the unper-
turbed density of plasma particles.

We wish to calculate the linear response to small per-
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turbing external scalar and vector potentials ® and A.
Following the QLC approach of Paper I, we consider the
microscopic equations of motion describing the rapid os-
cillations of the charges about their slowly drifting equi-
librium site positions. As explained in the Introduction,
the QLC approximation amounts to neglecting the
“direct” thermal effect against correlational effects,
which for I' >>1 is a good approximation since the form-
er is O(I'"!) times the Ilatter. Let now
X ()=x; ,+§&,,(1) be the momentary position of the ith
particle, x; , its quasiequilibrium site position, and §; ,
the perturbed amplitude of its small excursion [i,j
enumerate particles and u,v are three-dimensional vector
indices; Einstein summation convention for the repeated
indices is understood; we use the Coulomb gauge where
E; =—V®,and E;=—(1/c) A; L and T subscripts refer
to longitudinal and transverse elements or components].
The microscopic equation of motion of the ith particle is

—mw*; i

+E Kl] yvgj v

=-£ZeAu(x,-,w)+ZeI/5\#(x,-,w) , (D
c

where Ey(x,-,a))=(ico/c)2#(x,-,w) (8/0x;, &(x;,0) is
the full external electric-field perturbation; from Paper I,

K uv for the 3D OCP is calculated to be

z?
Kij,yvz 7 % quv¢(q){

iq-(x;—x;)

S—8,e" g +8,N8,}

)

is the Fourier transform of the
Coulomb potential ¢(r)=e?/r; the unperturbed (‘base”)
microscopic density, ng=73 ;e % depends on the x,,
x;, etc, which are the coordinates of the random sites
and are not dynamical variables. The force term in (1)
now includes, in addition to K; ,,, the vector potential
A, which depends on the current sources originating
from all the other moving charges labeled j (j7i) , i.e.,

where ¢(g)=4me?/q*

_ A4 . 1
A#(xi,w)——TZe?(I—S,j)za)é‘jyv(a))?
X3 T, (@5 )
5 q g’ —(w/c)? ’

where T,,(q)=
tensor.

We next introduce the collective coordinates §, , via
the Fourier representation

8,v—49,4, /q* is the transverse projection

1 iqx;
oy

Ew)= @)

and carry out the algebraic operations of Paper I. The
principal assumption of the QLC approach consists of re-
placing the random x;, x;, etc. base coordinates every-
where in the resulting microscopic equation of motion for
§4(@) by their ensemble average. This latter is evaluated
through

(n, ) =N§,
(nyng) =N8, ., o(1+ng(q)+ N5} , (5)

—ip'x;, —iqx, 1
(e Tl )= Bpralng (9N}

where g(q) is the Fourier transform of the equilibrium
pair-correlation function g(r). The equation of motion
that results from this procedure (cf. Paper I) is

Zen
VNm

where the dynamical matrix C is given by
2

E ko), (6

{wZSM—CW(kw)}gk,v(w)=

()]
C#v(k“’):“’;{L#v(k)—'—T“"(k)mi—o
+D,,(K)] + 0?0, (ko) , @
1
D, (k) ='1?§ M @fglk—ah—g(g)} , (8)

2

w),
T, )——-————-—
2 i —q 2¢2+io

0, (ko)= (lk—ql) . 9

o is the customary infinitesimal small positive quantity,
ensuring the causal behavior of the propagators;
L#v(q)Zq#qv/qz is the longitudinal projection tensor.
Evidently, the transverse interaction manifests itself
through two terms in (7): the term containing T,,(k)
represents the average field, while Q,,, represents the fluc-
tuating part of the field. This latter, which is relativisti-
cally small, has been shown to induce a relativistically
small upward shift in the plasma frequency [9]. Howev-
er, it has no significance from the point of view of the dis-
cussion that follows; we therefore set Q,,,(kw)=0 in the
sequel.

The calculation of the dielectric-response tensor
euv(kw), or, equivalently, of the polarizability tensor
a,ko)=€, (ko)—§,, is carried out first by observing
that, to lowest order in E, the perturbed microscopic den-
sity and current density are given by

1k
prlo)=— > kg6
\/N " q ‘II»‘

. (10)
. _ X0
]kyy(co)— —‘"‘;-]'v——r—n——— }q: nk_q§q,“(a)

[cf. Eq. (4)]. Their equilibrium averages p(ko)={py(®))
and j(kw)=(j,(®)) can be calculated by averaging only
over ny_ in (10), since the §,(w),§ (@), by virtue of the
assumption used in deriving (6), are independent of the x;
coordinates. Substituting (6) into (10) and averaging, we
obtain

Ju(keo i‘—"%[ 2~ C(ko) ] B (ko) . (1)

The longitudinal response of the system is most con-
veniently characterized through the “external” and “to-
tal” density response functions y(kw) and y(kw), defined
by (and augmented by the subscript L)
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plko) =%, (ko)ZeD (ko) Dr(k)=1T, (k)D,,(k)
=x1(ko)Ze[B(ko)+ D™ (ko)] , (12) —1D, (k) (22)

where p(kw) and ®"%(kw) are the first- order average
density and scalar potential responses to the ® perturba-
tion. The analog of Eq. (12) for transverse perturbation
and response is

Jru(k@)=X7(ko)Zec 4, (ko)
=xrko)Zec[ 4,(ko)+ A (ko)] . (13)

These definitions imply that the scalar potential
@™ and the vector potential A™ are given in the
Coulomb gauge. The dielectric tensor €,,(ko)

L,,(k)e, (ko)+T,,(k)er(ko) can now be constructed
from x; and xr as

€,(k)=8,,—¢(k) {x; (ko)L (k)

—xrko) T LK) (14)

From Egs. (11) to (13), one can identify i/L and )'ZT as
A~ _ nk? 2 -1
)(L(k(u)———m—L#v(k)[(o I—-C(kw)],, (15)
and

¥l 2T, (k[0 —C (k)] . (16)

Then, using the relationships between Y, r and )?L,T as
implied by Egs. (12) and (13),

= - 1
XL(k(I)) eL(kw) , 17)
| K
2
¥riko)=x (ko) T, (18)
(4
eT(k(O)_ 2

one obtains the longitudinal and transverse polarizabili-
ties .

0)2

aL(kw)=—w—2_-;’{5L—(k—) , (19)
@

aﬂkw)—‘—*m ) (20)

Dy (k)=L,,(k)D,,(k)

1
=7 S x*{glk—ql)—g(q)}
q

3sinkr
k 3r3

sinkr | 3coskr
kr k2r?

=——2f0°°dr%g(r)

’

(21)

where Y=k -q/(kq).

The expressions (19) and (20) for the longitudinal and
transverse elements of the total polarizability tensor obvi-
ously satisfy the ' >>1 limits of the exact longitudinal
and nonretarded transverse o ¢ third-frequency-moment
sum rules [8] and their more general retarded sum-rule
counterparts [10] in the ¢ — o limit. For k—0, D, (k)
and Dr(k) become

4 BE.(T)

— 3 PR 0 2
Dy (k—0)= = —r—k%?*, (23)

2 BE,
45 r

the coupling-dependent correlation energy per particle
E_(T') is given by the Stringfellow-DeWitt-Slattery for-
mula [11]

BE,(T')=—0.899 577 T +0.579 554 T''/*—0.251 460 .
(25)

Drk—0)=— k2a2 , (24)

For large k values, D; and D, reach the asymptotic lim-
its
Dik—>o00)=—2, 26)
Dpk—>o0)=1. (27)

3

The asymptotic value (26) is in agreement with the exact
sum-rule requirement (%)g(r =0) derived by Shaw [12]
and Niklasson [13].

III. QLC DESCRIPTION OF COLLECTIVE MODES

In this section, we calculate the collective-mode disper-
sions of the transverse excitations and make contact with
the dispersion of the shear waves observed in the MD
simulations of Hansen, McDonald and Pollock [8] and
with the behavior of shear waves in the 3D Wigner lattice
[4-6].

Either the dynamical matrix formula (7) or the tensor
polarizability formulas (19) and (20) can serve as the
starting point for generating the dispersion relations.
Only the dispersion of the collective modes but not the
damping can be determined from the present QLC ap-
proach. As discussed in Papers I and III, collisional
damping is absent from such a model because in a strong-
ly coupled Coulomb liquid, particles on different sites are
virtually isolated from each other. Plasmon-
plasmon-type, plasmon -shear-mode-type, shear-
mode-shear-mode—type, interactions are absent because
the inherent nonlinearity of the Coulomb interaction is
not taken into account in the harmonic approximation
underlying the QLC model. The calculation of these
various dissipative mechanisms is beyond the scope of the
present paper and has to await further work and
clarification. As to direct thermal effects and the con-
comitant Landau damping, they profoundly affect the
high-k dispersion of the transverse shear mode. These
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effects we will later incorporate into the approximation
scheme (in Sec. IV) by reformulating the QLC theory into
a mean-field theory.

First a few words about plasmon dispersion in the
strongly coupled 3D OCP. In Papers I and III, we calcu-
lated the plasmon frequency from the corresponding
QLC formula for the longitudinal dielectric function.
This calculation is readily reproduced in the present
work by setting ©*=C, (ko) [C, (kw) is the longitudinal
element of the dynamical matrix (7)]. The plasmon fre-
quency

o(k)=w,{1+D,(k)}'"?, (28)

which result is shown as the upper curve in Fig. 1. We
note from (26) that the plasmon frequency tends to the
asymptotic value o(x)=o, /V'3. More will be said
about this limit below.

Turning now to the dispersion of the transverse collec-
tive modes, the collective-mode frequency w(k) is calcu-
lated either by setting w’=Cr(kw) [Cy(ko) is the trans-
verse projection of the dynamical matrix (7)] or from the
transverse dispersion relation
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FIG. 1. Transverse shear-mode [calculated from QLC Eq.
(32)] and longitudinal plasmon dispersion curves (from Ref. [3])
for I'=225.

k2c2

wZ

ZET(kw):1+aT(ka)) 5 (29)

where a (ko) is given by (20). The two solutions of (29)
are

J
0 (k)= [1+D (k)] +k 22V (02 [ 1 +D (k) ]+ k22— 402 k2c*Dr(k)} . (30)
2t%p T P P
{ 1/2
Equation (30) comprises the high-frequency electromag- o(k)=keV/ Dy =k’ac 2 BIE.(T)| (34)
netic and low-frequency shear modes. In the k—0 limit T 45 r

they become, respectively,
i [1+Dp(k)]+k2c?

k%D (k) . B

oi(k)=

This limit holds only in the small wave-number domain

ke << @,. For any reasonable k value, the opposite limit

ke > W, prevails. In this case,
co[z, +k2c? (electromagnetic)

32
@ D7(K) (shear) . (32)

o*k)=

The electromagnetic mode is the equivalent of the trans-
verse polariton mode in the Wigner crystal; the shear-
mode relation can be obtained directly from Eq. (29) by
letting ¢ go to infinity and requiring that €7 '(kw)=0. As
expected, correlational effects originating from D (k) are
virtually undetectable in the electromagnetic mode
dispersion.

For the analysis of the shear mode, the three wave-
number domains

(ka)?<<3T /(Bmc?) <<1,
3T /(Bme?) <<(ka)? << 1, (33)
(ka)*>>1,

have to be distinguished. The analysis of (31) in the first
domain gives

Note that @ < k2 in this domain. Earlier we have argued,
however, that shear waves cannot propagate at such long
wavelengths since diffusion of the quasisites (a mecha-
nism not included in the present QLC formalism) occurs
over times much shorter than the shear-mode oscillation
time ~(kc\/1)T)_1 inferred from (34) above; thus, the
quasisite diffusion completely disrupts the large-scale or-
der needed to sustain the shear mode at small wave num-
bers. Equation (34) is therefore of academic interest only.

The second and third domains [corresponding to
(ke /o, )>>>1] are far more significant insofar as shear-
mode dispersion is concerned. A glance at (32) reveals
that in the second domain the shear mode exhibits an
acoustic behavior

o(k)=kVy(I) (35)

with the shear velocity
Vo(D)=v/i[IE(T)|/m], (36)

which is of the order V'T times the thermal velocity. In
the third domain, (27) and (32) provide

(k—> o0 ) —2 (37)

As we have stated in Paper III, the fact that the plasmon
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and shear modes exhibit the same asymptotic behavior
can be understood in two ways: First observe that in view
of the neglect of direct thermal effects, Kohn’s sum rule
(which states that the frequency squares summed over the
modes of an OCP have to equal the plasma frequency
squared, irrespective of k) has to hold within the quasilo-
calization approximation. Consequently, (37) is the only
value permitted since for infinitesimally short wave-
lengths there is no distinction between the two transverse
(doubly degenerate) shear modes and the longitudinal
plasma mode and a)z has to be shared equally among the
three [14]. Second, for an infinitesimally short-
wavelength oscillation, the oscillating particle samples its
immediate neighborhood only and therefore its oscilla-
tion frequency is identical to that of an isolated particle
in the center of a uniform cloud of opposite background
charge [15]: this frequency is w, /V'3.

We have calculated Dy (k) from (8) and (22) for arbi-
trary values of k using numerical data for the structure
function S(k)=1+ng(k) obtained by Rogers et al. [16]
through the hypernetted-chain equation modified by the
hard-sphere bridge function. The dispersion curve gen-
erated by this D (k) is displayed as the lower branch in
Fig. 1 for the supercooled liquid state at T =225 and in
Fig. 2 for I'=20, 50, 100, and 150, and 225. We see that
the acoustic part of the shear mode is not restricted to
the small ka values assumed in the derivation of (35), but
persists, in fact, up to ka ~1.5-2. With increasing k,
o(k) increases to a maximum whose value as ' —T,, is
Omax—0.63%), at ka=4.27. Thereafter, w(k) descends
through a series of oscillations to the asymptotic value
(37). The oscillations, because they originate from oscil-
lations in the structure function S (k), because more and
more pronounced with increasing I (Fig. 2). The wave-
number positions of the first and successive maxima
(minima) in the shear-mode frequency coincide with the
wave-number positions of the first (second) and successive
minima (maxima) in the plasmon frequency.

There is a close affinity between the shear mode of the
strongly coupled OCP and the acoustic phonons of the
bcc Wigner lattice. While drawing up a comparison,

0.8
0.6 /’:
. // = =
y/
Q
3
3 el
—r=20
0.2 | ———r=50
< v .. =100
—-—r =150
———r =225
° . L L L )
° 2 4 6 8 10 12

ka

FIG. 2. Transverse shear-mode dispersion [calculated from
QLC Eq. (32)] for I'=20, 50, 100, 150, and 225.
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however, one should bear in mind the inherent difference
generated in the mode structure by the anisotropy of the
crystal. In the crystal lattice, in addition to the disper-
sion being dependent on the direction of the propagation,
the degeneracy of the two acoustic modes is lifted and
their polarization is not purely transverse. With this pro-
viso in mind, one can compare the shear velocity ob-
tained from Eq. (36) for ' —T',, with those calculated by
Caldwell-Horsfall and Maradudin [5] in a few selected
directions. This is shown in Table I. Apparently, there is
a rather wide spectrum of shear velocities in the lattice:
the shear velocity of the liquid falls roughly in the middle
range. There is, however, a more direct way to demon-
strate the close similarity of the excitations in the two
systems that are masked by the lattice anisotropy.
Averaging over all possible lattice orientations eliminates
the anisotropy and serves as the proper basis for compar-
ison. In a recent paper [14], one of us has shown that as
F—T,,, to O(k?) the OCP plasmon mode frequency
squared tends to the angle-averaged optical (plasmon) fre-
quency squared of the lattice in the same way as the
correlation energies of the two systems approach each
other. By virtue of the Kohn sum rule that applies both
to the plasma and to the crystal, the same statement
holds true for the acoustic shear mode: that is, if a prop-
er average is taken over the values in Table I, the agree-
ment between the two systems is as good as it is for the
correlation energies. This is shown in the last entry of
the table.

For finite k values, the comparison is further hindered
by the lack of available calculational data on phonon
dispersion in an arbitrary direction in the lattice. How-
ever, if (somewhat arbitrarily) we choose the [111] direc-
tion to represent the lattice, a good qualitative agreement
can be found. Toya [6] and Sham [6] calculated the
dispersion for sodium in this direction; their calculations
have been corroborated by the experimental data of
Woods et al. [7]. (For the metallic sodium, the disper-
sion is, of course, different from the dispersion in the pure
Wigner lattice; nevertheless, for moderately large k
values the difference for the transverse mode becomes

TABLE 1. Comparison of shear velocities in the three-
dimensional Wigner crystal with the shear-mode velocity of the
Coulomb liquid in the ' — T, limit as calculated in this work.

Direction Vy/owpa
0.200

Ref. [5] [100] 0.247
[110] I 0.247

II 0.090

[111] 0.160

[210] 1 0.247

II 0.173

[211] I 0.208

II 0.167

[221] I 0.208

II 0.118

Angle average 0.199
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FIG. 3. Comparison of Hansen, McDonald, and Pollock
(Ref. [8]) MD shear-mode data (triangle data points) for
I'=152.4 with the QLC Eq. (32) (solid line) and MFT Eq. (40)
(dashed line) shear-mode dispersion curves for I' =150.

negligible, as can be seen through comparison with
Clark’s [4] data.) The first intersection of the optic and
acoustic phonons occurs at the (4, 3,+) point correspond-
ing to ka =2.68; this can be compared with the first in-
tersection of the liquid-phase plasmon and shear modes
in Fig. 1: for ' =225, it occurs at ka =3.29. The second
intersection occurs at the (1,1,1) point at ka =5.36; the
corresponding value in Fig. 1 is 5.15 for [=225. As an
aside, the liquid-phase plasmon and shear mode curves
always intersect at the same frequency w=w,/ V/3: this
is to be expected, since by definition, the expressions (28)
and (32) are equal at these intersections whence from (22),
Dy (k,I')=—2and Dr(k,[')=1.

We have compared our I'=150 dispersion curve with
the ' =152.4 Hansen-McDonald-Pollock [8] MD shear
data (Fig. 3). Agreement between the two is fairly satis-
factory for ka values up to 1.384. The MD experiments
reveal, however, that at higher ka values, the shear mode
splits into a high-frequency mode and a low-frequency
mode. Our QLC dispersion curve passes roughly midway
between the two. Bosse and Kubo [17] have suggested
that this splitting originates from plasmon-shear-mode
interaction. If this conjecture is correct, then the absence
of mode-mode interactions in the QLC liquid state for-
malism sheds some light on why this formalism would
generate one and only one (doubly degenerate) shear-
mode dispersion curve.

IV. SHEAR-MODE DISPERSION
WITH DIRECT THERMAL EFFECT INCLUDED

In addition to the ‘““indirect” thermal effect encoun-
tered through the temperature dependence of the correla-
tion function, the particles in the liquid state undergo a
slow change of the position of their equilibrium
quasisites, which we have referred [1-3] to as the direct
thermal effect. The QLC theory developed and employed
in Secs. II and III ignores this effect, which becomes less
and less significant as I'" increases toward I',,. Similar to
what occurs in the dispersion of the longitudinal plasmon

mode [2], the influence of the direct thermal motion on
the transverse shear-mode dispersion is expected to be of
the order kv e ma- In contrast to the longitudinal mode,
however, the thermal diffusion and migration is expected
to affect the behavior of the transverse mode in a more
fundamental way. The main manifestation of this is the
disappearance of the shear mode for k <k, where k_;,
is determined by v, m.. Also, more akin to the
modification experienced in the case of the plasmon
mode, one expects the pronounced oscillations in the
dispersion relation to be damped out and the mode to
cease to propagate for k > k_,, because of strong Landau
damping.

At the present time we have no ab initio approach to
incorporate the direct thermal effect into the theory.
However, a phenomenological treatment, through MFT-
type reformulation of the transverse element €; of the
dielectric tensor e(kw) can be carried out. The result is
given below, in terms of a transverse local-field correction
F(kw), which is analogous to the customary (longitudi-
nal) local-field correction G(kw) widely used in the
theory of the correlated electron gas and also introduced
in our previous papers [2,3]:

arokw)

ek = oargke) G38)

where aro(kw) is the transverse random-phase approxi-
mation polarizability

F(O)(U
p
R 39
f w—k v+io (39)

with FO()=n (Bm /277')3/Zexp[ —Bmv?/2].

Even though there is no unique prescription for the
phenomenological construction of F(kw), there are cer-
tain obvious criteria whose satisfaction for the resulting
ar(ke) is expected, such as the recovery of (20) in the
Uthermat =0 limit and the satisfaction of the transverse
third-frequency-moment sum rule—including the hither-
to neglected thermal contribution. Thus we choose
F(ko)=—Dr(k).

Our interest is in the MFT reformulation of the shear-
mode dispersion. Therefore, since the index of refraction
kc /o >>1 for this mode, it is sufficient to work with the
approximate dispersion relation €7 !(kw)=0, i.e.,

a TO( k(l)

In the wave-number domain k > w, /c [i.e., at wave num-
bers (ka)?>>3T /(Bmc?)], where the shear mode is physi-
cally viable, an analysis of Eq. (40) reveals (i) that there is
a minimum I’ value I';;=9.41 below which no trans-
verse shear modes can exist, and (i) the existence of a
high-k cutoff k. =~V'T /a, where the shear-mode oscilla-
tion frequency is zero; the shear mode ceases to exist at
wave numbers k > k.

For I'>T,;,=9.41 and 3I'/(Bmc?) <<(ka)*<<1, one
obtains the MFT acoustic shear-mode frequency

Rew(k)= A (D)kV, , (41)

where V) is given by (36); the small MFT correction in
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A(l")=L , (42)

V2

30

Mt BlE]

+

of course, becomes less and less significant with increas-
ing . Figure 4 indicates that the acoustic part of the
MFT shear mode is not restricted to small ka values, but
persists, like its QLC counterpart, up to ka ~1.5-2. The
most significant feature of the MFT description is the
large-k cutoff k.a ~V'T, beyond which the shear mode
ceases to exist. Strong Landau damping keeps the shear
wave from propagating even at wave numbers in the
domain k,,,(T")<k <k,: in this domain, the Landau
damping rate y(k)=Imw(k) exceeds the shear-mode os-
cillation frequency Rew(k) [k ,,, is the value of k where
v(k)=Rew(k); see Fig. 5].

The MFT fails to provide the expected suppression of
the shear mode for k <k_;,: the present formulation
with a frequency independent F (k) is tantamount to a
static mean-field theory, which is incapable of producing
the diffusional damping mechanism required for the dissi-
pation of the low-k modes. Only a more sophisticated
dynamical mean-field theory (perhaps along the line of
our earlier work [18,19]) would be able to do this. Never-
theless, an order-of-magnitude estimate for k_;, can be
based on the assumption that the shear mode disappears
when the diffusion time (7 ) is shorter than the oscilla-
tion period, i.e., when w7p <1. 7, can be estimated as
Tp ~A2%/D, where A is a characteristic migration distance
of a particle from its quasisite position sufficient to dis-
rupt the generation of the restoring shear force: D is the
self-diffusion coefficient. We estimate A as a /4 (note that
the Lindeman melting criterion requires [20] only
A=a/5). D for strong coupling has been inferred from
MD data by Hansen, McDonald, and Pollock [8]:
D~3(w,a’/T'?). This condition combined with Eq.
(35) leads to k <k, with k_,.a~240/T"3 Thus our
dispersion curves should be considered unreliable below
this k;, value. It is interesting to observe how the com-
bination of this estimate for k,;, with the previously not-

—-=r=20
— r=50
o.8 -+ - =100
—-—r=150
-—--r=180
‘o SN — =225
0.5 | = Q\
\\\\
a /,‘\ \ AN
3 \ \ \
3 ] \
3 0.4 } \ \
\ v
i \ o
i L
0.2 ! P
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| | !
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0 ) . A
0 2 ‘. 6 : 10 12 14 16
a

FIG. 4. Transverse shear-mode dispersion [calculated from
MFT Egq. (40)] for I" =20, 50, 100, 150, 180, and 225.
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FIG. 5. MFT shear-mode oscillation frequency Rew(k)/w,
and Landau damping rate y(k)/w,=Imo(k)/w, [calculated
from Eq. (40)] for I =150.

ed kp, <k.~V'T /a brackets the physically viable prop-
agation domains to smaller and smaller regions in k space
as I decreases.

In Fig. 3 we have compared the I'=152.4 Hansen-
McDonald-Pollock MD data [8] both with the QLC and
MFT dispersion curves calculated for I'=150. Agree-
ment between either of the calculated curves and the MD
data is fairly satisfactory in the acoustic domain. Recal-
ling the splitting of the MD data into two shear modes at
higher ka values, both the MFT and the QLC curves pass
between the two, but the MFT curve appears to favor the
higher-frequency mode. The MFT calculations suggest
that shear waves should be too heavily Landau damped
to propagate at wave numbers k =k . (I'=152.4)
~9.77/a. Unfortunately, the disappearance of the shear
mode at large k was not tested in the Ref. [8] MD experi-
ments since the investigators did not go beyond
ka =6.256. Neither can one draw any conclusion from
the MD data concerning the validity of the estimate for
Kmin: Kmina(I'=152.4)=0.35, while the lowest ka value
in the computer simulation was 0.619. In anticipation of
the following paper, one may point out, however, that the
2D numerical experiments of Totsuji and Kakeya [21]
give good agreement with the calculated k,, and reason-

able agreement with the estimated k;, values.

V. CONCLUSIONS

In this paper we have calculated the full dielectric-
response tensor and analyzed the transverse mode, in par-
ticular the shear-mode behavior of the strongly coupled
3D OCP. The derivations of the polarizability formulas
(20) and (21) and the subsequent reformulation into the
transverse mean-field-theory expressions (38) are based on
the quasilocalization-charge (QLC) model of the system.
This approach is appropriate for taking account of the
strong correlations between the particles, which is the
crucial factor in enabling the system to maintain shear
waves.
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Our analytical and numerical calculations have been
carried out at finite wave numbers and over a coupling
range 20 <T" =225, extending into the domain of possible
supercooled states. In the physically most interesting
wave-number domain k¢ >> ,, the QLC shear-mode
dispersion is given by Egs. (32), (35), and (37). For the
very long-wavelength (kc <w,) domain, the shear-mode
dispersion assumes a quadratic behavior given by Eq.
(34). Our numerical calculations indicate that the acous-
tic domain is not at all restricted to the small ka values
assumed in the derivation of (35) but rather it extends up
to ka values of 2. As I' increases and approaches the cry-
stallization limit T",,, the QLC results are in good qualita-
tive agreement with the calculated and measured
acoustic-phonon dispersions in the respective Wigner
crystals; in the small-k limit, where analytic comparison
is possible, the agreement with calculated results is excel-
lent.

We have incorporated the direct thermal effects in the
QLC formalism by generating a static-mean-field theory,
resulting in Eq. (38). As a consequence, a more complete
and reliable description of the shear mode has become
possible. No shear wave exists beyond a critical k value
K max(T); for k > k.. the wave becomes too heavily Lan-
dau damped to propagate. As to k., neither the QLC
model nor the static MFT approach are able to account
for the diffusion-type damping that is responsible for the
breakdown of the shear-mode propagation as k—0.
Nevertheless, a simple estimate, based on the physical
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picture inherent in the QLC model, provides a value for
k min below which no propagation is expected and whose
value is compatible with MD data. There also exists a
minimum value of I', ", ., below which the transverse
shear mode ceases to exist; we calculate I' ;,=9.41; this
value is probably an underestimate (too high I'), since the
limitation coming from the low-k breakdown of propaga-
tion would further inhibit the existence of the shear
mode.

We have compared our I'=150 3D QLC and MFT
transverse shear-mode dispersions with the I'=152.4
Hansen-McDonald-Pollock MD shear data (Fig. 3).
Agreement between theory curves and computer experi-
ments is quite satisfactory in the acoustic domain up to
ka=1.384. At higher ka values, however, the MD data
indicate a splitting into a high-frequency mode and a
low-frequency mode. The QLC theory curve passes
roughly midway between the two modes. So does the
MFT curve, but it appears to favor the high-frequency
mode. The explanation for this behavior is probably to
be sought in mode-mode interaction, whose inclusion in
the model requires further work.
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