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Three-dimensional ballistic deposition at oblique incidence
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A simple lattice model has been used to investigate (2+1)-dimensional ballistic deposition for angles

of incidence L9 in the range 0' 8 & 90. In the oblique-incidence limit (8~90 ) a pattern of overlapping

scales inclined at an angle of about 37.5 is formed. The individual scales can be characterized in terms

of their characteristic length, width, and thickness which grow algebraically with increasing scale size.
All of the scaling exponents characterizing the growing surface can be obtained from exponents o„=1/3
and 0» =2/3 that describe the growth of the correlation lengths („andg» parallel and perpendicular to
the plane of incidence. The scaling properties of the columnar patterns can be understood in terms of
the (1+1)-dimensional dynamics of the leading edges of the advancing scales. An anisotropic generali-

zation of the finite-size scaling form of Family and Vicsek [J. Phys. A 18, L75 (1985)] is proposed and its

validity is demonstrated for ballistic deposition at near-grazing incidence.

PACS number(s): 81.15.Ef, 05.40.+j, 68.55.Jk, 68.35.Bs

I. INTRODUCTION

The formation of random rough surfaces under both
equilibrium and nonequilibrium conditions has been an
area of considerable scientific interest for several decades.
In recent years this interest has intensified with the reali-
zation that rough surfaces formed under a broad range of
conditions exhibit a variety of fractal [1] scaling proper-
ties. Interest has also been stimulated by substantial pro-
gress towards a theoretical understanding of the growth
of rough surfaces under nonequilibrium conditions.
Much of this progress is described in a recent review [2]
but this is a rapidly developing area.

Computer simulations have played an important role
at all stages of development. Void [3—5] pioneered the
application of simple ballistic deposition models in which
particles are added, one at a time, to a growing deposit
via linear or ballistic trajectories to study sedimentation
processes. During the 1970s several simple ballistic depo-
sition models were developed [6—9] to obtain a better un-

derstanding of vapor deposition onto cold substrates. A
variety of experimental studies [10—14] showed that as
the angle of incidence (8) was changed from 0' (normal
incidence) to =90 (grazing incidence) the deposit struc-
ture changed from a porous structure that is uniform on
a11 but very small length scales to a "columnar" structure
in which the columns are well separated and have a
characteristic angle of inclination P that is different from
0.

More recently interest has become focused on the
universal affine scaling structure of surfaces generated by
the ballistic deposition model, the Eden model [15],and a
variety of related nonequilibrium growth models [16]. In
the standard models the surface is smooth at the start of
a simulation (time t =0). Under these circumstances the
evolution of the surface can be described in terms of the

correlation lengths g~ and gl that characterize the magni-
tude of the surface roughness and the lateral distance
over which correlations in the surface height fluctuations
persist. These correlations grow algebraically with in-
creasing time or deposit thickness

(la)

(lb)

On length scales shorter than these correlation lengths
(but larger than the particle size or lattice unit used in the
simulations) these rough surfaces can be described as
self-affine fractals [1,17] and the correlation lengths are
related by

(2)

(3)

where h is the mean surface height and h, is the height of
the surface in the ith column of the lattice. The depen-
dence of the surface width on L and h can be summarized
by the simple scaling form [18]

$(L, h ) =L &f (h /L'), (4)

where f (x) has a constant value (g-L &) in the station-

where the exponent g=pz is equivalent to the Hurst ex-
ponent [1,16] of the self-affine surface. The exponent g is
frequently referred to as the wandering or roughness ex-
ponent.

Computer simulations are frequently carried out in
narrow channels of width L with periodic boundary con-
ditions in the lateral direction. In the case of a (1+1)-
dimensional lattice model the surface width g (a measure
of the correlation length g~) is then given by
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ary limit (x »1). At early times (x «1) f (x)-x~ so
that g- h ~. The realization that simulation results ob-
tained using both the ballistic deposition [18] and Eden
[19] models could be described in terms of the scaling
form given in Eq. (4) with similar values for the ex-
ponents g and z provided additional impetus to the grow-
ing interest in surface growth models.

The continuum equation of Kardar, Parisi, and Zhang
[20] (KPZ) provides a firm theoretical foundation for
these simulation results. While this equation was origi-
nally introduced in the context of the Eden growth pro-
cess, it describes the ballistic deposition model (and many
other surface growth models) equally well.

At non-normal angles of incidence the scaling form de-
scribed above survives for the (1+1)-dimensional ballistic
deposition model but the scaling exponents appear to
change continuously with the angle of incidence [21,22].
At grazing incidence g=1 and z =2. These exponents
can be understood in terms of a mapping of the column
growth and shadowing onto a diffusion-limited particle
coalescence model [22]. At intermediate angles of in-
cidence a satisfactory theoretical understanding is still
lacking.

The scaling form described above also provides a good
description of the evolving surface roughness associated
with (2+1)-dimensional ballistic deposition models at
normal incidence. However, the characteristic exponents

g and z have values that are different from their (1+1)-
dimensional values. It can be shown that the exponents g
and z satisfy the scaling relation [2,23,24]

(b)

x/2-

Lx

't

pl

~l

gl

j

Z'

g+z =2

(a simple derivation can be found in Ref. [2]).
At non-normal incidence there is no longer a single

correlation length (g~~) in the direction parallel to the sur-
face. The projection of the deposition beam onto the sub-
strate plane singles out a direction (the x direction in Fig.
1) and a more general, anisotropic scaling form involving
two correlation lengths g„and g is required. We [25)
have previously published a preliminary account of our
work on (2+1)-dimensional ballistic deposition near to
grazing incidence. There it was shown that the correla-
tion lengths g„and g» grow with different powers of the
time

X
X

7 (6a)

(6b)

where o„=l/3 and o =2/3. All scaling exponents
characterizing the growing surface and the columnar
structure can be derived from o. and o. . In the present
paper we give a detailed account of our numerical work,
including results at intermediate angles of incidence.
Moreover, we present an anisotropic generalization of the
finite-size scaling form (4) and demonstrate its validity for
three-dimensional ballistic deposition at near-grazing in-
cidence.

FIG. 1. Coordinate systems used in this work. (a) shows
ballistic deposition at oblique incidence. The arrow indicates
the direction of incidence and 8 is the angle of incidence. (b)
shows the coordinate system used in the simulations. The x', y,
and z' coordinates are oriented along the axes of a cubic lattice.
The surface of the shaded region is filled at time t =0 to
represent an inclined substrate.

II. COMPUTER SIMULATIONS

All of the computer simulations were carried out on
cubic lattices with a cross section of L XL lattice units.
To represent deposition onto a planar substrate with an
angle of incidence of 8 we simulate the ballistic deposi-
tion of particles occupying individual lattice sites via
vertical trajectories onto an inclined substrate (Fig. 1). In
the model used in this work "active zone" sites (sites into
which growth may occur) are selected at random, with
equal probabilities to represent the growth of a rough
surface. At all stages in the simulation there is one active
zone site for each column of the lattice. At the start of a
simulation (time t =0) the height of the active zone site
in the column with lateral coordinates (i,j) is equal to
i tan(0), truncated to the nearest smaller integer. If an
active zone site at (ij ) is selected at random then the site
at h, (i,j ) is filled and the height of the active zone site as-
sociated with the column at (i,j ) is increased by 1,

h,'(i,j ) =h, (i,j)+1 .
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The heights of the active zone sites in the neighboring
columns at positions (i,j—1), (i,j+ 1), (i —1,j), and
(i +1,j) are then examined and increased to h, (i,j) (the
height of the newly occupied surface site) if their heights
are smaller than h, (i,j). The simulation of the ballistic
deposition process consists of a sequence of events in
which active zone sites (or the corresponding columns)
are selected at random and the active zone heights in the
selected column and its nearest neighbors are updated.
Since it is necessary to keep a record of only the active
zone height in each column and the algorithm is very
simple, it is possible to carry out large scale simulations
with modest computer memory requirements. In these
simulations periodic boundary conditions are used in the
x and y directions. In the x direction a change in the la-
teral coordinate of L, is accompanied by a height change
of L„tan8(truncated to the nearest integer).

III. GENERAL RESULTS

Figures 2 and 3 illustrate the structures obtained from
simulations carried out with an angle of incidence or in-
clination angle (8) of 80'. Figure 2 shows cross sections
in the x-z plane [Fig. 1(a)] at two different heights. Simi-
larly, Fig. 3 shows cross sections in the x-y plane (parallel
to the inclined substrate) at four different distances from
the substrate. These figures illustrate the characteristic
"columnar" morphology which becomes more apparent
further from the substrate. As the angle of incidence is
increased towards 90' (grazing incidence) the mean densi-

ty (fraction of occupied sites) decreases and the columnar
morphology becomes more distinct. This is illustrated in
Fig. 4 which shows cross sections in the x-y plane for
simulations carried out with an angle of incidence of
87.5'.

At large angles of incidence the morphology can be de-
scribed in terms of an assembly of overlapping "scales"
inclined at an angle (P) of about 37.5' from the normal.
In some of the simulations the sites in the initial active
zone at time t =0 were given distinct labels. When one
of these sites was selected and filled to represent the
growth process each of the new active zone sites was
given the same label as the active zone site that was filled
to create the new active zone sites. In this way the depos-
it is divided into clusters (each having a different label)
corresponding to the scales. Figure 5 shows two of the
scales identified in this fashion for the cross section
shown in Fig. 4(c). Each of the scales has a characteristic
size (s, number of occupied sites) length (l), width (w),
and thickness (5). The lengths l, w, and 5 are measured
along the z', y, and x ' directions, respectively, in Fig.
1(b). These lengths grow algebraically with increasing
cluster or scale size (s).

(9)

iV, -s (10)

with a size distribution exponent (r) of 1.5. In general,
this exponent satisfies the relation [26]
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Figure 6 shows the cluster size distributions (N, where

N, 5s is the number of clusters containing s to s +5s sites).
Here In(s' N, ) has been plotted against ln(s) so that a
horizontal line corresponds to a power-law size distribu-
tion

I-s (8a) 5000

w-s ',
6-s

(8b)

(8c)

We note that compactness of the individual scales implies
lw5-s or [26]

1474 Lattice Units

FIG. 2. Cross section through a deposit grown with an angle

of incidence of 80. The cross section is a plane that includes

the normal to the substrate and the direction of incidence. (a)
shows part of the cross section adjacent to the substrate and (b)

shows part of the same cross section farther from the substrate.
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Figure 6(a) shows the size distributions obtained from
simulations carried out with several different values for
the angle of incidence. These results were obtained from
simulations carried out using lattices of size 1024X 1024.
Each simulation was carried out until a time of t =500
had been reached (i.e., about 5 X 10 sites had been depos-
ited) and the results from 5 —10 simulations were aver-
aged for each value of 8. Figure 6 shows that the size dis-
tribution exponent has a value very close to 1.5 for
8= 87.5' (i.e., near-grazing incidence).

Similarly, Fig. 6(b) shows the dependence of ln(s '~3t0)

on ln(s) obtained from the same simulations. Here w is
the maximum cluster width in the y direction. Figure
6(b) indicates that for 0=87.5 (near to grazing in-
cidence) the exponent v has a value of about 1/3. Fig-
ures 6(a) and 6(b) also indicate that the exponents r and
v„appear to change continuously as the angle of in-
cidence is changed. These exponents change very little
for angles of incidence near to 0 or 90' with the largest
changes occurring at relatively large angles of incidence.
Similar changes were observed in the effective values of v~i

and v . A similar apparently continuous change of the
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FICx. 3. Cross sections through a deposit generated with an angle of incidence of 80. The cross sections are along planes parallel
to the inclined substrate. The simulation was carried out in a column of size 256X256 (x Xy) lattice units. The length in the x
direction is 256/cos(0). (a), (b), (c), and (d) show cross sections at heights (h) of 10, 100, 1000, and 10 lattice units where the height is
the distance from the plane of cross section to the substrate.
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exponents describing the columnar morphology was
found in earlier work with the corresponding (square lat-
tice) (1+1)-dimensional model [21,22]. This behavior has
not yet been explained theoretically. The effective values
for the exponents v, v~, v~~, and ~ obtained from these
and other simulations are shown in Table I together with
the results obtained earlier [26] at normal incidence.

The number of clusters or scales N(t) that survive to a
time of t or greater was also measured. The simulation
results indicate that

N(h) (13)

where the exponents ~, and ~h are equal. The values ob-
tained for this exponent are also given in Table I. The
scaling relations (8a), (10), and (13) imply that

in the limit t~ao. This indicates that the number of
clusters reaching a height h or greater from the substrate
is given by

(12)
~—1

h (14)
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FIG. 4. Cross sections (parallel to the substrate) through deposits grown with a near-grazing angle of incidence of 87.5'. (a), (b),

(c), and (d) show cross sections at heights of 10, 100, 1000, and 10 lattice units.
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FIG. 6. (a) shows cluster size distributions (N, ) obtained
from simulations carried out using five angles of incidence. (b)
shows the dependence of the mean cluster widths (w) on the
cluster size (s). The data have been plotted so that a horizontal
curve corresponds to a size distribution exponent ~ of 3/2 in (a)
or width exponent v~ of 1/3 in (b).

IV. SCALING ANALYSIS

256 LATTICE UNITS

FIG. 5. Cross sections (parallel to the substrate) through in-
dividual clusters at a height of 1000 lattice units. These cross
sections correspond to that shown in Fig. 4(c).

For large angles of incidence large steps are found in
the active zone. These steps occur at the growing edges
of the overlapping clusters or scales. Figure 7 shows the
location of these steps measured in the x'-y plane [Fig.
1(b)] for a simulation carried out with an angle of in-
cidence of 87.5' on a lattice of size 512X 512. Figure 7(a)
shows the location of all those active zone sites for which
the z' coordinate is higher than the height of the active
zone in one or more of its nearest-neighbor columns by at
least 100 lattice units. Similarly, Fig. 7(b) shows the loca-
tion of those columns for which z,'(i,j ) )z,'(i —1,j)+100

TABLE I. Exponents describing the cluster morphology obtained from (2+ 1)-dimensional cubic lat-
tice model simulations of ballistic deposition.

Angle of
incidence

00

15
30
45
60
70
80
87.5

0.283+0.002 0.283+0.002

0.337+0.001
0.345+0.001
0.345+0.001

0.452+0.002

0.467+0.001

0.488+0.001
0.498+0.001
0.515+0.008
0.504+0.002

1.566+0.002
1.570+0.004
1.568+0.005
1.557+0.003
1.545+0.003
1.525+0.004
1.515+0.008
1.504+0.002

h

1.283+0.001
1.269+0.001
1.200+0.001
1.152+0.001
1.050+0.001
1.031+0.001
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and Fig. 7(c) shows the location of those columns for
which z,'(i j)&z,'(i j —1)+100 or z,'(i j ) &z,'(i j +1)
+ 100 where z,'(i,j ) is the z' coordinate of the active zone
in the column at position x'=i and y =j. These figures
locate the ragged edges of the clusters which define the
deposit morphology. It is apparent from Fig. 7 that al-
though the clusters or scales are quite thin, they are
essentially opaque.

We have shown previously [25] that for very large an-

gles of incidence (almost grazing incidence) the size dis-
tribution of the large steps can be represented by the sim-

ple scaling form

(15)

where the exponents iu and P have values of 2 and 1/3, re-

spectively. Ns(t) is the number of steps of size 5 at time

The structure displayed in Fig. 7 is the starting point of
the scaling analysis presented in Ref. [25]. There we
pointed out that the cl'uster edges evolve according to a
growth process reminiscent of the two-dimensional Eden
model [15,19], and hence their fluctuations can be de-
scribed by the KPZ equation [20] for a one-dimensional
moving interface. As in (1+1)-dimensional ballistic
deposition at near-grazing incidence [22], these fluctua-
tions drive the coarsening of the columnar structure by
allowing some scales to grow ahead of others and thereby
shadowing them. However, as long as a part of the edge
of a scale is exposed to the particle beam, its growth is
not halted by the presence of other scales. As a conse-
quence, the collective properties of the deposit structure

(a)

e = S75,
~ $h ) 100)

vv

" ~v~.

J+e

J ~fw

~ «y wM

- e = 87 5 t = 500".

512 LATTICE UNITS 512 LATTICE UNITS

512 LATTICE UNITS

FIG. 7. Location of the large steps in the upper surface of a deposit generated using an angle of incidence of 87.5 .
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can be deduced from the fluctuations of a single edge. In
particular, the size and shape of the exposed parts of the
scales visible in Fig. 7 (the "domains") is determined by
the size and shape of the typical bumps present in a one-
dimensional interface that has been growing for a time t.
Hence the surface correlation lengths g„and g can be
identified with the correlation lengths of the one-
dimensional interface, g„-gi'+"and g —gl'+" and the
values

—P(1+ 1)—1 /3

0 = 1/2 =2/3
(16}

vx Vll+x ~

II

(17)

Together with (9), (11), and (14) this fully determines the
cluster exponents to be [25]

v„=1/6, v„=1/3, vll
= 1/2,

v=3/2, 7i, =1 (18)

in good agreement with the simulation results at near-
grazing incidence. We mention that the relations (17)
also hold for normal incidence ballistic deposition, how-
ever, with „ondacr replaced by I/z' +", the inverse of
the (2+ 1}-dimensional KPZ dynamic exponent [22].

V. CROSSOVER REGIMES
IN FINITE SYSTEMS

Because of the variety of characteristic lengths (g„,g»,
L„,and L ) associated with three-dimensional grazing in-
cidence ballistic deposition, a variety of scaling regimes
and crossover phenomena can be observed. Two time
scales can be defined by equating the correlation lengths
g„and g» to the corresponding substrate dimensions,

T -L «=L31/cr
x x x 7

y L3/2
(19)

We distinguish three cases for the late time behavior, ac-
cording to whether (I) T„«T,(II) T» «T„,or (III)
T —T„.The early time behavior of the overall surface
width

(h;J —h)
x y j=]j=$

(20)

follow from the exact solution [20] of the (1+1)-
dimensional KPZ equation.

The large steps in the active zone are of the order of
the typical distance between scale edges in the x' direc-
tion, and, therefore, the exponent P in the step size distri-
bution (15) is given by P= cr„=P"+"= I /3.

It is also clear from Fig. 7 that the correlation lengths
g„and g» determine the width and thickness of the scales
which are still exposed at time t. The mass of these scales

f/v 1/v
is given by s-™l II t II and consequently, using Eqs.
(6) and (8) we obtain [25]

with f(x)—const for x~00 and f(x)-x' for x~0.
The dynamic exponent for case I is 2 =1/0. =3. Note
that once g has saturated, the further increase of the
correlation length g» is impeded by the finite extension of
the system in the x direction, and the time scale T ))T
becomes irrelevant.

In case II (which is the one of relevance for isotropic
scaling, L„-L-L) a first crossover occurs when

Ty Ly At this time the leading edges of the ad-
vancing clusters span the lattice in the y direction and the
deposition process becomes equivalent to (1+1)-
dimensional ballistic deposition. In the grazing incidence
limit this process can be mapped onto that of coalescing
Brownian particles on a line [22] where the Brownian
particles represent the motion of the cluster tips or lead-
ing edges in a moving coordinate system. Values of
1.330+0.003, 0.502+0.003, and 0.674+0.001 were ob-
tained for the exponents ~, ~&, and vll from simulations
carried out using substrates of size L„XL»=(16384X2)
in the g &L» regime. The exponents are in good agree-
ment with those predicted by the mapping onto the parti-
cle coalescence problem [22] (v=4/3, ~r,

=
—,', vll=2/3).

A series of simulations was carried out with an angle of
incidence of 89' with a substrate length (L„)of 4096 lat-
tice units and widths (L») ranging from 2 to 64 lattice
units. Figure 8(a) shows the time dependence of the sur-
face roughness (g) in the form of plots of 1n(g/t' ) vs
ln(t). The slope of approximately —

—,
' for the larger

values of L» corresponds to a value of 1/3 for the ex-
ponent P. Figure 8 shows that the exponent P crosses
over to a value of 1/2 (the characteristic value of the
(1+1}-dimensional model [21]) at late times. The cross-
over is expected to occur when g grows to a length L so
that it is natural to represent the results shown in Fig.
8(a) by the scaling form

i/2f (t /L 3/2)
V (22)

In order to represent both the short- and long-time be-
havior the scaling function f (x) in Eq. (22) must have the
form f(x)=x ' for x «1 and f(x)=const for x »1
and since the short-time behavior is independent of the
length Ly it follows that the exponent y must have a
value of 1/4.

This is in agreement with a recent study [27] in which
the long-time (t ))L') behavior of a driven interface was
derived from the KPZ equation [20]. For long times the
interface diffuses like a rigid object, with a center of mass
fluctuation f, (Dt)' whe-re the diffusion coefficient
scales as L in 1+1 dimension. To test these simple
scaling ideas the dependence of ln( g'L ' t '

) on
ln(t/L» ) is shown in Fig. 8(b) for the four larger values

is dominated by the large steps in the active zone [25] and
therefore g- t~ with P= 1/3 for t && T„».In case I this
behavior changes when t —Tx -L . At that point only a
single cluster is left in the system. The width g-L„and
cannot grow any further. Thus this case is governed by a
conventional scaling form [cf. Eq. (4)]

(21)
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FIG. 8. Growth of the surface roughness (g) in narrow sys-
tems with an angle of incidence of 89 . (a) shows the depen-
dence of 1n(gt '

) on ln(t) for six different widths (L» =2, 4, 8,
16, 32, and 64). (b) shows how these curves can be scaled using
the scaling form given in Eq. (22).

FIG. 9. Growth of the surface roughness (() obtained from
simulations carried out using systems of size L =L, L~=L'
with an angle of incidence of 89'. (a) shows the growth of ( for
four values of L (b) show. s that the dependence of g on L and t

can be represented by Eq. (25).

t 1/2 -L
LJ/4 x

V

(23)

or

of L~ (L~=8, 16,32, 64). The data collapse supports the
idea that the dependence of the surface width g on L»
and t can be represented by the scaling form given in Eq.
(22).

A second crossover appears when the quasi-one-
dimensional competition process between the coalescing
cluster edges has eliminated all but one cluster. This
occurs when

finite-size scaling behavior in case II is governed by theo

diferent dynamic time scales, and cannot be described by
a single scaling form or a single dynamic exponent. We
note that, in the isotropic case L =L =L, T&&

L 5/2 ~& T
Finally in case III the two crossovers associated with

T„and T merge. This is illustrated in Fig. 9(a) where
the growth of g is shown for simulations carried out using
systems of size (L„XL) given by L„=Land L =L
(L =4, 8, 16,32). Figure 9(b) shows that the dependence
of g on L and t can be represented quite well by the sim-
ple scaling form

t —TII x y (24) (25)

For t»T» the surface width saturates. Hence the with a dynamic exponent z = 1/o „=2/o~= 3.
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