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Low-frequency fluctuations in plasma magnetic fields
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It is shown that even a nonmagnetized plasma with temperature T sustains zero-frequency magnetic
fluctuations in thermal equilibrium. Fluctuations in electric and magnetic fields, as well as in densities,
are computed. Four cases are studied: a cold, gaseous, isotropic, nonmagnetized plasma; a cold, gaseous
plasma in a uniform magnetic field; a warm, gaseous plasma described by kinetic theory; and a degen-
erate electron plasma. For the simple gaseous plasma, the fluctuation strength of the magnetic field as a
function of frequency and wave number is calculated with the aid of the fluctuation-dissipation theorem.
This calculation is done for both collisional and collisionless plasmas. The magnetic-field fluctuation
spectrum of each plasma has a large zero-frequency peak. The peak is a Dirac 5 function in the col-
lisionless plasma; it is broadened into a Lorentzian curve in the collisional plasma. The plasma causes a
low-frequency cutoff in the typical blackbody radiation spectrum, and the energy under the discovered
peak approximates the energy lost in this cutoff. When the imposed magnetic field is weak, the
magnetic-field wave-vector fluctuation spectra of the two lowest modes are independent of the strength
of the imposed field. Further, these modes contain finite energy even when the imposed field is zero. It
is the energy of these modes that forms the zero-frequency peak of the nonmagnetized plasma. In deriv-

ing these results, a simple relationship between the dispersion relation and the fluctuation power spec-
trum of electromagnetic waves is found. The warm plasma is shown, by kinetic theory, to exhibit a
zero-frequency peak in its magnetic-field fluctuation spectrum as well. For the degenerate plasma, we

find that electric-field fluctuations and number-density fluctuations vanish at zero frequency; however,
the magnetic-field power spectrum diverges at zero frequency.

PACS number(s): 52.35.Bj, 52.30.Bt

I. INTRODUCTION AND OUTLINE

In a plasma, quantities such as local electron density,
ion density, electron field, and magnetic field are all
smoothly varying and well-defined functions of space and
time, on some practical or coarse-grained scale. This is
only an incomplete definition of a plasma. However,
since the constituents of a plasma are discrete particles,
these quantities are in a constant state of flux in the most
quiescent of plasmas, always rising and falling about their
well-defined mean values.

The fluctuations in electromagnetic field are the main
concerns of this paper. These fluctuations may be aptly
described as random fluctuations for the cases of weakly
correlated plasmas such as gaseous plasmas and ideal de-

generate plasmas. The statistics of these fluctuations,
their root-mean-square amplitudes, for instance, are com-
pletely determined by the mean values of the plasma
quantities in thermal equilibrium. In particular, the
power spectrum of a given quantity's fluctuations is
determined completely by (I) the amount of energy need-
ed to produce a fluctuation of a given size in a given
mode, (2) the temperature of the plasma, and (3) the dissi-
pation mechanisms at work in the plasma. This deter-
mination is expressed for weakly correlated (and nearly
linear) plasmas not far from equilibrium by the
fluctuation-dissipation theoretn [I—3]. In this report we
apply the fluctuation-dissipation theorem to weakly
correlated plasmas in thermal equilibrium and derive the
power spectra of fluctuations in the plasma magnetic
field. An alternative method for deriving the spectra,

which we will not use here, would be to derive the kinetic
theoretic equation applying the superposition principle
(4»j.

We begin in Sec. III with a homogeneous, isotropic,
nonmagnetized cold plasma. (We will say a few words
about Sec. II momentarily). We see that the fluctuation
spectra of the magnetic field are particularly interesting
because they exhibit a strong zero-frequency component.
This zero-frequency component is a Dirac 6 function in a
nondissipative plasma, and is broadened into a Lorentzi-
an curve in a dissipative plasma. This phenomenon may
have implications for the physics of the early Universe.
Because of this, much of our calculations in this section
are made for an electron-positron plasma whose tempera-
ture and density have been chosen so that it, presumably,
describes the Universe in the early radiation epoch.

Since we assume, in the beginning, an isotropic, non-
magnetized plasma, it is curious that our mathematics
should tell us that we actually have a plasma with a mag-
netic field which is nearly stationary in time (even though
it is far from uniform in space). Does a plasma in a
presupposed stationary magnetic field exhibit a similar
fluctuation spectrum? As a consistency check, then, we
study in Sec. IV the fluctuation spectra of a thermal equi-
librium plasma in a uniform, constant magnetic field. In
the process of deriving the spectra, a relationship be-
tween the dispersion relation of an electromagnetic wave
and its fluctuations is found. We find a substantial
amount of low-frequency fluctuations, but they are not
concentrated in the Dirac 6 function we found for the
nonmagnetized plasma. Rather, it is seen that the im-
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posed magnetic field effects a transfer of energy away
from cu =0 into a range of frequencies running from ~=0
up to the lower hybrid frequency. We find, however, that
the limit BO~O is completely consistent with the results
of Sec. III.

We take another look at the isotropic plasma in Sec. V.
Here we will derive the magnetic-field fluctuation power
spectrum from kinetic theory. We find a broadened
zero-frequency peak in the spectrum, but, otherwise,
most results found in Sec. III are confirmed here.

In Sec. VI we discuss magnetic-field fluctuation spectra
obtained from computer simulations of thermal equilibri-
um plasmas. In these particle simulations, the fluctuation
spectrum of the magnetic field has been recorded. We
discuss its size and shape in light of the predictions made
in Sec. III.

Throughout our calculations, we need to introduce a
phenomenological cutoff in a wave number k. The legi-
tirnacy of such a cutoff is established in Sec. VII by way
of quantum-mechanical considerations.

In Sec. VIII we address the Bohr —van Leeuwen
theorem, namely, that classical statistical mechanics does
not allow the magnetization of a physical medium. This
might seem to present a contradiction to our result of
finite magnetic-field energy at co=0 in the nonmagnetized
plasma. This contradiction is shown to be only apparent.

In Sec. IX we look at electrostatic and electromagnetic
fluctuations in a degenerate electron gas. We find that
electric-field fluctuations and particle density fluctuations
vanish at zero frequency. However, magnetic-field fluc-
tuations diverge at zero frequency. This divergence is
proportional to ~ ' over a large frequency range.

In Sec. X we examine some of the consequences of our
results. The low-frequency magnetic fields we discuss
may effect particle transport in plasmas. They may have
consequences for structure formation in the radiation
epoch of the early Universe. They may, finally, be re-
sponsible for anomalous spin relaxation in condensed
matter.

Before we discuss these subjects for real plasmas, how-
ever, it may be instructive to begin with a model problem
which involves the Brownian motion of a system de-
scribed by a one-dimensional wave equation. In such a

system, the resultant fluctuations can be treated as ran-
dom fluctuations without any correlations. This section
should involve some familiar physics, but is intended to
elucidate the theoretical foundation of the present paper
in a simplified model problem. This is treated in Sec. II.

II. ONE-DIMENSIONAL WAVES
WITH BROWNIAN MOTION

We consider a physical system describable by a wave
equation:

~3 2~3
Qt~

Y(k, ) = A (k, co)

( 2+ 2k 2)2+ 2 2
(4)

The simplest assumption is that a(x, t) is a series of
Dirac 6 functions randomly distributed in space and
time. That is, we assume that the fluctuating acceleration
take the form of momentum impluses delivered over very
short lengths of the system. The fluctuations are un-
correlated with one another and have a white-noise
power spectrum. This being given, a(x, t) will have a
correlation function given by

(a(xo, to)a(xo+x, to+t)) =a 5(t)5(x),

where a is a number derived from the distribution of the
strength of the random impulses and the space and time
intervals between them. From this it follows that

3 (k, co)= f dcodk e'"

X(a(xo, to)a(xo+x, to+t)) =a . (6)

Equation (4) then becomes

waves in the system. We could be speaking here about
sound waves in air or water, longitudinal waves in a
compressional spring, transverse waves on a piano wire,
etc. What we want to ask is, given that our physical sys-
tern is in thermal equilibrium, what is the power spec-
trum of the motion it undergoes because of thermal fluc-
tuations?

We want to make our wave equation a little more real-
istic, adding two terms to it:

2 ~3'=c —il +a(x, t) .
Bt Bx

The first new term is a damping term. It could have as its
source some interna1 friction of the system, or it could be
the dissipative effect of thermal fluctuations such as what
we see in Brownian motion. a (x, t) is a spatially and tem-
porally random function, describing the fluctuating ac-
celerations imparted to local elements of the system. If
we were describing a piano wire here, a (x, t) could
represent local fluctuating accelerations from internal
thermal fluctuations in the positions of the molecules
making up the wire, or it could describe the momentum
transferred from air molecules constantly bombarding
the wire. In the mathematics that follows, we make the
reasonable assumption that (a(x, t) ) [the ensemble aver-
age of a (x, t)] is equal to zero and that, therefore,
(y (x, t) ) is equal to zero.

First of all, we Fourier transform our new equation to
get

( cu +—c k i thor)y
—(k, )a=i(ak, co) .

Let Y(k, co) be the ensemble-averaged intensity of y (k, co)

and let A (k, co) be the ensemble-averaged intensity of
a (k, co). Then we see

where y (x, t) is the local displacement of some quantity
from its equilibrium value and c is the phase velocity of Now we find Y(k, t) by Fourier transforming Y(k, ~):
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Y(k, t)= fdcoe' '=1
2'

Q

( 2+ 2k2)2+ 2 2

where

2e gt/2
7l

2 cos(co, t)+ sin(co, t )
gc

(8)

If we have a harmonic oscillator of mass m and fre-
quency coo, vibrating with an amplitude A, the potential
energy of the oscillation W(coo) is, on average, IA 2coo/2.
Each mode k of our oscillator is a harmonic oscillator of
mass density p, and frequency ck, vibrating with an am-
plitude of &Y(k). Therefore, the wave-number power
spectrum W(k) is given by

' 1/2

2k 2 9
CO i C W'(k) = Y(k) =—.

pc2k2
2 2

(1S)

c' T
ice {,'y(k)y'(k)) =—,

2 2
(10)

where p is a constant representing the inertia of the sys-
tem. If our system is a wire, p is the mass per unit length
of the wire. It follows from Eqs. (9) and (10) that

and

The contour of the integral runs along the real axis in the
complex co plane and is closed in the top half (bottom
half) of the plane for t )0 (t (0). From this, it immedi-
ately follows that

Q
2

Y(k, t =0)=(y(k)y'(k)) =
2gc k

If we assume that the system is in classical thermal equi-
librium with some heat bath at temperature T, we are
constrained by the equipartition law to say

Also, since W(k)dk = W(co)dco,

T
W(co) =

2c
(16)

W(k) and W(co) both integrate to give the same total-
energy density E. The two spectra are consistent with
each other and with Percival's theorem. In this purely
classical treatment, however, both spectra integrate to
give (I/2n. )f T/2dk, resulting in a one-dimensional ul-

traviolet divergence.
What happens if we add a "mass" to our system~ We

may get an equation like

c) y 2 c)~y 2 i)y=c —
cooy

—
2) +a (x, t ) .

c)t2 clx 2
(17)

We now have an equation more nearly describing a plas-
ma wave, or a massive Klein-Gordan field, or a taut pi-
ano wire sitting on top of a set of uncoupled springs.
Now, to study this system, we run through all of our
above mathematics with the substitution
c k ~c k +coo. We find for Y(k, co),

2 g T /p
( ~2 c2I 2 )2+~2~2 2rtT/p,

(
2 2k 2 2)2+ 2 2

(18)

To find the limit of Y(k, co) in the limit rt ~0, we make
use of a standard representation of the Dirac 5 function
to obtain

Y(k, co)= 2™5
pco

+c k
(12)

Note that each mode in k space behaves exactly like a
Brownian particle in a harmonic-oscillator potential with
a characteristic frequency coo=ck. This can be seen most
clearly by comparing the current results with Kubo's re-
sults for the Brownian motion of a harmonic oscillator
[6]. In a sense then, there is nothing new here, And, yet,
some interesting results appear. We can content our-
selves with examining the simpler form of Y(k, co) in Eq.
(12). If we want the fluctuation strength as a function of
wave number alone, then we integrate Y'(k, co) over dco
and divide by 2m. If we want the Auctuation spectrum of
frequency alone, we integrate Y(k, co) over dk and divide
by 2m. We find

If we take the limit g~0 again, we find

co c k co0
Y(k, co) = 5

PQ)

Y(k)= T
p(c k +coo)

(19)

(20)

and

Y(co)= T
@ceo(co coo)

(21)

T co
2 2 in2 c(co —coo)

(22)

We also have a Y(co) which diverges as (co —coo)
' at

co —0.
W(co) diverges as well. Since co(k)=(c k +coo)'

W(k) = T/2, again satisfying the equipartition law.
However, since, once again, W(k)dk = W(co)dco, we find

and

Y(k)=
pc k

Y(co)= T

(13)

(14)

We have a divergence in the energy contained in frequen-
cies close to coo. The integral of W(co) over all co

diverges. However, this divergence is caused by contri-
butions to the integral from co~ ~, not from co=coo. In
other words, this divergence is an ultraviolet divergence.
It corresponds to the ultraviolet divergence we get when
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we integrate IV(k) = T/2 over all k. In fact,
f IV(co)dco= f IV(k)dk. Therefore, once again, the two
spectra are consistent with one another and with
Percival's theorem.

The ultraviolet divergence we have seen in Eqs. (15),
(16), and (22) is known to be removed by the Planck dis-
tribution due to the quantum-mechanical effect. The gen-
eral quantum-mechanical fluctuation-dissipation theorem
is spelled out in detail by Sitenko [3]. In fact, the intro-
duction of quantum mechanics was necessary to avoid
the ultraviolet divergence of the blackbody photon spec-
trum. This was Planck's idea.

Suppose we have some kind of quantum-mechanical,
Hamiltonian system. It can be a hydrogen atom or a har-
monic oscillator or anything describable by quantum
mechanics. In this system, we wi11 have a potential ener-
gy V(x, t). Let us assume that we can break this poten-
tial up into a fairly smoothly varying part and a random
part. Let us also assume that the random part of the po-
tential couples to the expectation value of some current
in the system so that

In the above expressions, co„=(E„—E )/A, and f (E„)
is the statistical distribution of the states of the system.

However, averaging Eq. (24) over one period of oscilla-
tion shows that the energy absorbed per unit time is also
equal to

Q =—g(a,", —a, , ) A;(kco) A,.'(k, co) .
k

(29)

Comparing Eqs. (28) and (29) and making use of Eq. (27)
shows

(j;j, )„" —(j;j, )„=ifi[a,', (kco) —a, (kco)] . (30)

f (E„)=e

where I' is the free energy of the system and T is the sys-
tem temperature. In this case,

If the system is in thermodynamic equilibrium, im-
mersed in a heat bath with temperature T, f (E„)is given
by the Gibbs distribution

V(t)= —f dx A (x, t)(j (x, t}) . (23) (
~ ~

) iiia& Fire/T( ~ ~

)

We make two more assumptions: First, V(t) is the only
explicitly time-dependent part of the Hamiltonian. Then,

av(t) = —f dx A(x, t)(j(x, t)) .
C}t

(24)

Lastly we assume A(x, t) and j(x, t) are related to one
another by some linear operator so that

Therefore,

&jj)= „„e 1

Now, for our specific prob1em,

a V(x, t)
dx pa(x, t)y(x, t) .

at

(31)

(32)

j, =a; AJ(x, t),
or, after Fourier transforming in x and t,

j;(k,co)=a;, (k, co}A/(k, co) .

(25)

(26)

So then, comparing Eq. (23) with Eq. (32), we see that in
our piano-wire system, —A(x, t)=pa(x, t) and j(x, t)
=y(x, t) From o. ur equation of motion we can find the
factor a:

The spectral distribution of the space-time correlation
function (j;jj ) „, will be denoted by ( j;j/ )z „. It is relat-
ed to the expectation value of the product of the Fourier
components of j by

(j;"(k)j (k'))„=(2 )'5(k —k')(j;j, )„„ . (27)

A calculation of the transition probabilities arising
from the action of A (x, t) on the system shows that the
energy absorbed per unit time by the system is

Na(k, co) =
p( co +c —k irtco)—

and a little bit of algebra will show that Eq. (31) gives

3

e he@/T
1 p [(co2 c 2k 2)2+ 212co2]

Now, sincey = icoy, lyl
—=co lyl . So,

(33)

(34)

Q = g A, (kco) A,*(k',co)
477

x [(q*(l )J (k') )":—(J,*(k)j,(k'}).I, (2g)

where

(j;*(k)j (k') )„=2'g f (E„)j;*(k)„j(k') „5(co—co„)
m, n

and

=2~ g f (E„—%co)j,*(k)„j(k') „6(co—co„) .
m, n

& lyl') =
cfire/T 1 p[( 2 2k 2)2+ 2 2)

Note that in the limit Pi~0, Eq. (35) will give Eq. (11).
The power spectrum is pco ( ly l

) /2; it equals

IV(co) = '/CO

A~/T
1 [( 2 2k 2)2+ 2 2]

(36)

As A~0, this expression also gives the classical limit of
Eq. (16). In the quantum-mechanical expression Eq. (36),
the ultraviolet divergence (co~ oo ) is clearly removed due
to the Planck distribution factor. In the rest of the paper,
our focus is on the lower-frequency behavior of functions
corresponding to W in a plasma. However, in many in-
stances we shall see infrared divergences due to the plas-
ma effects.
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III. A GASEOUS PLASMA
%'ITH NO EXTERNAL FIELD

Even at or near thermal equilibrium, a plasma has fluc-
tuations. The various fields of a plasma (electromagnetic,
electrostatic, density, etc. ) fluctuate about their mean
values. The strengths of these fluctuations are functions
of two characteristics of the plasma: the dissipation
mechanisms present in it, and its temperature T. The re-
lation between these quantities can be found by means of
the fluctuation-dissipation theorem [2]. In this section we
employ the fluctuation-dissipation theorem to derive the
power spectra of magnetic-field fluctuations in an isotro-
pic, nonrnagnetized plasma which we describe with fluid
equations of motion.

The following derivation closely parallels the work of
Geary et ctl. [7]. We consider a homogeneous, isotropic
plasma in thermal equilibrium. The strength of the
electric-field fluctuations as a function of frequency and
wave vector, from the fluctuation-dissipation theorem, is

, («,E, &,":—(E,E, &„.)=.~tA;.,
' —A;,. "],

where

dva
~a a ~a a a ~dt

(38)

where a is a particle species label and n is the effective
collision frequency of species a. An equation of motion
more accurate than Eq. (38) may lead to an expression for
(8 )i, with more realistic mathematical properties. Be
that as it may, the equation of motion we have yields

2

( ico+—rt )j = E,
4m

(39)

where j is the current density of species a. The dielec-
tric tensor e;J(co,k) is given by

tween the electric field and the current. e/(co, k) will fol-
low from this relationship.

We introduce a simple model of a plasma based on a
cold plasma fluid theory, neglecting kinetic effects neces-
sary to adequately describe warm plasmas. (Perhaps the
model is too simplistic; a discussion of this point will fol-
low below. ) If the velocities and electromagnetic fields
are small enough that we can neglect the vXB forces,
then

A; (co,k) = —
5;J +e;J(co,k),

co k
e;, (co,k)=5;, +4m. gy; (co,k),

[e,j(co,k)] being the dielectric tensor of the plasma [3).
(E; E/ ) i,

" and ( E;E ) i,„are defined similarly to (j;J'/ ) i",
"

and (j,j/ )z in Sec. II.
If the plasma is in thermal equilibrium, then

(E E )iso eAro/T(E E )

as can be inferred from the results given in Sec. II.
Therefore,

—1 —1e
J &~ %co/T [ ~J' V8a Zp~

where the susceptibility tensor y; is defined by the rela-
tion

j,= icoy;J(co—,k)EJ(co, k) .

So, from Eq. (39),
2

4m';, (co,k) = . 5;
co co+ i 7)~)

and

Consider an electromagnetic wave in the plasma; call its
wave vector (k =kx). Invoking Faraday's law, we find

2 kco i R c k (

8 2

2

e,, (co,k) =5,, —g 5,,co(co+ill )
(41)

and

(~')3 kco i i)I c k
g~yT

1
2 22 22

where the subscripts 1, 2, and 3 refer to the x, y, and z
directions, respectively. So the total magnetic-field fluc-
tuation strength is

c'k'
877

It will be seen below that the results of these calcula-
tions have a particularly interesting impact on the phys-
ics of dense plasmas, such as that of the early Universe.
Just prior to cooling below 1 MeV, the Universe was, ap-
parently, an electron-positron plasma [8], and it is this
type of plasma that we will discuss in the next several
paragraphs. However, the derivations and results are
valid, with minor modifications, for more ordinary plas-
mas as well.

In an electron-positron plasma, co + =co and
pe pe

g +=g =g. So Eq. (41) becomes

X [Aq~'+ A33' —A22'* —A33' (37)

We now find e,"(co,k), in order to determine A; (co,k).
First, we specify the equation of motion of the plasma.
From the equation of motion, we find a relationship be-

COp

e;/(co, k) =5;,— . 5;co(co+i ri)

where co =co ++co . We now obtain2= 2 2
pe pe

(42)
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2
COP1—

co ( co + l g )

2I 2
1—

CO

2
COP

co(co+i ri)

c k1—
CO

2
COP

co(co+i ri)

(43)

2Aco c k 1

e"" —1 [
— k — ]+ [

— k/ ]
'gQ)

P

We combine Zqs. (37) and (43) and obtain, after some algebra,

(8'),.
8n

(44)

or

2r c2k2
—1 ( +rP) k+2 ck( — — )+[( — )+ ]

'/CO

P P

(45)

The first form of (8 )k„/8n, with a pole being clearly
offset from the electromagnetic plasma-wave pole, might
be more physically understandable, whereas the second
form will make integration a less difficult task. Note that
if relativistic temperature effects are included, the above
formulas are altered by the substitution co~~co~/&y.
Figure 1 shows a contour plot of the natural logarithm of

I

this function weighted with the geometrical factor k .
The density (n, =4.84X1 0/cm ) and temperature
( T = 10' K) have been chosen to represent the early
Universe plasma at 1 s after the Big Bang. The collision
frequency q has been set 100 times larger than expected.
This smooths out the contours of the graph and gives a
better view of the qualitative behavior of the spectrum.

We now want to find the fluctuation power spectrum as
a function of frequency: (8 ) . We find this spectrum
by integrating (8 )k„over wave number k and dividing
the result by (2~) . This integration can be done analyti-
cally, as shown in Appendix A. We obtain

3
Gt)Pe

8~ &~/'T
1 27T COPe

~ ~ ~

4

X dx
(cu' +g' )x + . (46)

o0
C k/mpe

FIG. 1. The natural logarithm of
((B )„ /8m )(k c /2' co~, fi) This contour plot .corresponds to
an electron-positron plasma. Electron density is

n, =4.84X 10 /cm . Temperature is T =10' K. Collision fre-
quency is 2.2 X 10' s '. The collision frequency has been set at
100 times the expected value. This smooths out the contour
ridges without changing their locations drastically, thus giving a
better view of the qualitative behavior of the spectrum. The
difference in height between adjacent contours is 2.0, except for
the solitary contour on the right edge, which has a value of 3.0.

where x =ck/co, and the primed quantities are normal-
ized by co, (e.g. , ri'=ri/co, ). However, we are immedi-

ately faced with a problem. At large k, which corre-
sponds directly to large x, the integrand of Eq. (46) be-
comes effectively constant, so the integral diverges.

The divergence occurs at high wave numbers. Howev-
er, this divergence at high k is different from the one we
discussed in Sec. II. As seen in Eq. (46), the Planck fac-
tor (e" —1) ' is already incorporated and thus no ul-

traviolet divergence arises as m~ ~. Rather, the diver-
gence resides in the more subtle interaction between
matter and radiation. Up to this point, we have based
our calculations on classical fluid equations of motion
with a model collision term. In these equations the pho-
ton fields appear as smooth electromagnetic fields. In
this sense, these equations may be regarded as multicom-
ponent fluid equations for electrons. However, at some
small enough physical scale (or, equivalently, some large
enough wave number), the granular nature of any fluid

(photons or electrons) will become apparent and render
the continuum fluid equations invalid. Where the fluid
"picture" breaks down, we need new equations. We
might obtain such equations from a kinetic theory which
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includes more exact collisional effects, wave-particle in-

teractions, etc. In the interest of tractability, however,
we want to continue with the simple model presently be-
fore us. How do we manage this?

Our reasoning is as follows: Consider electromagnetic
waves propagating through a plasma. The dispersion re-
lation for waves of long wavelength is strongly dependent
on the collective effects of the plasma. Waves of shorter
wavelength are affected less by the plasma. If a wave has
a wavelength much shorter than the collisionless skin
depth c/co, it moves through the plasma almost as if it
were moving through empty space. It stands to reason
that, for wavelengths much smaller than c/co and fre-
quencies much greater than co, the fluctuation spectrum
of the magnetic field must be much the same as a black-
body radiation spectrum. In particular, the collision of
electrons should not matter. This being the case, a reli-
able high-frequency, high-wave-number limit should be
obtained if we let g~O. A more rigorous quantum-
mechanical treatment is presented in Sec. VII. We take
the g~O limit with the aid of a standard representation
of the Dirac 5 function; we obtain

(&')1,
8m'

co(co —c k —co )

%co/T 1
P

co czk m5
2 —c2

x
(co —ck )

(47)

Integrating Eq. (47) over d k and dividing by (2n) gives

(~'& 7. co k=—5(co) dk
8m 2+c2

P

2 2 )3/21

27TC e —1
(48)

Remembering that the magnetic-field energy will make
up roughly half of the total electromagnetic energy in

high frequencies, and remembering that the magnetic en-
ergy density is found by integrating (8 )„over dco and
then dividing by 2m, we can see that the second term in
this expression closely resembles the blackbody radiation
spectrum at frequencies much greater than co . In fact, if
co ~0, the entire expression reduces exactly to the
correct blackbody spectrum.

This suggests a possible procedure: We break up the
integral in Eq. (46) into two intervals. One interval runs
from ski =0 to ski =k,„,. The other interval runs from
ski =k,„, to ski = ~. (The choice of k,„, will be clarified
below. ) In the first interval, we keep g finite and treat the
integrand exactly. In the second interval, we let g~0
and drop the zero-frequency part of the spectrum. The
result, thus approximated, is

. (~'&„
8~

COPe
2n'

c

3

f
Xcut X 4

X dx
(co' +g')x +

R(co' —co' ) coPe

3

X 8[co' —(x,„,+co& )' ], (49)

where e is the Heaviside step function. The second term
is the high-frequency and high-eave-number expression
we obtained in Eq. (48). Elsewhere, we have referred to
these two types of photons as soft and hard photons [9]
and have dealt with the matter of the plasticity of pho-
tons [10]. The cutoff in integration removes the diver-
gence. At co =0, we get

27.
lim "=, " x,„, .
co~0 877 ~ g c

At relativistic temperatures, this result is altered by a sin-

gle factor of I /y.
In reality, g should vanish smoothly as k~ 00. How-

ever, as long as our results do not critically depend on the
manner in which q approaches zero, the abrupt cutoff we

suggest here should be acceptable as a crude model. We
are interested in the contribution to the zero-frequency
peak from long-wavelength fluctuations. So we will

choose x,„,=1. This corresponds to k,„,=coP /c, which,
as can be inferred from the first term of Eq. (48), is the
spatial correlation length of the zero-frequency fluctua-
tions.

Plots of the spectrum expressed in Eq. (49) are shown
in Fig. 2. These plots show the fluctuation spectrum in
plasmas with parameters approximating the early
Universe during the plasma epoch. Figures 2(a) and 2(b)
represent the early universe at about 1 s after the Big
Bang, Figs. 2(c) and 2(d) at about 10 s, and Figs. 2(e) and
2(f) at about 10' s. Note that the rise in the zero-
frequency peak is so sharp in the logarithmic-linear
graphs [Figs. 2(a), 2(c), and 2(e)] that it is difficult to dis-
tinguish the peak from the vertical axes. (A break at the
top of the graph indicates the height of the peak. ) Note
also that the log-log plots of Eq. (49) [Figs. 2(b), 2(d), and
2(f&] clearly show the co behavior at the low-frequency
end of the spectrum. This is characteristic of the
Lorentzian tail found in Appendix A.

An alternative method exists for ensuring the con-
vergence of the integral in Eq. (46). It will prove to be
unsatisfactory, but we mention it here for completeness.
We go back to our original equation of motion and in-
clude viscosity:

dv~
E—~v+pV

dt

(50)

(51)

We can now make the substitution g~g+JMk in Eqs.
(38)—(46). Doing this, we find

(&'&.
8~ ~2 (Ado /T)co

77

COPe
&2

~p (q'+p'x )x
2 2dx

CO CO X COP + 7J +PX CO X
(52)



3420 S. CABLE AND T. TAJIMA

If we take @=0.73T/gm [11],we find

0.85 T ~pe

877 71' Npe C

1 T
mec

' 1/2

(&4)

We now have an integrand which varies as 1/x as
x ~~. We therefore have a convergent integral. We
also have a modified value of the magnetic fluctuation
strength at co=0:

3

p'=p, (&3)

We see that (B ) /8' still has a I /ri dependence, but its
dependence on temperature has changed: It is now pro-
portional to T

As has been stated, however, this reliance on viscosity
to produce a convergent integral is unacceptable. What
is needed is a means of modifying the integrand of Eq.
(46) which does not alter the blackbody spectrum at high
frequencies and wave numbers, where the plasma should
have less and less effect on the electromagnetic spectrum.
Viscosity does not do the job: Including viscosity in the
above manner puts terms in (B )z /8m which increase in
importance as the wave vector increases, thus modifying
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FIG. 2. The spectral intensity
of magnetic fields S (co)
=(B~) /grr in thermal equilib-
rium, nonmagnetized plasma:
(a) Corresponding to the plasma
1 s after the Big Bang. T
=10' K; n, =4.8X10' Icm').
ln[S(co)/So] is plotted linearly
in co. The zero-frequency peak is
at the top of the graph, where So
is the normalization. (b) Corre-
sponding to the plasma 1 s after
the Big Bang. T = 10' K;
n, =4.8X 10' /cm'. 1n[S(co)/
So] plotted logarithmically in co.

The low-frequency line has a

slope around —2, which rises to
a peak at co=0. (c) Correspond-
ing to the plasma 10' s after the
Big Bang. T = 10 K;
n, =6. X510 /cm'. 1n[S(cu)/So]
plotted linearly in co. The zero-

frequency peak is at the top of
the graph. (d) Corresponding to
the plasma 10' s after the

Big Bang. T= 10 K; n, =6.
X 10 /cm'. 1n[S(co)/So] plotted
linearly in co. The slope of the
low-frequency line is ——2. It
rises to a peak at co=0. (e) Cor-
responding to the plasma 10" s

after the Big Bang. T=10 K;
n, =6.5X10 /cm . lnS(~)/So
is plotted linearly in co. The
zero-frequency peak is at the top
of the graph. (fl Corresponding
to the plasma 10' s after the Big
Bang. T =10 K; n,,
=6.5X 10 /cm . 1nS(cu)/So is

plotted logarithmically in

The slope of the low-frequency
line is around —2. It continues
to rise until peaking at ~=0.

ta) /OP p~
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2 2
COPq NPI

e; (to, k}=5,"— . 5,"— 5," .
co(to+i ri, )

'J to(to+i'; )

From this we find that, when co~0,

(55)

(56)

the blackbody spectrum. Perhaps, at low frequencies and
wave numbers, viscosity should be included for higher ac-
curacy. However, it does not solve any basic problems of
the theory outlined thus far, nor does it lead to a qualita-
tively different shape of (8 ) /Sm at low frequencies, so
we will dispense with it from here on.

We have, so far, concentrated our efforts on electron-
positron plasmas. We say a few words about plasmas
with one major ion species. An analysis similar to what
we have done in Eqs. (38)—(42) shows that the dielectric
tensor of such a plasma may be given as

In an equilibrium hydrogen plasma, Npp 200cop Also,

g, =2.91 X 10 n, lnAT s

and

g;=4.78X10 ' n lnAT s

(Ref. [12]). The ratio between the first and second terms
in Eq. (56) is approximately 16.4. Therefore, ion motion
raises the value of the co=0 peak by about 6% of the
value it would have if the ions were frozen.

We turn our attention to the wave-number spectrum of
magnetic fluctuations, i.e., (8 )i, /Sn Th.is spectrum is
found by integrating Eq. (45) over frequency. The Planck
factor (e" —1) ' makes the integral difficult. However,
we can find an exact result in the limit g~0:

2~~
co c k n.5

8m —~ 2m.

(
2 2k2 2)

2 —c2 (
— k )

1

i(co ck )(3t—o ck to—
~ ) 2to—(co —ck —to)i— (57)

After integration, we obtain

(~')„ Ac k 1

+c2g2ili2gr
( 2+c2k2)1/2

(e 1) cop c

N
+T 2+c2k2

P

(58)

(59)

The second term of this expression has the same physical
source as the first term of the right-hand side of Eq. (48),
namely, the zero-frequency fluctuations. The magnetic-
field energy contained in these fluctuations can be found
by integrating the second term of the present expression
over d k and dividing by (2m. ), or by integrating over the
first term of Eq. (48) over dc@ and dividing by 2n. The re-
sult given by the two methods will be identical regardless
of the value of k,„,. (Note that, once again, the limit
co ~0 gives the standard blackbody radiation spectrum. }
The first term in this expression is clearly the blackbody
spectrum modified by the plasma. The second term was
obtained by Geary et aI [7]. They o.btained this term via
the Darwin approximation, i.e., by neglecting radiation.
Therefore, our result satisfies both radiative and nonradi-
ative limits.

Notice that, in the classical limit A'(co +c k )'~ ((T,
the two terms of Eq. (58) add together to yield the well-
known equipartition law

(~')„~T e

8m.

Tf ~ dt's co

2m. c
1

6m. c
(60}

The energy under the co=0 peak is approximately equal
to the energy cutoff from the blackbody spectrum.
Figuratively, we can say the plasma squeezes the fluctua-
tion energy of modes with frequencies less than co into

Remembering that we have obtained this expression by
summing over both polarizations of the magnetic field,
we see that we have satisfied the equipartition law of clas-
sical statistical mechanics. This raises an interesting
point. The first term in Eq. (58) is the contribution to the
magnetic fluctuation spectrum from the standard, cold-
plasma, electromagnetic waves. The second term, as has
been stated above, is a contribution from some kind of
nonradiative fluctuation in the electromagnetic field. The
standard cold-plasma waves do not satisfy the classical
equipartition law. The cold-plasma equations do not a1-
low any other plasma wave. Therefore, it would seem
that the only possibility for this "missing energy" would
be in co=0 fluctuations qualitatively similar to those dis-
cussed here.

We end this section with some brief observations. The
energy under the co=0 peak shows itself in the wave-
number spectrum by way of the second term in Eq. (58).
The total energy under this peak is on the order of
T(to~/c) I/(6') The energy . lost to the blackbody
spectrum because of the plasma can be approximated by
the Rayleigh-Jeans formula

'3
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modes with frequencies very close to zero.
A word should be said about the effects of these low-

frequency magnetic fields on the equations of motion of
the plasma. Specifically, is it justifiable to neglect the
nonlinear (v/c) XB force in the equation of motion, as
has been done in Eq. (38)? Towards answering this ques-
tion, we will examine the magnetic power spectra of a
plasma with an imposed magnetic field in Sec. IV. First,
though, it can be shown that the ratio of the (v/c) XB to
the electric-field force is typically of the order of
U/U „=U/c„where U is the fiuid velocity, U „ is the
phase velocity, and c, is the sound speed. This is usually
much less than unity.

We also make more detailed estimates about particle
motion in the isotropic plasma. A typical value of the
spontaneously generated magnetic field has been found to
be B =[8~T(co~/c) ]' . The correlation length of these
fields is c/co . If a particle in a nonrelativistic plasma has
a velocity which is some fraction g of the thermal veloci-

ty, i.e., U =(QT/m (a being the particle species label),
then the Larmor radius of the particle is given by

1 j2 3//2

pi =U/(eB/mc) =g
~, (8n.)'" ego,

'"
In the late radiation epoch, and in most astrophysical and
laboratory plasmas in existence today, the Larmor radius
of a typical plasma particle (i.e., g= 1) is inuch larger
than the length of a typical region of constant magnetic
field, i.e., c/~ . Only for the coldest of the particles
would it be necessary to consider the VXB force. It
would seem, then, that Eq. (38) and results following
from it are valid in these contexts.

The plasma of the early radiation epoch may be a
different story, however. The Larmor radius of a typical
electron will be

of spontaneous breakdown of symmetry. Should this
(nearly) constant (but tangled) magnetic field have been
included in the original equation of motion? If it had
been included, would the fluctuation spectra turn out to
be much the same, or do we have a contradiction here?
Toward resolving this quandary, we now attempt a calcu-
lation of interest in its own right. Namely, we find the
magnetic fluctuation spectrum of a plasma with an im-

posed, temporally constant, spatially uniform magnetic
field.

We take the equation of motion of our plasma to be

dV~ vI =e E+e —XBp—g m v
dt c

where Bp=Bpz. Admittedly, this constant magnetic field
will not capture the complexity of the spontaneous zero-
frequency field that was calculated in Sec. III. So it is
best to regard the following analysis as a qualitative, rath-
er than thoroughly quantitative, consistency check of the
calculations which we have already completed. We con-
tinue on with this proviso in mind.

The simultaneous presence of collisions and magnetic
field in the equation of motion will complicate our alge-
bra. For the time being, we drop the collisional term
from the equation of motion. As long as we are dealing
with plasma waves in which V. is largely perpendicular to
Bp this approximation amounts to ignoring g in favor of
Qi = ~eJBO/m c i. However, when we deal with modes in

which v is purely parallel to Bp, collisionality must be
reintroduced.

Our first step in calculating the magnetic-field fluctua-
tion spectrum is to set k =k y+ k, z. We then find the
dielectric-permittivity tensor to be

C2

CO

c 1 myc'"
pL, =c/(eB/m? c ) = i/2 i/2 i/2(8n ) T et' iKx

c k c
2

cos 0
2

sinOcosO

The factor multiplying the collisionless skin depth is now
on the order of 10. It would seem that the equation of
motion which has been used suffices for a crude estimate
of particle motion, but the introduction of the nonlinear
(v/c ) XB force would have non-negligible effects.

c2k2 c2k2
si OcosO Kii

— sin 0

where 0 is the angle between k and Bp, and

IV. FLUCTUATIONS WITH AN IMPOSED
MAGNETIC FIELD Ki=1—

2 2
Np) COpe

co 0. co 02 2 2 2 7

e

We began our study of magnetic-field fluctuations in an
electron-positron plasma by assuming a cold-plasma
equation of motion, Eq. (38). In adopting this equation,
we assumed that the effects of magnetic fields on plasma
motion were small. Yet, when the fluctuation spectrum
of the magnetic field is calculated, a zero-frequency mag-
netic "fluctuation" is found. This "fluctuation" can be
quite large, depending on the parameters of the plasma.
We begin with an equation of motion which takes no ac-
count of magnetic fields, and we end with a plasma which
has a temporally fairly constant (though far from spatial-
ly uniform) magnetic field which the plasma has "im-
posed on itself. " This may be looked upon as an example

2 20 i Cgpe 0e

m —0 ~ cu —02 2 2 2
l e

CO

K =1-
li 2 2

(Here, 0, has been taken equal to iQ, i.) The results of
the damped equation of motion can be recovered by mak-

ing the substitutions [13]

CO CO

A ~Q
CO+ l 7/ CO+ l 7f
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As in the previous sections, we use the inverse of this
tensor, i.e., A ', to calculate the fluctuation spectra of
the magnetic field:

[kA '+kA
8~ 2 e~~/~ —1

—
krak, (A~3'+A32 ) —c.c.],

(63}

observations which will make the calculations much
simpler. First, we note that the sum of all of the
magnetic-field energy can be written as follows:

(~'&
ken l f1 C

2 —1 —1e2e" —1'satyr p einpeilm kn I Apm Amp

i fi c
2(k 5pm k)k~}

e —1 co

X(A ' —A '"}, (66)

/T 2 (kzA)1 C. C. ) i
8m 2e —1 co

(~z )kco i (rl c (kyA)(c. c. )8' 2 e —1 Q)

(64)

(65)

where e;I is the fully antisymmetric tensor. Next, let us
define the tensor A.; by the relationship

)(,;~ =det(A)A, " ' . (67)

Before we calculate the spectra, we will make several
I

Then,

c'
8 IT 2 e 1 Q)

~pm

det(A)
~mp

det(A)

7Tfl C

z (k 5~
—k~k )A&~5(det(A)),

+,5(co—co;(k))
—1 co l(c)/c)c0)det(A)l

(68)

where I co, (k) j is the set of roots of the equation
det[A(k, co) ]=0.

The cold-plasma-model dielectric tensor is independent
of k: e;i =e;i (co ) There. fore,

of c)i, (A,"(co,k)),

(~'),„
8a

c)„[det(A ) ]
2 I(B/ ) (c)od te( A)I

c2 c2
A; = 1 — 5;i+ k;k +e;.(co) .

It follows that

BA," c c k k——2
2 k5IJ+2 2

(69)

(70)

X +5(a)—co;(k)) .
l

What we have here is a sum of the magnetic fluctua-
tion intensities of all modes. The magnetic fluctuations
of a given particular mode are characterized by the
dispersion relation

det[A(k, co)]=0 .
where k =

I
k I. When we substitute this result into Eq.

(68), we find

k a„(A„g„
es r—1 2 I(()/c}a))det(A}l

X+5(co—co, (k)) . (71)

A straightforward calculation shows that, given any
3 X 3 matrix A, whose elements depend on some set of pa-
rameters x,y, . . . , the derivative of the determinant of A
with respect to any one of these parameters is

(}„Idet[A (x,y, . . . )]]=c}„A,J(x,y, . . . )a~,.(x,y, . . . ),
(72)

where a;,.(x, . . . ) is the matrix whose elements are made
up of the cofactors of A,. (x, . . . ) and repeated indices
represent summation. This result holds true for
A,.~(co, k), yielding from Eq. (71), because of the symmetry

Where this function is equal to zero in k-co space, we
have the wave vector and accompanying frequency of a
propagating wave. If we infinitesimally vary k and co so
as to remain on a given surface in k-co space where
det(A) =0, we must vary k and co such that

0=6 det[A(k, co)]

=6k.(}),[det(A)]+Acoc) [det(A)],

which implies

c)z[det(A) ]I. „(„)
Bk Bco[det(A}]l

This implies, further, that

(}),[det(A }]1.=.(), )

(3k 5 [det(A)]l

(74)

(75)

This result will be independently true for each surface in
k-co space on which det[A(k, co)] equals zero. This means
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mode i

=5(co—co (k)) m6 k
fico,- /T

e ' —1

BCO;

Bk

(76)

it will be true independently for each propagating mode.
We can substitute this result into Eq. (73), finding that

the total magnetic fluctuation strength for a given mode
1S

mode, we can easily calculate the xnagnetic and trans-
verse electric fluctuation spectra.

We proceed to calculate the magnetic fluctuation spec-
trum for an electron-positron plasxna. Since the masses
of the particles are equal and the charges are exactly op-
posite,

COe + —
COe

—CO, COpe
—

COp~ + —
COp / 2v'

(B )&ISm is found by integrating (B ) i, ISn. over dd~

and dividing by 2m. For a given mode, it is K~=1—
CO CO

CO 0 CO

fico,. /T
mode i

Bco,

Bk
This all means

[In deriving this expression, one must remember that,
wherever co enters det(A), it enters in an even power.
This means det(A) is even in co and, for a given mode i,
the contribution to the sum from frequency co; is matched
by the contribution from —

co, . ] In the limit A~O, this
becomes

c k

CO

ck ck
K, — cos t9 sin8cos8

c2j c2k2
sin8 cos8 K~~

— sin 8

We can write this as

T k
2 co;(k) Bk

(78) (82)

There are five distinct modes in the plasma. Two of them
solve the dispersion relation

(B ) T v „;(k)v;(k)
mode i U&h;(k)

(79)

c'
SC, — =0.

CO2

The other three solve

(83)

where v~h;(k) is the phase velocity of a wave of mode i
with wave vector k, and v, (k) is the group velocity of
the wave.

Because of Faraday's law, it must also be true that the
fluctuation spectrum of transverse electric fields is given
for each mode by

c k c

'2c'
sin 8 cos 8=0 . (84)

CO

%co /T
mode i e ' —1

In the limit A~O, this gives

(E )„T,(k)rk a8~, , ; 2 c Bk

T v,„,(k) v, , (k)

2 c2
(81)

We should note that these results are not valid without
limit. If there is a zero-frequency mode in the plasma,
Bco/Bk will be zero, while k/co will be infinite. In this
case, we cannot use Eq. (78) to calculate the magnetic
fluctuation spectrum of this mode, unless we can make
use of some sort of limiting procedure to take care of the
product of zero with infinity. However, on the other
hand, Eq. (81) tells us unequivocally that the transverse
electric-field intensity of a zero-frequency mode will be
zero.

We have, in general, made the task of calculating the
magnetic fluctuation spectrum much simpler: If we have
the functional form of the dispersion relation of a given

The first two modes have their electric fields polarized
purely in the x direction (that is, perpendicular to both
Bo and the direction of propagation). This is evident
from the requirement that A jEJ 0. The magnetic fields

of these modes lie in the plane common to Bo and the
wave vector. Note that the dispersion relations of these
waves are dependent on the magnitude of Bo but are not
dependent on the direction of propagation. The disper-
sion relations of these modes are plotted in Fig. 3(a).
(B )k/Sm is plotted for each inode in Fig. 3(b).

The other three xnodes have their electric fields polar-
ized in the plane common to Bo and the wave vector.
Their magnetic fields lie in the x direction, that is, per-
pendicular to both Bo and the wave vector. The disper-
sion relations and fluctuation spectra of these modes are
plotted in Figs. 4(al) —4(d2) for various directions of
propagation relative to Bo.

Are there any zero-frequency modes which we may
have overlooked because of our neglect of damping in the
equation of motion? Also, even if these modes do not ex-

ist, is there a finite axnount of fluctuation energy in the
magnetic field when co is very small or even equal to zero?

A glance at Fig. 3(b) will show that the total-energy
density per k-space volume deposited in the first two
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modes we mentioned is T/2. We thus conclude that, if
there is a "hidden" zero-frequency mode, it must be
among the second set of modes we have mentioned. That
is, it must be polarized so that its magnetic field lies per-
pendicular to both Bp and k. We look at the remaining
three modes, all thus polarized. We can see from Fig. 6

I

that, for almost all angles, (8„)&/8m. added over all three
modes gives T/2, regardless of k. We conclude again,
that, in general, there are no hidden co =0 modes.

There is one exception to this rule: It occurs when
O=vr/2, that is, when the wave is propagating perpendic-
ularly to Bp. In this case, we find

2I 2
1—

CO

2
COP

0
2

COP1—
co 0

ck p1—
CO N

(85)

(B„)k /8n is calculated from A33'.

c'k', ~ c2k2
&~/T 2 33 ' '

Acu/T 2 287K 2 e 1 Q) e —1 N

c2k
f5[to (c k +—r0 )]+5[co+(c2k2+co2)]] .e" —1 2(c k +A@2)

(86)

(8„)k/8n is found by integrating this expression over
de and dividing by 2m:

If we revive damping in the equation of motion, we find
that

8m

fi c2
~gm + 2k2c)l/2/T 2 ( 2k 2+ 2 )1/2

P C COP

(87)
c2k2

A33=1-
CO

2
6)P

e3( e3+i Ti)
(89)

In the limit A~O, this becomes

8~ 2 ck+
P

(88)

which is less energy than required by the equipartition
law. We then look for a mode at co=0 which can be de-
rived when damping is considered.

This implies that

8m 2

2
NP

c2k2+~2
P

c2
(Am&+c k )& /T 2 ( 2k2+ 2 )I/2

e C COP

(90)

50 0.5 The A~O limit is now
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FIG. 3. The dispersion relations and magnetic-field fluctua-
tion strengths for the two direction-independent modes of the
electron-positron plasma in a uniform magnetic field: (a)
Dispersion relations of the two direction-independent modes of
the electron-positron plasma in a uniform magnetic field. Ro-
man numerals label modes in increasing value of frequency.
The modes shown here are labeled II and V. Modes I, III, and
IV, being dependent on propagation direction, are shown in Fig.
4. (b) (8 )k/8m of the two direction-independent modes. Ro-
man numerals label corresponding modes in (a).

(~„')„
8m 2

NP c k

C k +& CP P

(91)

which satisfies the equipartition law.
Notice that the propagating mode represented in the

second term is the ordinary mode. Its electric field is po-
larized in the direction of Bp. This implies that the
motion of the plasma itself is, in the linear regime, purely
parallel to Bp. This is the exceptional case which we not-
ed at the beginning of this section. Using satisfaction of
the equipartition law as our criterion, we have decided
that this is the one case in need of special consideration
of damping effects. Note also, as we can see from Fig.
4(d2), that the zero-frequency mode represented in the
first term in the shear-Alfven mode. We can see this by
following the changes in the shear-Alfven-wave disper-
sion relation and magnetic-field spectrum as the angle of
propagation changes from 8=0 to 6r~m/2. The fre-
quency of the Alfven mode goes to zero for all k when
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0=m/2. This is why it is necessary to consider the dissi-
pative eftect in this case; the wave*s energy density per k-
space volume remains finite. Agim and Prager [14] have
found a similar efFect in magnetized electron-ion plasmas.

Suppose that in a plasma in a uniform magnetic field,
we turn the magnetic-field strength down. The dispersion
relations of the various modes change. Some modes
merge into each other, and the shear and compressional
Alfven waves become lower and lower in frequency. %'e
examine the compressional Alfven wave first. The disper-
sion relation for this wave is contained in the equation

which can be written as follows:

co +co ( —fl —co —c k )+0 c k =0 (92)

To obtain the low-k dispersion relation, we assume ck
and co are small compared to 0 and co . %e find

0
CO 2k 2 (93)

CO& + CO

To obtain the high-k dispersion relation, we assume ck
and ~~ are much larger than co and A. %e then find

c k 02c2

co +c k
(94)

5,0 05

The energy density per k volume contained in the mag-
netic field is, from Eq. (78),
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for large k. Notice that &8 )i, /gm is independen«f &.
1n the limit A~O, &8 ) i, /ger remains finite. Notice also
that the spectrum is exactly equal to that of the zero-
frequency mode of Sec. III.

Now we examine the shear Alfven wave. At low k, the
dispersion relation is

Ol a
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At high k, it is
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The magnetic-energy spectrum at low k is obtained from
Eq. (78) as
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and, at high k, as

co +c k
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FIG. 4. Dispersion relations and magnetic-field fluctuation
strengths for the three direction-dependent modes of the
electron-positron plasma in a uniform magnetic field. Roman
numerals label modes in order of increasing frequency. 0 indi-
cates angle between imposed magnetic field and angle of propa-
gation. Note that the lowest-frequency branch (the shear
Alfven branch) is not plotted in d &, since its frequency is identi-
cally zero when propagating perpendicularly to the magnetic
field. However, as shown in d, , it retains a finite amount of en-

ergy.

The shear-Alfven-wave-vector spectrum has exactly the
same behavior as that of the compressional Alfven wave.
In particular, the spectrum is independent of 0 and,
therefore, finite even if Q=O. Further, notice that the
wave-vector spectra of both Alfven modes are identical to
that of the zero-frequency mode at high k.

Therefore, it may be possible to interpret the zero-
frequency mode as a composite of the two Alfven modes,
which are static in the absence of an imposed magnetic
field. The zero-frequency mode is a virtual Alfven wave
excitation that is spontaneously generated as the virtual
excitation itself creates a magnetic field over a short
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period of lifetime. In quantum-mechanical terminology,
this is usually called virtual particle creation. That is, the
virtual Alfven wave quantum (or magnon) is created in
the absence of an external magnetic field, while in the
presence of an external magnetic field, the (real) Alfven
wave quanta are excited.

Nom we have to answer our second question: Is the
Auctuation energy of the magnetic field finite even when
co is small or even zero? We answer this question by cal-
culating (B ) /Sn for the two Alfven modes. We could
do this by going back to (B )z ISn and integrating over
k. But we use another method here. Since there is no
damping, (B )z /Sn is made up of functions of co and k
multiplying a sum of Dirac 5 functions, the arguments of
which are also functions of co and k. This means that the
energy density in a particular frequency interval den is
distributed over a few well-defined, distinct surfaces in k
space. This implies the following: We measure the ener-

gy of a given mode in a particular frequency band d~,
centered on frequency coo. It has some value
((B ) ISrr)dco/2'. This mode will have a single surface
in k space for which co(k)=coo. We study a differential
volume surrounding this surface, a volume contained
within the two surfaces defined by co(k) =coo —dco/2 and
co(k)=coo+dco/2. The energy density contained in this
differential volume must be equal to the energy density
contained in the interval des. Mathematically,

dS =

Perdue

t( stne

14'
wl l ~k~l

4J=4Jp +

A cd

2

FIG. 5. Elements of integration: (a) The differential surface
obtained from rotating a line element dl about the k, axis is
dS =2mdlk sin9. (b) The areas of the two rectangles are equal
for infinitesimal d8. Therefore, dl/)Vzco) =kd8/)Bqco) So, the.

differential volume

"="o dco dS 1—leo
Sn' 2n' (2n. )3

) Vkco)
(101) d V =dSdco/) V„co)=2nk'dco sin8 d8/) Bkco) .

where the integral is performed over the k surface given
by co(k) =coo.

In this cylindrically symmetric system, by Fig. S and
the accompanying caption we obtain

dS k sin6) d8

Substituting this into Eq. (101) and dividing common fac-
tors out of both sides of the equation gives

1 . k &B &a(e, )
d 8(sin8)

mo~e I )~1&~) S~ mode i

&B'&„

8m

T (co2 + II2)1/2
N

2m eQ
(106)

waves propagating at angles greater than some angle 80
always have frequencies smaller than some frequency coo.
In this case, if we wanted the fluctuation spectrum for
co =coo, we could integrate only from 8=0 to 8=80.)

We write down (B ) /Sn for the compressional
Alfven node by making use of its dispersion relations,
Eqs. (93) and (94) and Eq. (104). In the range of frequen-
cies corresponding to small k,

Combining this with Eq. (7S), we see

(103)
In the range of frequencies corresponding to high k,

&B'& T co

Sn 2n c (Q2 —co2)3/2
(107)

(B') 1 I . Tk(, 8)
move i move I

Id8(sin8)k, d, ;(co,8) . (104)

In a similar way, the perpendicular electric-6eld power
spectrum can be shown to be

J d8(sin8)k, d, , (co, 8) .
mode

' 47TC
(105)

(The integral is not necessarily performed over the full
range 0 0 ~. For instance, it might turn out that

for the electron-positron case. Once again, in order to
avoid a divergence (B ) at co=Q, we need to use a
cutoff in k.

For co identically zero, the magnetic fluctuation energy
is zero. However, there is a finite amount of energy den-
sity per frequency in low frequencies and, if we are
justified in considering 0 a low frequency, then me have
an infinite amount of low-frequency energy. Once again,
we have run into a divergence problem. (B )„/Sn will
diverge at co=Q. This is similar to the divergence in Eq.
(22), though the degree of divergence in Eq. (110) is
stronger. We mill naively handle this problem by, again,
introducing a cutofF' in k. To estimate the total energy
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contained in shear Alfven waves, Agim and Prager [14]
used a cutoff of k,„t=Q;/Uz =co;/c in an electron-ion
plasma, where co, is the ion plasma frequency.

We consider (B ) /Sir of the shear Alfven mode. The
directional dependence of the dispersion relation makes
the calculation of (B ) /Sm. a bit more difficult. In par-
ticular, we cannot divide up the frequency range into
low-k and high-k ranges. For instance, looking at Eqs.
(97) and (98), we can see that co can become zero, no
matter how large or small k is. Ho~ever, in the case
where co «co, the dispersion relation Eq (98.) can take
the place of Eq. (97) at low k without too great a loss of
accuracy. We find (B )„/Sn. by substituting k(co, 8)
from Eq. (98) into Eq (104.). The result is

T ~p 1
(108)

Sir 2ir c N (ii —~ /Q2)

2 2 2Qc k,„,
Q2 (scut 2 2 2

~

COP +C kcut
(109)

As long as co is slightly less than Qcos8 for the shear
Alfven wave and lower than the lower hybrid frequency
for the compressional wave, this divergence does not
arise. In this sense, the choice of k,„, is not sensitive to
the divergence. The choice of k,„, may be made on vari-
ous considerations which have not been mentioned in this
simple treatment. These considerations may include
finite Larmor radius effects, kinetic effects, the discrete-
ness of plasma particles, and quantum effects.

As for the shear Alfven wave, its directional depen-
dence makes calculations more complicated once again,
but it is still tractable. The dispersion relation, Eq. (98),
indicates that, given a value of co, a cutoff in k implies a
cutoff in 6:

2+C2
cos 0)cos Op=co

Q2 2I 2
(110)

This means we need to change the lower limit of integra-
tion in Eq. (108) to cos80. We then find

where u is a dummy variable which represented cos0 in
the d8 integral of Eq. (104). There is actually an infinite
amount of energy at low frequencies. (B ) /Sndiverg. es
at all frequencies less than co.

Let us compare (B ) /Sn. of the two Alfven waves
and the zero-frequency mode. First of all, they all have
the same divergence problem, in differing degrees of
severity. Secondly, they all scale by the factor (co~/c) .
It may be said that the imposed magnetic field creates
Alfven waves by taking energy out of a small frequency
range enclosing co=0 and spreading it over a frequency
range extending from co =0 to cu=Q.

The effects of imposing a cutoff magnitude in wave vec-
tor k,„, are considered. We begin with the compressional
Alfven mode. From the dispersion relation, Eq. (94), we
see that a cutoff in wave-vector magnitude implies a
cutoff in frequency:

8m.

(~'+c'k' )'"
P P cut

4~ coc COP

1

(1—co /0 )'

The maximum value of co occurs at k =k,„, and 8=0; it
is the same as the cutoff frequency of the compressional
Alfven wave. Therefore, once again, we have headed ofF
the divergence.

We now ask how much energy density is contained in
the Alfven modes. We answer by taking the expressions
for (B )z/Sn. of each mode, adding them together, in-

tegrating the sum over d k, and dividing by (2m) . The
result is

(B2)0 k dik
4m.k

(217) co +c k
P

(112)

We stress that the introduction of a cutoff in k in a mag-
netized plasma needs further investigation.

In this section we have found, first of all, that the
zero-frequency mode, derived from an equation of motion
for a nonmagnetized plasma, is consistent with the limit
Bp~O for a plasma with an imposed uniform magnetic
field. We have found that the zero-frequency mode is a
composite of compressional and shear Alfven waves,
along with cyclotron waves at higher frequencies. When
an external magnetic field is imposed on the plasma, how-
ever, the energy which was stored in co=0 in the non-
magnetized plasma is spread out in a range of frequency
up to the cyclotron frequency. But in a progressively
weak enough magnetic field, this spread will be corre-
spondingly small compared to the other relevant frequen-
cies.

The fluctuations associated with the cyclotron waves
are reminiscent of the Bernstein wave paradox: In a plas-
ma with an imposed magnetic field, the Bernstein wave is
not damped. This is true no matter how small Bp may be.
But then where does Landau damping come from in the
limit Bp~0? The resolution of this problem is that, as
Bp~0 in a thermal plasma, more cyclotron resonances
become important. The effects of these resonances are
added to the particle orbit; the net efFect is a damping of
the particle motion. This damping reduces to Landau
damping when BO~O I15,16]. Dealing with frequencies
near the cyclotron resonance, then, may require account-
ing for subtle effects which we have not taken into ac-
count.

We briefly consider the magnetic-energy spectra of an
electron-ion plasma. From Eq. (78) we can obtain numer-
ical results for the spectra and make some valid qualita-
tive comparisons to the electron-positron plasma.

The cold electron-ion plasma has five propagating elec-
tromagnetic modes. The dispersion relations of these
modes, propagating at various angles with respect to Bp,
are shown in Fig. 6. These plots were obtained by mak-
ing contour plots of the determinant of the dielectric-
permittivity tensor, which we last saw explicitly in Eq.
(62), and removing the contours of all values of
det(A)%0.
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In Fig. 6 are plotted the wave-vector Quctuation spec-
tra of the magnetic field, (B )i, /8m. , for each of the five
modes of the electron-ion plasma. The spectrum of each
mode has been calculated by numerically approximating
Eq. (78). Note that for all values of k, the total magnetic
Quctuation energy summed over all modes is equal to T.
Since both independent polarizations of the magnetic
field are included in this sum, this is consistent with the
equipartition law.

Note that the two branches of the dispersion relation
associated with the Alfven waves have spectra qualita-

tively similar to those of the Alfven branches of the
electron-positron plasma. In the low-k limit, it is easy to
show that the spectra are independent of the magnetic-
field strength. The low-k dispersion relation for the
compressional Alfven wave is

CO
1

c k (113)
4'lTn pc1+

8p
where no is the plasma mass density. Equation (78) tells
us that

8~ 2
(114)

5.0 0.6 The proof is the same for the shear Alfven mode, for
which the dispersion relation is
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We see, then, that both Alfven waves in the electron-ion
plasma carry energy, even if the strength of the imposed
magnetic field is brought down to zero. We can see from
Eqs. (113)and (115) that, if Bo =0, the frequency of these
modes is zero for all k. An isotropic electron-ion plasma
will have a finite amount of magnetic-field energy in a
narrow frequency band surrounding co=0.

Phenomenological wave-number cutoffs can be given
for the Alfven modes in a weakly magnetized plasma. As
stated above, Agim and Prager [14] used a cutoff of
k =co;/c when calculating the energy contained in shear
Alfven waves. The compressional Alfven waves, on the
other hand, exist in the frequency range of co=0 to
co ~co&H, where ~„„is the lower hybrid frequency given
by

1 1

2 2 2+
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I.P O. I

p~
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FIG. 6. Dispersion relations and magnetic-field fluctuation
strengths for the modes of the electron-ion plasma in a uniform
magnetic field. Roman numerals label modes in order of in-
creasing frequency. 8 indicates angle between imposed magnet-
ic field and angle of propagation. Note that the lowest-
frequency branch (the shear Alfven branch) is not plotted in d &,

since its frequency is identically zero when propagating perpen-
dicularly to the magnetic field. However, as shown in d~, it re-
tains a finite amount of energy. Close to co=0, the power spec-
tra of modes I and II should be regarded as qualitatively, not
quantitatively, correct because of limitations in our numerical
analysis.

and co„and co„are the ion and electron cyclotron fre-

quencies, respectively [13]. In a weakly magnetized plas-
ma, coLH=+co„co„. The dispersion relation of these
waves is co =v A k. Therefore, we choose k,„, so that

CO; CO Ct)&

C CvA

Our cutoff value for the nonmagnetized plasma seems to
be a good choice for the compressional waves of the
weakly magnetized plasma.

V. KINETIC- THEORETIC ANALYSIS

Up to this point, we have derived all our results on
Quctuations from a simple model with equations of
motion describing a cold Quid plasma with a constant col-
lision frequency. This model is good for studying, for ex-
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ample, propagating waves whose electromagnetic fields
are largely transverse. Such waves have phase velocities
usually exceeding the speed of light; therefore, such
thermal effects as Landau damping have no effect on
them. But, when we deal with low frequencies, that is,
when we study frequency and wave-vector regimes where
cu/k is less than or close to the thermal speed of the plas-
ma constituents, we ignore kinetic effects at our peril. It
is incumbent on us to attempt a kinetic-theory treatment
of low-frequency magnetic-field fluctuations. We will find
that a kinetic-theory treatment of the problem returns re-
sults which agree qualitatively with what we found in
Sec. III.

We assume a homogeneous, isotropic, nonmagnetized
hydrogen plasma. We take the electrons and ions to be in
equilibrium with one another, having Maxwellian veloci-
ty distributions with a temperature T. In this case, the
transverse part of the dielectric permittivity is given by

' 1/2
CO

2

pe e
—mu /2T

L CO+ kU

we can write this as

2I 2

A(co, k) =1-
CO

2 1/2 2
2COpe ~ COpe+i — a
Uzkz 2 v cok

(119)

where a = 1+3/m /M.
It is still true that, in the limit R~O,

(B') z ~
i'fd 2T C k

8m' CO

(120)

(
2k2 2k4 2 2 2/ 2)2+ 2 4 2k2/u2

pe e 2 pe e

(121)

(The factor of 2 is included to account for both B-field
polarizations. ) From Eq. (119), Im(A ') is readily found
to be

Im(A ')

—(77/2) izcu3 ~ k /u

1/2
CO

—MU /2T2

pi e

L CO+ kV
(117)

Therefore, from Eqs. (120) and (121),

(—Ue~ VI

where u, =&T/m and u, =&T/M. In this regime, we

can approximate A by
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(118)
Ul COk

Since

where m is the electron mass and M is the hydrogen ion
mass. The subscript "L"attached to each integral sign is
meant to specify the contour taken in each integral,
namely, each integral is performed over the Landau con-
tour [16]. A problem with this treatment should be men-

tioned here. We are using straight-line particle orbits to
calculate the dielectric function. However, we will be ap-
plying our results to frequencies below typical collision
frequencies of a plasma, where the straight-line approxi-
mation no longer holds. A thoroughly rigorous treat-
ment here would include some consideration of particle
collisions. This topic is deferred to future investigation.

As indicated above, we are interested in fluctuations at
frequencies and wave vectors in the regime

1/2

2 —"
aCO,2,Czk'/U,

2

(cu2k2 c2k4 2cu2 ~2/u2)2+ & ~2~4 ~2k2/u2
pe e 2 pe e

(122)

Here we see qualitative confirmation of our earlier re-
sults: (B )i,„/Srr has a finite maximum at Co=0 as long
as k (2'~, /u, . True enough, (B )z„/Sn. had a max-
imum at co=0 in the cold plasma, regardless of the size of
k. However, this restriction on k is a very loose restric-
tion: The value of k at which (B )„„/Sn no longer has a
zero-frequency maximum is several times larger than the
wave-number cutoff we chose in Sec. III. The kinetic
plasma effect smears out, but does not destroy, the zero-
frequency fluctuations we found in the cold-plasma
theory. There is another similarity between the spectrum
we have found here and that which we found for the cold
plasma, namely, the problem that, if we integrate
(B )i, /Sm over d k to get (B )„/Sm, the integral
diverges at high k. (The situation has improved a bit.
The divergence here is logarithmic, whereas the diver-
gence we faced with the cold plasma was linear. )

We examine the low-frequency behavior of (B ) /Sn
If we ignore terms in the denominator of (B )z /Sm

which are of order co, we can approximate (B ) k /Sm. as

2( /2) 1 f2 2 2k 3/

c4k6+4co2 coze 2k2yv2 2c.zcozk4+ ~2co4 co2/'Uz
pe e pe e

(123)
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Normalizing frequencies by ~, and wave numbers by
co, /c, we rewrite this as

2(ir/2)' ax /P,

~Pe x 6+4 ~2 2/P2 2 i2 4+ r 2 i2/P2
e

(124)
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8m 2

~pe
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where x and ru' have the same meanings as in Sec. III and

p, =v, lc. Note that (8 )z /Sn scales as T/cop, . To
find (8 )„/Sn, we integrate this expression over d k and
divide by (2ir) . This integral can be carried out exactly,
as shown in Appendix B. As stated above, we must im-
pose a wave-number cutoff on the integral. As in Sec. III,
the cutoff will come sooner or later through the
quantum-mechanical effect, which will be discussed in
more detail in Sec. VII. In deriving the results of Fig. 7,
we have used the same cutoff as in the previous sections,
namely, co /c. This does not cause any inconsistency as
long as co/co (v;/c. (8 ) /Sa/(Tco, /c ) of plasmas
at temperatures of 10, 10, and 10 K are shown in Fig 7.
(8 )„/Sn scales as cop/c, so the Fig. 7 results are in-
dependent of plasma density. Also, for co)0.01Xco „
(8 )„/Sn exhibits an co behavior, whereas for very
small frequencies, it diverges more slowly, growing ap-
proximately as co

We can obtain an expression for (8 )&/Sir by in-

tegrating (8 )~ /Sn over dao and dividing by 2n Con-.
sidering that the contribution to the integral from high co

is ignorable, we integrate over all co. When k ~cop, /c,
the result is

The cold-plasma approximation should still hold rath-
er well for the electromagnetic plasma wave. As we go
through our standard calculations, we find that its
magnetic-Geld energy density per wave-vector volume
closely approximates what we found in Sec. III.
Specifically, (8 )z/Sm of the propagating electromagnet-
ic plasma wave is very close to

'k'"=T ''
(126)

c k +cop

We obtain the total (82)i, /Sm by adding this to the
zero-frequency spectrum given in Eq. (125). We find that
(8 )&/Sm. is generally not equal to T.

Two points should be considered here. First, at k =0,
(8 )z/Sn. , as given by Eq. (125), is exactly equal to T.
Second, the deviation from T is very small for small k.
At small k, Eq. (125) is approximately

(8')„=T 1—
8m

4c k
2 27Ta cope

(127)

At small k, this is approximately

c'k'
'

=T 1—
SENT Qjp

(128)

The leading terms in these two expansions are certainly
of the same order of magnitude. They differ by a ratio of
essentially 4/m in a hydrogen plasma and by a ratio of
2/n. in an electron-positron plasma. This small deviation
may arise from the expansion of the plasma dispersion
function in Eq. (118). However, it would seem that there
is no problem with the fundamental physics here. The
zero-frequency peak does exist. The problem is that, in
regimes where co is larger than the thermal velocity times
k, the value of the peak falls off faster than predicted by
the hot-plasma approximation which we used to obtain
Eq. (118). When we integrated over co to obtain Eq.
(125), the high-co contribution was not quite "ignorable
enough. "

In any event, (8 )z/Sm. in the zero-frequency peak is
on the order of T for small enough k. A rough approxi-
mation of the total-energy density contained in this peak
is then T times the k-space volume contained within
k =co /c, divided by (2ir), yielding, once again,

3
(82)0

8m 6~2 c
(129)

The spectrum we might have expected to find in place of
that given by Eq. (125) is

(8 ) /8~=7'~ /(c

IO4
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FIG. 7. Kinetic-theory results for magnetic-field fluctuation
frequency power spectra of thermal plasmas. Shown are results
for electron-ion plasmas at temperatures T=10', 10, and 10
K.

VI. PARTICLE SIMULATION

We look for our low-frequency magnetic-field Auctua-
tions in kinetic computer simulations of plasmas. We dis-
cuss the results of these simulations in this section.

Earlier, Geary et al. [7] discussed the low-frequency
magnetic-field fiuctuations in numerical plasma simula-
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tions. The authors of [7] developed a magnetoinductive
code to examine low-frequency behavior in magnetized
plasmas. They took as their starting point the Darwin
approximation to Maxwell's equations, i.e., they dropped
the displacement current from the VXB equation. They
then made use of the fluctuation-dissipation theorem to
derive the magnetic-field fluctuation spectrum
(B )&/8m. . The fiuctuation spectrum (B )j, /8m. which
they found for electromagnetic waves propagating per-
pendicularly to their imposed magnetic field Bo are exact-
ly the same as our low-frequency result in our Eq. (58). A
comparison of fluctuation spectra for waves in other
directions is not useful because the present plasma is non-
magnetized, while that in Geary et al. was magnetized,
and the electron motion was treated by the guiding-
center approximation.

We have carried out particle simulations of thermal
equilibrium plasmas employing both one-dimensional
(1D) and two-dimensional (2D) fully electromagnetic, ful-

ly relativistic particle simulation codes (see, for example,
[17]). We have recorded the magnetic-field frequency
spectra arising from these simulations. The particles
were given initial uniform distributions in space, and
Maxwellian velocity distributions. In all cases the com-
putational space boundary conditions were periodic. We
ran the simulations for several thousand time steps; at
each time step we stored the series of spatial Fourier
components of the z component of the magnetic field, i.e.,
B,(k, t). At the end of the simulation run, the B, Fourier
components were input into an autocorrelation function,
whose frequency spectrum yields the spectral intensity

B,(k, co). Lastly, the B,(k, oe) were summed over k to
give B,(m).

In the (1D) simulations, we used the following parame-
ters: the number of cells, L =256; electrons and posi-
trons per cell are 10 each; ht =0.1/co „number of time

steps, N, =2048; and speed of light, c = 5b,co~„where 5 is

the grid spacing. Simulation runs were made with three
different temperatures: y,„„=1.05, 1.22, and 34.7 (cor-
responding to T- 3 X 10, 1.3 X 10, and 2 X 10" K),
where y,h„ is the relativistic factor corresponding to the
thermal velocity of the plasma. To test the performance
of these codes, we examined the dispersion relation pro-
duced for B, for electromagnetic waves in a plasma and
compared it with the standard result

2

Ytherm

where

co~c=4nne /. m, +4nne /m; .

The dispersion relation comparisons were excellent. We
also examined B, fluctuation strengths as functions of
wave vector, i.e., B,(k). The fluctuation strengths com-
pared fairly well with theory [Eq. (58)].

The results of the B,(ro) measurements are shown in

Figs. 8—10. In each of these three cases, a strong B, fluc-
tuation peak is seen at co=0. In Fig. 8 the 2X10" K re-
sult is shown, while Fig. 9 shows the 10 K result and
Fig. 10 shows the 3 X 10 K case.

We made an additional test on the 1D code by running
the nonrelativistic (y,h,„=1.05) simulation for twice as

long, i.e., 4096 time steps. Again, the co=0 peak ap-
peared in the B, (cu) spectrum and its width did not
change from the width it had in the N, =2048 time-step
simulation. This indicates that the presence of the peak
is not due to the finite window width in the correlation
function restricted by the length of the run (i.e., not the
Nyquist frequency width b,co= 1/b, t), but is rather due to
the intrinsic physics. In fact, traditionally, such a zero-
frequency peak has been observed routinely in particle
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FIG. 8. Spectral intensities S(co)=(B~)„/8n and S(k)=(B')„/8m from a 1D simulation of an electron-positron plasma.

y, „h=3 . 4(T7=2 1X0" K). (a) ln[S(co)/S]. Note the peak at co=0, where S is the normalization. (b) ln[S(k)/To]. The line is

from simulation results. The dots represent theoretical values: 6.7—1n[1+c (y/co~)k'e" ' ], where 6.7 is obtained from least-

squares fitting. k =2@m /L 5 with m being an integer. The finite-size effect of the code is taken into consideration.
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FIG. 9. Spectral intensities S(ei) and $(ki=(B')z/8ir from a 1D e -e simulation. y,„„=1.2(T=1.3X1 09K). (a) 1nS(ei)/S.
Note the zero-frequency peak. (b) lnS{k)/To. The solid Hne is from simulation results. Dots represent theoretical values:
—0.21 —1n[1+c~(y/ei~~)k~e" ' ], where —0.21 is obtained from least-squares fitting.

simulation, but has not been we11 understood in its origin.
In the 2D simulation, the parameters were the follow-

ing: computational area, 32X32 cells; 9e +9e+ per
cell; ht =0. I /co, ; N, =2048; and y,h,~= 1.05. Again, a
strong 8, fluctuation peak is seen at co=0. The 2D re-
sults, together with the results of the 1D run of the same
temperature, are shown in Fig. 10.

Our simulation results for the magnetic-field wave-
number spectral intensity S(k) follow I/(ai~+c k ) [the
second term in Eq. (58)] more closely than our low-wave-
number expansion [Eq. (59)]. See the frames (b) of Figs.
8, 9, and 10. This is explained by the conditions of the
simulation. First of all, the grid nature of the simulation
puts a cap on the maximuin k at n. /b, . Second, as can be

seen from our derivation of S(k), the first term in Eq.
(42) comes from the energy contained in the radiation.
The results shown were obtained by summing S(k,oi)
over frequencies ranging from 0 to +5' —I /ht, the Ny-
quist frequency. When the wave frequency of a given
mode is higher than this range, the high-frequency energy
of the radiation mode will not enter into the sum. These
reduction factors of the radiation branch, plus sharing of
energy between nonradiative modes, account for the
closer agreement with the expression with only the
second term in Eq. (58) rather than Eq. (59) in our simu-
lation. After we take these factors into consideration, the
agreement between our kinetic simulation and the theory
is good.
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FIG. 10. Spectral intensities $(co) and S(k)=(Bi)„/8m from a 2D e+-e simulation. y,„, =1.0 (T5=3 l XKO). (a) 1n

S(co)/S. The zero-frequency peak is still present in 2D. (b) lnS(k)/So. The line is from simulation results. Dots represent
k2a2—2.6—1n[1+c (y/ei~)k e" ' ], where —2.6 was obtained from least-squares fitting.
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VII. INTERACTION BETWEEN PLASMA PARTICLES
AND ELECTROMAGNETIC WAVES

WITH HIGH MOMENTA

We have deferred a definitive resolution of the treat-
ment of high wave numbers in the integral in Eq. (46). In
Secs. III, IV, and V, we phenornenologically introduced a
cutoff wave number in k space. Without this cutoff, we
obtain an infinity of energy in the magnetic-field power
spectrum at co=0. Such high-k divergences are a com-
rnon problem with Quid theories which take no account
of the granularity of a Quid at some scale. In this section
we offer quantum-mechanical justification for the intro-
duction of a cutoff by showing qualitatively the handling
of this problem.

The longitudinal dielectric function of a plasma, calcu-
lated from kinetic theory based on classical mechanics, is

section will be applicable to the transverse dielectric
function as well. ) If fo (v ) is a Maxwellian, the result is

E))(k, co }= 1+ g W
kDj co

'

kUfpj
(131)

where kD is the Debye wave number of the species j and
u, k is the thermal velocity of the species j. W(z) is the

plasma dispersion function.
Equation (129) is, however, a classical approximation

to a quantum-mechanical expression, when the photon
momentum transfer Ak is small. When we treat the plas-
ma quantum mechanically, the derivative term k c}„f0(v)
is replaced by a difference in fo, and the k v term in the
denominator is replaced by a difference in energies of
momentum states:

ci)', , k c}„fo,(v)
s)l(k, co)=1++

2 f d u

J
(130) k c}„f(v) —[f (p+fik/2) —f (p —haik/2}], (132)

where the index j indicates species of the plasma constit-
uents and fo (v) is the unperturbed velocity distribution
function of species j. (The end results we obtain in this

k v~ —[e(p+irik/2) —e(p —i)ik/2) ],1

yielding

(133)

cu d3~ fo(p+()ik/2) —f()(p —))ik/2)
e (k, cu)=1+ g A(co+i i}) [e(p+)—rik/2) —e(p —(rik/2) ]

(134)

If the plasma particles are free-particle fermions,

f (p)(P(p /2m —p)+1)—)

with P = 1/T, and )M is the chemical potential. This means

d 3+ (
P(p+A'k/2) /2m —)3@+1 )

—)
( P(p —sk/2) /2m —Pp+ 1)

—)

e (k, cc) ) = 1+ g @~+ii) ) [e(p+ &k/2) ~(pJ

If (i)ik) /2m ))ki) T, we can approximate this expression by

co j 2 d e
—p(p+Rk/2) /2m —pp e

—p(p —A'k/2) /2m —pp
& (k ~) 1+ y PJ e P(A'k) /2m P-

CO fi(cu+ii}) [e(p+)rik/—2) —e(p —A'k/2) ]

(135)

(136}

(137)

For very large k, therefore, e))(k, cu) falls off exponentially
—P1II k /2m

When (()i'k) /2m ))T, the second term in our expres-
sion for e))(k, co} becomes very small. This happens be-
cause the functions fo(p+)rik/2) and f()(p —)rik/2) are
never sizeable in the same region of p space. The terms
containing these two functions will independently in-
tegrate to give very small numbers. This being the case,
the effect the plasma has on the electromagnetic spec-
trum is, indeed, negligible at high enough k.

VIII. THE BOHR- van LEEUWEN THEOREM

Those readers familiar with the Bohr —van Leeuwen
theorem might object that, when a permanent magnetic
moment exists, it is always a quantum-mechanical effect.
In 1911, Niels Bohr [18] demonstrated that a strict,
rigorous application of statistical mechanics ruled out the (138)

possibility of macroscopic magnetization in classical
physical systems. This result, among others, was in-

dependently discovered by van Leeuwen and presented in
her dissertation in 1919 [19]. We consider here the ap-
parent contradiction between the Bohr —van Leeuwen
theorem and the present theory after giving a short re-
view of the theorem. We give a proof of this which close-
ly follows one given by van Vleck [20]. His proof, in

turn, is based on that given by van Leeuwen.
We wish to calculate the magnetization of a macro-

scopic body. Suppose that it is made up of molecules,
perhaps possessing permanent or induced magnetic di-

pole moments. From a classical viewpoint, the magnetic
moment of one of the molecules is e /2m, c times the total
angular momentum of the electrons orbiting the mole-
cule. The z component of the magnetic moment is

e
m, = g (x,y,

—y;x;) .
2c



46 LOW-FREQUENCY FLUCTUATIONS IN PLASMA MAGNETIC FIELDS 3435

We can write this more generally, thereby economizing
on notation and showing the power of the theorem more
fully.

m = Qakqk
k

(139)

where the qk's can be a set of generalized coordinates
describing the system (in this case, the positions of a
molecule's electrons), the qk's are the corresponding gen-
eralized velocities, and the ak's are functions of the qk's
but not of the qk's.

Magnetization is found by taking an ensemble average
of this magnetic moment:

f gakqke ~"
dq& dpt

(140)f tt zkrd—M, =N

where N is the average molecular density, T is the tem-
perature, and H=H({q], {p])is the Hamiltonian of the
system.

We note that qk
=BH /Bpk and obtain

fyak e '" gdq;gdp;
a

k Pk
M, = —NkT

fe "gdq;gdp;
(141)

fy(a, e ~'"'),„"= gdq; g dp;
k i (Wk)

f -"'"'n",n",

(
H/kT)t k ()—

&k
(143)

The magnetization is therefore identically zero.
The result is the same for a plasma. We pick some

point which is stationary with respect to the center of
mass of the plasma. We find the magnetic moment about
this point,

m= g (x, Xp, ),
2cm;

(144)

(142)
We make the reasonable assumption that if any one of

the pk approaches + ao, then H ( I q ], {p ] ) becomes
infinite. This being the case, we find

where the sum extends over all charges in the plasma.
We find magnetization by taking an ensemble average of
this sum. The argument proceeds exactly as above and
we find that the magnetization is, again, zero.

The question we address is whether this result contra-
dicts the zero-frequency (i.e., permanent) magnetic fields
we have found in plasmas or not. The answer is that it
does not. The contradiction is only apparent. Van
Leeuwen's proof deals with the ensemble average of the
magnetic moment m. This average is zero. However, the
theorem says nothing about fluctuations about this aver-
age. We take an ensemble of macroscopically identical
plasmas. We measure the magnetic field at some particu-
lar point in each plasma, and average the measurements.
We will, indeed, get a value of zero. However, in each
plasma, the magnetic field at the particular point we have
chosen will deviate from this zero average. What we
have found is that this deviation in each element of the
ensemble has, generally speaking, a time average different
from zero. This result is surprising, but is not in contrad-
iction with any well-established results of electromagne-
tism or statistical mechanics.

IX. FLUCTUATIONS IN DEGENERATE
ELECTRON PLASMAS

Our aim in this section is to obtain expressions for the
frequency spectra of electrical-current and magnetic-field
fluctuations in completely degenerate electron plasmas.
We take a simple model of the degenerate plasma: a
completely degenerate gas of fermionic electrons in a uni-
form background of neutralizing positive charge. When
the degeneracy is nearly complete, the Fermi distribution
can be taken at its T =0 form for the purpose of comput-
ing the dielectric function, while this does not imply that
the temperature or its associated fluctuations vanish. In
this model, the wave functions of the electrons are simple
plane waves, rather than the more complicated (and more
realistic) Bloch functions associated with a periodic lat-
tice. We can at least expect that our results hold for me-
tallic crystals with a small number of conduction elec-
trons filling the lowest portion of a single conduction
band, where the electron Hamiltonian approximates that
of a free particle.

Given this model of the degenerate electron gas, the
longitudinal dielectric function is [21]

2
3 ~pe 1 1

eI(co, k) = 1+— 1+
q2 2q

1 Q
1 ——

q
——

4 q

Iq(q+2) —ul 1 1

Iq(q 2) ul 2q 4 q

Iq(q+2)+ul
Iq(q —2)+ul

u, 0&u &q(2 —q)
'2

qlq —2l &u &q(q+2)
2

3m ~pe 1 1 QeI'(co, k) = 1 ——
q
——

16 E q 4 q

0, 0&u &q(q —2), u )q(q+2),

(145)

where et =Re{ ]aentd eI'=Im{et j, q is k/pF, u is lcol/Ez, pz is the Fermi momentum and EF is the Fermi energy. In
this section, we set rrr = 1. The regions in k-to space in which eI' is nonzero are shown in Fig. 11(a).



3436 S. CABLE AND T. TAJIMA 46

The number-density fluctuation spectrum (5n )k is given by

k' 1(5n')„„=
2n-e' e ' —1 Ie, ~'

(146)

As we remarked above, the temperature T appears in the Bose-Einstein distribution, while it does not appear in e.
When T~O, the factor [exp(ei/T) —1] approaches —8( —co), e(x) being the Heaviside step function. The last fac-
tor in this expression is —Im[ 1/e]. It should be noted that this takes on nonzero values when (1) k and co lie within the
regions specified by Eq. (145) and (2) k and co satisfy the dispersion relation for the electrostatic plasma wave propagat-
ing through the degenerate plasma. The dispersion relation for the electrostatic plasma wave in the completely degen-
erate electron gas is [3]

k4
2 2 + 3k2U2+

Pe & F
4 24' (147)

where UF is the Fermi velocity of the degenerate gas.
The equation of charge continuity, together with Eq. (146), tells us that the longitudinal current fluctuations are given

by

2 It
ni 1

ego/T 1 /e /2
(148)

Figure 11(b) shows a contour plot of this function weighted by the geometrical factor 4mk . We find the frequency
spectrum of longitudinal current fluctuations (5jl ) by integrating this expression over k and dividing by (2n. ) . We
have performed this numerically. Figure 12 shows the result obtained when the plasmon energy divided by the Fermi
energy is 1.49. For very low frequencies, (5jl ) varies as ro . There is a kink in the spectrum at A'to=1. 49EF. This
corresponds to the appearance of the electrostatic plasma wave, which exists in the frequency range of u =1.49 to
u =2.3. Above u =2.3, (5j~~ ) rises approximately as co'

The transverse current fiuctuation spectrum in a completely degenerate electron plasma is derived from the trans-
verse part of the dielectric function [3]
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FIG. 11. Fluctuation power spectra of vari-
ous quantities in a degenerate plasma.
Plasmon energy divided by Fermi energy is
1.49. (a) Power spectrum of parallel current
fluctuations (g 1

)„(RIEF)(kiri/pF )'/2ir'.
Contours run from 0 to about 0.03. The con-
tours are highest at the top of the graph, and
at the "island" near (q, u)=(0.75,2.3). The
outside contour is close to zero. (b) Power
spectrum of transverse current fluctuations
(ji )i, (fi/EF')(kfi/pF )'/2n . Contours run

from 0 to 0.024. The contours are highest at
the top of the graph. The outside contour is
close to zero. (c) Power spectrum of
magnetic-field fluctuations ((B )„k /8ir)(iri/
2m, c) /2ir . The contour interval is 1X 10
Contours diverge at the origin. The outside
contour is close to zero. (d) Finite fluctuations
of nonpropagating electrostatic and elec-
tromagnetic modes can occur only in regions I
and II for a fully degenerate plasma.
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2
COpe

e, (co,k)=1-
CO

4me 1 2 (k p)
co m I' kP

1

co —Ez &+E +ro m —E —E q+so
(149)

where Vis the volume of the gas and n„ is the Fermionic occupation number of the state p:
—1

[( Ep P )IT]
n = eP- (150)

If the separation between the momenta of existing states hp is much smaller than the range of momenta of the occupied
states p, the summation can be approximated by an integral. The number Io is a small, positive imaginary number
which indicates the path of the integral in the complex p plane.

Since the electron wave functions are plane waves, the energy of state p, E~, is p /2m, . Assuming a large number of
electrons, with two electrons per p state, as allowed by the Pauli exclusion principle, we can approximate the summa-
tion here by an integration. If the boundary conditions on the gas are periodic, we find

2 2 2
'2 2

3 ~pe 1 q 3 u 1 1 u q(q+2)+u
e,'(co, k}=1—— 1+ +— + 1 ——q+ — ln

g2 4 4 q2 2q 4 q q(q —2)+u

1 1 u

2q 4 q
1 ——

q
——

'2 2

ln
q(q+2) —u

q(q —2) —u

z( —u+q ), 0&u &q(2 —q)
4q
2

2
3~ pe

2 — (u+q )—
16 E2 uq 4q2

2

16 EF2 + 2q 4q2
( —u+q )', q~q

—
2~ &u &q(q+2)

0, 0&u &q(q —2), u )q(q+2) .

(151)

The transverse current fluctuation spectrum is given by
T

C21—
CO

0

c k

CO

(152)

This function, weighted with 4mk, is plotted in contour
form in Fig. 11(c}. In analogy with the longitudinal case,

0. I6

1m[1/(e, —c k /co )] is a nonzero 5 function along the
dispersion relation curve of the propagating electromag-
netic wave. The dispersion relation is given, approxi-
mately, by

~2 ~2 +c 2k 2+ &

U 2k 2 c2k 2 ((~2
pe F pe

(153)
2

co =c k +co- 1+—1 ~F
cPe 5 2c pe

We find the frequency spectrum of the transverse current
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FIG. 12. Frequency power spectrum of fluctuations in longi-

tudinal current in degenerate electron plasma. The plasmon en-
ergy divided by the Fermi energy is 1.49.
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FIG. 13. Frequency power spectrum of fluctuations in trans-
verse current in degenerate electron plasma. The plasmon ener-

gy divided by the Fermi energy is 1.49.
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IO
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This function is shown in contour form, with geometrical
weighting of 4vrk, in Fig. 11(d). We obtain the frequen-
cy spectrum of the magnetic-field fluctuations
(B )1, /8m by integrating over k. Our numerical result
is shown in Fig. 14. Here we have a quantity whose spec-
trum clearly diverges at low frequencies. Note that for
co(10 (EF/A'), (B ) /8m. falls oF as cu '~, whereas
for co ) 10 (EF /R), it falls off as ro

X. CONSEQUENCES AND APPLICATIONS
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The present theory indicates that the amount of low-
frequency magnetic fluctuations in a plasma, Eq. (50), is
proportional to the temperature T and density of the
plasma to the three-halves power n . Thus, the higher
the density and/or temperature, the greater these fluctua-
tions are. More significant examples may be found,
therefore, in high-n and/or Tplas-mas. Three concrete
cases are discussed here.

FIG. 14. Frequency power spectrum of fluctuations in mag-

netic field in degenerate electron plasma. The plasmon energy
divided by the Fermi energy is 1.49.

(154)
2

CO

C
2

fluctuations (5jt )„by integrating over d k and dividing

by (2m ) . Our numerical result is shown in Fig. 13. The
plasmon energy divided by the Fermi energy is, again,
1.49. (5jt) does not exhibit a power-law behavior at
low frequencies. There is a kink in the spectrum at
~=EF/A. This is due to the difference in behavior of e't'

below and above the curve u =q (2—q). Above the kink,
the spectrum rises approximately as co

" . The contribu-
tion to the current fluctuation spectrum given by the
propagating electromagnetic wave is about 10 times
that of the spectrum contributed by the zero-sound noise;
therefore, it is not distinguishable in our figure.

The magnetic-field fluctuation spectrum is also studied.
Maxwell's equations yield

2~ k'
(

., )
8~ c

2 Jl kco

A. Electron density fluctuations in gaseous plasmas

In addition to calculating the magnetic-field spectrum,
we have elsewhere [22] calculated the longitudinal ion-
density fluctuation spectrum arising from ion acoustic
waves in a fluid plasma. We find a fluctuation spectrum
given by

e" —1 2me k

X
k

kD
co 1+

k
COp,

2

2

-2+g a 1+

where kD is the Debye wave number. This spectrum is
plotted as a function of frequency at k =0. lkD, for a hy-
drogen plasma of temperature T=100 eV and density
n =10' cm in Fig. 15(a). The spectrum peaks around
the ion acoustic frequency of the given wave number. It
should be noted that in an ion plasma, mass density is
nearly proportional to ion density; therefore, the ion-
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FIG. 15. Density fluctuation power spectra: (a) Ion fluctuation power spectrum (5n; )q as a function of frequency at k =O. 1kD.

(b) Electron-density fluctuation power spectrum after Zhang and DeSilva [23]. (5n, )q as a function of co at k =415 cm
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density spectrum automatically gives the mass-density
spectrum as well.

Zhang and DeSilva [23] have included more elaborate
dissipation effects by way of the Braginskii transport
equations (a set of two-fluid equations accounting for in-
terspecies and intraspecies collisions, electron and ion
thermal conductivity, electron and ion viscosity, and lon-
gitudinal electric fields). They have calculated and mea-
sured the low-frequency electron-density fluctuation spec-
trum in an Ar plasma. Figure 15(b) shows the result for
(5n, )i, as a function of frequency at k =415 cm
based on their theoretical treatment. The spectrum
shown has been generated using the transport coefBcients
for an Ar plasma that Zhang and DeSilva derived from
their experimental studies. In addition to the ion acous-
tic peak, there is a strong peak at co =0. Its existence was
confirmed experimentally by Zhang and DeSilva. Their
work shows that in a plasma where thermal conductivity
and viscosity are important, fluctuations can be sustained
in particle density as well as in magnetic field. In addi-
tion to Zhang and DeSilva's work, Stenzel's work on
magnetic fluctuations [24] may have bearing on the
present theory. He has experimentally found low-
frequency magnetic spectra in a nonmagnetized plasma
which may, upon further analysis, prove to be consistent
with the results presented here.

It may be of interest to measure particle transport in a
plasma sustaining such magnetic fluctuations. Trace par-
ticles may be followed in an experiment. Some theoreti-
cal treatment in such a direction has been laid out recent-
ly [25].

B. Cosmological consequences

We have discovered in the previous sections that elec-
tromagnetic waves in a plasma fall into two categories:
those with large wavelengths (k & co~, /c) and nearly zero
frequency (co«co~, ) and those with small wavelengths
(k »co, /c) and frequency greater than co, . Those
modes with k &

aiz
/c are not significantly modified by the

presence of the plasma ("hard photon"), while those with
k &co /c are significantly modified ("soft or plastic pho-
ton"} [9,10]. It is those plastic photons or their magnetic
fields that we are interested in, as they can have more
magnetic fields in nature and may have left possible
structural imprints on the primordial plasma. The
strength of magnetic fluctuations (B }„/8m., whose
wavelengths are longer than A, , is given by

(B )i/8n =(T/2)(4n /3)A,

For A, =2ncjcoz,

((B')~ )'"=1.4X10 ' [n/(10 cm )] [T/(10 K)]' 6
Ip

(155)

The electron magnetic energy (B ) contained in the
blackbody radiation is proportional to co and
(B~)bb o- T3 ~ a 3, where a is the scale factor of the ex-
panding Universe. On the other hand, the zero-
frequency magnetic fluctuation energy

(B')„,~rco3 /IJ, ~a

where p is the kinetic viscosity of the plasma. Thus the
ratio of the zero-frequency fluctuations to the blackbody
energy is proportional to a '. If we assume here that the
level of magnetic fields is determined by Eq. (50) at each
instance of time after co integration, the plasma P scales
as

P=nT/((B~)o /8n) ~n(c jco )3~a3n

(This is based on the instantaneous adjustment of the
magnetic fields to the level of thermal energy of the
Universe. } This implies that the earlier the epoch of the
Universe (small a), the greater is the relative importance
of magnetic fluctuations with respect to the particle pres-
sure. In fact, when t =1 s after the Big Bang, the amount
of magnetic fluctuations is so large that P is nearly of or-
der unity.

The significance of the presence of static (or nearly
zero-frequency) magnetic fields in the cosmological plas-
ma may be appreciated in the following. Two main
scenarios [26] have been considered for primordial fluc-
tuations: adiabatic fluctuations and isothermal fluctua-
tions. The adiabatic (or isentropic} fluctuations are like

I

those accompanied by ordinary sound waves. In such
fluctuations the density of matter [electrons, positrons,
and protons (and helium ions) for the case of the early ra-
diation epoch] is accompanied by that of photons.
Therefore, after electrons and positrons annihilate
around t =1 s, or after electrons and ions recombine
around t =10' s, the imprint of matter fluctuations
would remain in photon fluctuations as a fossil of the pri-
mordial plasma structure. Thus the background mi-
crowave spectra would show a certain fluctuation or an
anisotropy or inhomogeneity on top of the blackbody
spectra. This would be a contradiction to the latest ob-
servations by the cosmic-background explorer (COBE)
earth satellite, etc. [27,28]. On the other hand, imagine
that, as we have shown, there exist static magnetic fields
in the primordial plasma. Charged particles in the early
radiation epoch (t &1 s) or in the late radiation epoch
(t &10' s) readily respond to these magnetic fields.
Where stronger magnetic fields exist, there will be less
matter of charged particles, be it electron-positron-
proton or electron-proton plasma. The matter will be
distributed in such a way as to maintain the total matter
pressure and magnetic pressure constant in space. Now,
in addition, photons are present. Photons do couple
strongly with charged particles, but not as strongly as
static magnetic fields do with charged particles. Further-
more, photons are less strongly coupled with magnetic
fields. This should leave a landscape of fluctuations in
such a way that the sum of the magnetic and charged
particle pressure is constant in space, while the photon
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pressure remains nearly constant in space. Such fluctua-
tions are similar to the second category of isothermal
fluctuations [26] (but they can be isentropic at the same
time), as they are nearly frequencyless. This problem is
closely related to the question of structure formation ap-
parently without the so-called Sachs-Wolfe effect [29],
which is discussed in detail in Ref. [30].

C. Anomalous spin relaxation in condensed matter

Another example of high-n "plasma" is electrons or
other matter in a condensed state. When one tries to cool
a metal below tens of mK by the standard nuclear adia-
batic demagnetization cryostat technique, the spins of
metallic electrons are manipulated from the external
magnets. The standard Korringa theory [31] predicts
that the spin equilibration time ~ is inversely proportional
to the temperature T of electrons. However, experiments
[32] usually show an anomalous decrease in the product
T~. A similar phenomenon was first observed in the
spin-equilibration time anomaly in liquid He in the
superfluid phase by Avenel et al. [33]. Although this
anomaly is not well understood at present, it is typically
explained by resorting to impurity scattering. We sug-
gest that it may be possible to explain the phenomenon of
anomalously rapid relaxation as due to the magnetic fluc-
tuations spontaneously created in the condensed matter
due to the present mechanism as discussed in Sec. IV and
the interactions between these fields and particle spins.

In addition to these three examples, the present theory
may be found useful to tackle tough problems that have
resisted full resolution to date, such as the 1/f noise [34]
and the fluctuations in a (stable) nonuniform plasma (e.g. ,

a certain type of stellarator plasma).

Normalizing all frequencies by cop, gives

r2 I
'3

COp 'g COp~

27T

2'Aco

(A'co /T)co'
e

f
4

X dx 4 2, (A2)
o A'x +B'x +C'

x x

CO + 'g

To evaluate the remaining integral, we find the (often
complex) roots of the integrand's denominator:

—B+(B'—4AC)'"
x

2A
=ry

For the case r+Ar

1 ~ Bx /A +C/A
x +Bx /A +C/A

1 "c Bx +C
A 0 (x r+ )(x—r)—

Bx +C
(r+ r)(x r+—)—

where all primed quantities have been made dimension-
less by division by the appropriate power of co~, (e.g. ,
2)'=rt/co~, ), and x =ck/co, .

The first step to handling this integral is to rewrite it as

1 ~ Bx /A+C/A
x +Bx /A +C/A

The first integral gives
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APPENDIX A: EVALUATING
THK INTEGRAL OF KQ. (46)

The integral we need to evaluate is

Bx +C
(r —r+ )(x r)—

The full integral in (164) becomes

(A3)

xc 1
( C +Br+ ) — tan

1 1 x
A' + V' r+ (r+ —r) Q—r+—

1 (C+Br ) tan
1 1 ) ~c

A V —r r —r+ V r—
(A4)

It also shows the Lorentzian behavior of (B )„/8m near
co=0. Notice that when co becomes small, B and C both
vanish. Remembering that A =m' +q' and multiplying
by the leading factor we left behind in Eq. (A2), we find

where

2AQ) 2 2 P cut dk k
~0 (22r) Ac k +Bc k +CQGP c g 4K

(A 1)

&B').
8m

&2
2Am' ~p ~pe

(Ace /T)co' 2 2
e CO + 'g

(A5)

A co + 'g

B —2' (co& cd 'g )

—[(~2 2 )2+~2~2]~2

Notice that if g~O, this expression does not vanish.
Rather, it becomes a Dirac 5 function.

For the exceptional case, r+ =r =r, we write the in-

tegral as
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x 1 ~ Bx +CxA' o (
' —)'

The integrals left to do are

which leads to

f "c du u

u +pu +qu +r (B2)

C x &r —x,
dx = + ln

A o 2A r x, —r 4A r&r &r+x,
(A6)

X &r —x,
dx = + ln

o 2Az x2 —
p 4Azgr v p +x

When r+ =r, it is true that B =4AC and r = B/2—A.
The full integral is, then,

~ dtl u

o 2 (u —a)(u —b)(u —c)

The integrand can be rewritten

(B3)

We can find the (usually complex) roots a, b, and c of the
integrand's denominator. Since the only negative term in
the denominator is vanishingly small in our region of in-
terest, the roots will all be distinct. So we rewrite the in-
tegral as

x B x~ 3B V r xq+ ln
4A x r—SA ~r Vr+x,

APPENDIX B: EVALUATING
THE INTEGRAL OF EQ. (124)

Here we need to do an integral of the form

X x5
dx

x +px +qx +r
We first make a change of variable:

u =x', dx =du i(2u '"),

(A7)

(Bl)

a b2

(a —b)(a —c)(u —a) (b c)(b——a)(u b)—
2

+
(c —a)(c —b)(u —c)

(B4)

1 Q X
iniu —a io'+(a ~b —+c ~a )

2 (a b)(a ——c)

+(a ~b ~c~a ) . (B5)

Each of these terms integrates to give a natural loga-
rithm. The integral is given by
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