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Sponge phase of surfactant solutions: An unusual dynamic structure factor
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The dynamics near the symmetry-breaking transition in the sponge phase (L3) of self-assembling sur-

factant solutions is considered. The surfactant motion is taken to be diffusive (conserved), while the or-
der parameter for the transition (g) is assumed to follow two channels of relaxation: diffusion (con-
served) and leakage (nonconserved). Our dynamical treatment is based on mean-field theory within a
time-dependent Landau-Ginzburg approach, whose static limit reproduces an earlier successful theory
of the static structure factor. We consider two main regimes: in the first, g relaxes rapidly compared to
the surfactant diffusion, while in the second, the opposite limit applies. We find that in the fast-g regime
the surfactant dynamical structure factor S(k, t) is exponential in time, but the relaxation rate shows an
unusual logarithmic behavior. On the other hand, in the slow-g regime, S(k, t) is very nonexponential in

time (although the average relaxation rates show the conventional critical slowing-down effects). We ar-
gue that a crossover from the fast-g to the slow-g case occurs as the k vector is increased. Implications
for dynamic light scattering from sponge systems are discussed.

PACS number(s): 64.70.Ja, 64.60.Ht, 68.10.—rn, 82.70.—y

I. INTRODUCTION

There has recently been increasing interest in the so-
called sponge phase (or L3 phase) of self-assembling sur-
factant systems [1—10]. (For a recent review see Ref. [2].)
The sponge phase is typically formed in aqueous surfac-
tant solutions [1,2], although analogues exist in oil-
surfactant, and multicomponent, systems [3,10]. The
phase is isotropic with no long-range order, though it
typically occurs close to a lamellar phase in the phase di-
agram. In the sponge phase, x-ray and neutron-
scattering measurements [8—10] have shown that locally
the structure consists of surfactant bilayers. Moreover,
light scattering and conductivity studies [10,11] have
shown that the membranes form a connected (percolat-
ing} structure distributed in space as a random surface
[4,5].

A sponge phase contains an infinite bilayer membrane
of complex topology, and it is known that such a mem-
brane divides space in two. This means that the phase is
solvent bicontinuous: it contains two distinguishable re-
gions of solvent, which can be classified arbitrarily as "in-
side" and "outside" the bilayer that divides them. The
case when the total volumes of the "inside" and "out-
side" solvent regions is equal, called the symmetric (S)
sponge phase, is then distinguishable from an asymmetric
( A } phase, where these amounts are different. Since the
same solvent occupies the "in" and "out" domains, it
should be possible to have a continuous (second-order)
transition between the S and the A phase [1—4, 12]. In
fact, such a transition is completely analogous to the
second-order phase transition in the Ising spin model,
where the "spin-up" clusters correspond to (say) the "in"
regions, and the "spin-down" clusters to "out" regions.
Note that the asymmetric phase has the same symmetry
as a phase of disconnected vesicles and in fact may be
connected to it on the phase diagram. In contrast, the
unbroken symmetry of the S phase means that one can-

not move from it to an ordinary liquid phase without
passing through a phase transition.

A typical sponge phase is that of the water-rich
H20 —sodium dodecyl sulfate —pentanol system [1,2]. For
this system Roux and co-workers [1] have observed the
occurrence of a continuous S-A transition, which is easily
detectable in turbidity measurements and is also
manifested in a characteristic behavior of the static struc-
ture factor S(k), discussed further in Sec. II below. Nor-
mally, the S to A transition can be tuned by decreasing
the surfactant concentration P and/or varying the
amount of cosurfactant. Even for a binary or pseudo-
binary system, the transition when it occurs generically
occupies a line (rather than a point) in the volume-
fraction —temperature parameter space. Likewise at fixed
temperature and pressure there is a line of transitions in
the space defined by surfactant and cosurfactant volume
fractions [3,1,2].

The scattering amplitude at long wavelengths (which
can be made much larger than the typical "cell size" d of
the sponge) was observed to diverge, on approaching this
line, like (P —P, )

' where P, is the critical value of P and
the value a=0.5-0.6 has been extracted. Near the tran-
sition the scattering amplitude S(k) becomes effectively
independent of P, and develops a contribution propor-
tional to the wavelength X=2m /k [13].

This unusual and characteristic result, S(k)-1/k, is
in fact the signature of the energy-energy correlation
function in the (mean-field approximation of} the Ising
model [3], and is quite different from the usual Ornstein-
Zernike behavior which for small wavelengths is
S (k) —k . This has been explained with the help of a
detailed Landau-Ginzburg theory, which has provided
good fits to most of the experimental results for static
light scattering [3,1,2]. The theory is based on two fluc-
tuating order parameters: one (q) describes the transi-
tion from a symmetric to an asymmetric sponge, the oth-
er (p) describes local fluctuations in the surfactant densi-
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ty. The characteristic static scattering arises because
there is no contrast between "inside" and "outside"
domains of solvent. The scattering is sensitive to the fluc-
tuations of surfactant density only, and these are coupled
quadratically to the order parameter g for the S-A transi-
tion. Thus the measured correlation function
S ( k) = (p„p q ) has a contribution proportional to
((g }z(7) ) „),which is the energy-energy correlator in
the equivalent Ising model [14-16].

Although the static scattering behavior is now reason-
ably well understood, measurements of the dynamic
structure factor S(k, t) have so far been limited to re-
gimes far from the S-A transition and to wavelengths of
the order of the cell size d of the sponge [8]. Moreover,
no theory for S(k, t) at longer wavelengths has yet been
presented. Previous theory [17] is limited to qualitative
predictions (based on dimensional arguments) for average
relaxation times, but these do not address the neighbor-
hood of the S-A transition or the shape of S(k, t) in the
time (or frequency) domain. It is interesting to consider
whether the unusual character of the phase transition in
the sponge phase leaves a special "fingerprint" on the
dynamical structure factor, as it does in the static case.
We approach this issue theoretically here, and predict
that S(k, t) can indeed show very unusual features involv-
ing (for example) extreme nonexponential relaxations in
time. Below we discuss and delineate several regimes in
which different types of relaxation are possible. Al-
though it remains unclear which of our regimes are most
relevant to experiment, measurements to determine
S(k, t) over a wide k range are currently planned [18],
and it is hoped that these will clarify the situation.

In what follows, we use the time-dependent Landau-
Ginzburg approach to calculate the dynamical structure
factor near the S-A transition. The free energy we use is
essentially the same as the one used by Roux et at. [3]
and by Coulon and co-workers [1,2] for the calculation of
the static structure factor. Surfactant molecules are con-
served and the relaxation of p is therefore taken to be
diffusive. However, as discussed in Ref. [17], we expect
that the order parameter g for the S-A transition can
equilibrate by two different modes: one is leakage of sol-
vent between "inside" and "outside" regions (nonconser-
vative relaxation), and the other is a diffusive process
which does not change the total amount of "inside" and
"outside" (conservative mode).

Most of our results concern the case when surfactant
diffusion is rapid on the time scale of relaxation for fluc-
tuations in q. We believe this is usually the relevant re-
gime for experiments, although (since we assume a
nonzero leakage rate) the assumption must fail for
sufficiently small wave vectors. In the opposite limit,
namely, when the relaxation of g is assumed to be much
faster than the surfactant motion, a different approach,
formulated some years ago by Halperin and co-workers
[14,15,19,16], should be applicable. In this limit the de-
tails of the relaxation for g become irrelevant, since this
order parameter can be "adiabatically eliminated" to give
an effective theory for p. (This case is discussed fully in
Sec. III B.) Note that in the other limit of main interest
to us (slow q), a simple adiabatic elimination of p is not

enough, since it is precisely the fluctuations of p, and not
g, that are measured in experiment.

This paper is organized as follows. In Sec. II we re-
view and (in Appendix A) rederive the result of Refs.
[1—3] for the static structure factor of the sponge phase.
In Sec. III we introduce the different relaxation channels
in the sponge (Sec. III A). Thereafter, we first discuss the
regime where the bare fluctuations of g of the S-A transi-
tion are much faster than those of the surfactant density

p at the measured wavelength (Sec. III B). For this re-
gime we make use of previous theoretical studies of
analogous models, mentioned above [14,16]. We then
deal with the opposite limit (fast p, slow 7)), which is of
primary interest here, and obtain a general expression for
the dynamic structure factor (Sec. III C). In Sec. IV A we
analyze the outcome for the case where nonconservative
modes dominate the g relaxation, and in Sec. IV B we an-
alyze the outcome for the case where conservative modes
dominate. In Sec. V we show consistency of our results,
where appropriate, with the dynamical scaling laws intro-
duced by Halperin, Hohenberg, and Ma [15]. Finally, in
Sec. VI, we discuss the crossovers between the different
relaxation regimes as the wave-vector magnitude is
changed, and conclude by summarizing our main predic-
tions for S(k, t) in the various regimes of interest. Some
of our main results have been summarized elsewhere [20].

II. THE STATIC STRUCTURE FACTOR

The Landau-Ginzburg free energy of the sponge in-
volves two coupled order parameters [3,1,2]. One param-
eter is the surfactant density P, or more precisely its devi-
ation from some value P', which we write as p=P —P'.
The other parameter q is the symmetry-breaking order
parameter, which may be defined as the difference in "in-
side" and "outside" volume fractions:

(2. 1)

An equivalent definition for g can be made in terms of
the mean curvature of the membrane (I/R, +1/R~)
which vanishes in the symmetric phase. Since both "in-
side" and "outside" regions contain identical solvent ma-
terial, there is no scattering contrast between them, and
hence p is the only order parameter whose correlation
function S(k)=(5p&5p z) (where 5p=p —(p)) can be
measured by scattering.

Following Coulon and co-workers [1,2], we consider
the following Landau-Ginzburg expansion for the ther-
modynamic potential 4 near the S-A transition:

F~p= ff(r—)dr,
V

(2.2)

+ —,'y„(V71) + ,'Cpg + ,'y, rjVrl Vp—. —(2.3)

In Eq. (2.3) the first four terms represent a binary-liquid-
type expansion for the p order parameter, and the next
three an Ising-type expansion for g. [A is a constant

where V is the volume (set to unity below), p is the sur-
factant chemical potential, and

f (r)= pp+ ,'ap + ,'bp +—,'y (—V—p}+——,
' Aq'+ ,'Brl—
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[S(k)= +
1+g~k

P

g (C+'r k )

(1+) k )

X I+( k

tan '(kg„/2)
+

16m " " kg„/2

(2.4)

In this equation, g„ is the critical correlation length asso-
ciated with the S-A transition and is given by

(2.5)

whereas

2 P=y (2.6)

defines the (bare) correlation length g associated with the
surfactant fluctuations (i.e., that which would arise in the
absence of coupling to r)). The remaining parameters
obey

a =a +3bpo,

C2 C2
A = A +Cpo+qo 3B— + (5g ),

a 2a

, c cr, c'r, &fin'&
x„=r„+n— —x, +

a a a

(2.7)

(2.8)

(2.9)

which can be negative; B)0 is required (as usual) for sta-
bility. ] The remaining two terms are couplings between 7)

and p at the lowest order permitted by symmetry.
Higher-order couplings are neglected [3,2). The presence
of nonzero coupling constants C and y, leads to a critical
behavior of p near the S-A line, as observed in light-
scattering experiments.

The free-energy expansion (2.3) has earlier been used to
calculate the sponge S-A phase diagram [2,7] and the
static structure factor (at the level of Gaussian-
fluctuation theory) [2,3]. The calculation of the latter, in
the general case [2], was limited to a perturbation expan-
sion to first order in the coupling terms C and y, . How-
ever, a simple limit of the theory can be obtained by set-
ting y and y, identically to zero, and studying the be-
havior near tricriticality. For this special case, Roux
et al. [3] were able to calculate exactly the static struc-
ture factor, where much of the interesting behavior [such
as S(k) -1/k] is already present.

In Appendix A we repeat the full calculation of the
static structure factor S(k) for the general case, but, in
contrast to Ref. [2], we do this nonperturbatively. The
result differs only in the presence of "effective" values for
certain parameters (i.e., r„and A below), but this non-
perturbative approach is needed if the results are to
check with our (nonperturbative) calculation of the dy-
namic structure factor in Sec. III. We find in the Appen-
dix (assuming [21]r„)0)

where po and go are the spatial averages of p and g, re-

spectively.
The mean value i)o vanishes in the symmetric (S) phase

but is nonzero for an asymmetric sponge; if the transition
is brought about by variation in the mean surfactant con-
centration these phases arise for po&p, and po(p„re-
spectively, where p, = —A/C. Note that the critical
density p, vanishes when A =0; the combination

po=p, =0 and a =C /2B defines in fact a double critical
end point [2,1]. Since we have defined po=P —P", we

may identify P* as the surfactant density at this high-
order critical point [2]. Thus the Landau-Ginzburg ex-
pression used above is (for a =C /2B) an expansion
around this point on the (rt, P) plane. It can be shown [2]
from Eqs. (2.5) and (2.8) that g„- ~ P —P, ~

' where

P, =p, +P', the critical exponent 1 is different from the
usual mean-field critical exponent —,

' due to the presence
of the term involving (5q ) in Eq. (2.8). This term arises

[2] when the constraint (p ) =po is used to eliminate the
chemical potential p (see Appendix A). It leads to Fisher
renormalization [22] of the critical exponents, when Eq.
(2.8) is solved self-consistently [2] for A. As a result, for

P & P„ the behavior of the mean Ising order parameter is

rto-g, —P, with exponent unity rather than —,'.
In the S phase (r)0=0) the first term in the square

brackets of Eq. (2.4) does not contribute. In the A phase
( i)o%0) we can replace rh A ' in Eq. (2.4) by
(2B —C /a )

' which is a noncritical constant (except on
approaching the double critical end point). As the S-A
transition is approached from the A phase, when

kg„))1, the second term in the square brackets of Eq.
(2.4) dominates so that the S(k) function obtained in the
A phase coincides at the critical point with that obtained
from the symmetric side, as obviously it should. In this
regime S(k)-k ', a result quite unusual for liquids, as
previously described. On the other hand, when kg «1,
the first term in the square brackets is just a noncritical
constant (or identically zero in the symmetric phase),
while the second term diverges critically, being propor-
tional to g„. Hence S (k) —g„ in this regime [23].

The result (2.4) has been shown to fit well the scatter-
ing measurements [3,1,2], although because of the num-
ber of free parameters involved it seems that only the
value of g„obtained from these measurements is accu-
rate. For some systems in which the S-A transition is
first order [3,8], the simplified version of the theory as
presented in Ref. [3], which has a reduced number of pa-
rameters, is found to fit very well. In this limit there is a
corresponding simplification of the dynamical theory
presented in Sec. III C, as outlined in Ref. [20].

The above calculations are based on a Gaussian-
fluctuation treatment and hence give mean-field ex-
ponents. As mentioned previously, the results should
break down in a critical interval near the S-A transition
line, but this interval may be very narrow near a tricriti-
cal point. Near such a point, there is a wide region where
the mean-field —Gaussian-fluctuation picture is almost ex-
act (with only logarithmic corrections). Moreover, as
mentioned earlier, the Landau-Ginzburg expansion Eq.
(2.3) is in fact an expansion about a double critical end
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point which has upper critical dimension —, and hence
gives exact mean-field behavior in three dimensions.

Far from any tricritical region of the model, the mean-
field exponents will be modified. The appropriate behav-
ior [24,20] can be found by noting that S(k) continues to
scale as the energy-energy correlation function. For
kg„« 1, the result is that S(k) behaves as P~~', and for
kg„»1, S(k)—k, where a and v are the usual
specific-heat and correlation-length critical exponents:
a=0. 12 and v=0. 64.

We note, however, that so far there is little evidence
for anything other than Gaussian-fluctuation behavior in
these systems [1,2]. In what follows we focus on calculat-
ing the dynamic structure factor within the same
Gaussian-fluctuation model that was successfully used for
the static case. In the limit of fast-g relaxation (Sec.
III B), however, some discussion of true critical regime is

given.

III. DYNAMIC STRUCTURE FACTOR

A. Relaxation channels in the sponge

The different hydrodynamic modes expected in the
sponge phase were qualitatively discussed by Milner,
Cates, and Roux [17]. The relaxation of the S-A order
parameter is expected to follow two main channels.

(i) The first channel corresponds to solvent flow within
each of the "inside" and "outside" regions, but does not
involve crossing of the bilayers. Hence this is a conserva-
tive mode, which should be diffusive in nature. By "con-
servative" it is meant that the total amount of "inside"
and "outside" in the (infinite) system cannot change by
this mode, but any finite-wavelength perturbation is able
to relax. This is true because both of the solvent domains
percolate over infinite distances.

(ii) The second channel is related to leakage through
the membrane. The leakage might be either due to fluid
flow through small defects or holes that could arise at
random in the bilayer, or due to diffusion of single solvent
molecules across it. Since the statistics of the process are
uncertain, we simply introduce a free parameter v. which
represents an intrinsic local decay time for the g order
parameter arising from this type of relaxation. (In con-
trast, all the other kinetic parameters that we shall need
can be estimated in terms of the solvent viscosity p, and
the static correlation lengths g and g„.)

The motion of the surfactant order parameter p can
only be diffusive, since (in the absence of chemical reac-
tions) the overall surfactant density is a conserved quanti-
ty. To calculate the relevant difFusion constant, we
neglect the very small amount of free surfactant which
may be able to diffuse freely through the solvent domains.
We may also ignore the diffusion of surfactant molecules
within the bilayers, since these are almost incompressible
two-dimensional fluids (at wavelengths of interest).
Remaining modes are the two-dimensional fluid flow
within the films, and the three-dimensional diffusion of
the films themselves (which undergo random thermal
motion similar to that of polymers in solution). As
shown in Ref. [17], both of these modes are coupled hy-

drodynamically to the solvent, and the resulting relaxa-
tion rates are related to the "Zimm time" of pieces of bi-
layer, as described more formally below.

In studying the dynamics, two main regimes can be
distinguished depending on the relative relaxation rates
for g and p. We consider these now in turn.

B. The fast-g case

First [20], we consider the case where the relaxation of
the g order parameter, determined under conditions
where p is held fixed, are rapid compared to the relaxa-
tion of p itself. If g is nonconserved (r & 0), this condi-
tion should always apply in principle for small enough
wave vectors k. In this regime p represents a slow secular
perturbation in the bare Hamiltonian for g. Conversely,
the g fluctuations can be adiabatically eliminated [25]
from the time-dependent equations for p: the rapidly re-
laxing g field is integrated out, to give an effective Hamil-
tonian for p in which g does not appear at all. This case
has been studied in Refs. [14,15]; the dynamic structure
factor S(k, t)=(5pz(t)5p z(0)) should be single ex-

ponential in time, with a k-dependent relaxation rate

A,gk)k
I k

—=D,q(k)k = (3.1)

which is independent of any details of the g dynamics.
Here S(k)—=S(k, O) denotes as usual the static structure
factor; A,z and D,ff are effective Onsager and diffusion

coefficients. Hence, if A,& has no critical behavior, there
is a critical slowing down arising solely from the diver-
gence of S(k) (at small k) when g„~DO Refs. [26,15].
Close to the S-A transition (and in the mean-field approx-
imation) this yields the results [15] I'„—k g„' (for

kg„«1), and I k-k (for kg„»1).
In the sponge phase, however, we must allow for the

fact that there is a hydrodynamic coupling between fluc-
tuations in p and the solvent velocity field. This can lead
to an additional singular behavior in the Onsager
coefficient A,gk) in Eq. (3.1) [25,19]. This is simply un-

derstood in the language of polymers: patches of bilayer
interact hydrodynamically through the Oseen tensor
[25,27 —29], which in three dimensions decreases with dis-
tance as 1/r. In the small-wave-vector regime (kg„« 1),
this coupling leads, within the Kawasaki approximation
(in real space), to a limiting value [25,30,27,29]

k~T
A,JO)= fdrg(r} 6', r

(3.2)

A,ft(0) = J™XS(q }dq
3~ p,

(3.3)

which is now a one-dimensional integral.
Using Eq. (2.4) in Eq. (3.3) one can confirm that if

where p, is the solvent viscosity and g(r) the density-

density correlation function [whose Fourier transform is

S(k}]. One can think of this as defining the hydro-
dynamic coupling within a "blob" of size g„. In k space

Eq. (3.2) becomes
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y, &0 this integral diverges logarithmically with q
The result arises because S(q) behaves as q

' for q —+ oo,
and is therefore a direct consequence of the peculiar
non-Ornstein-Zernike form of the static correlation func-
tion in sponge phases. The novel q dependence comes
from the term proportional to arctan(qg„/2)/q in Eq.
(2.4), which in real space translates to
g(r)=r exp( 2r/—g ). The same physical divergence
of course arises at short real-space separations if this is
used in Eq. (3.2). This is reminiscent of the weak diver-
gence that occurs for the hydrodynamic drag on an
infinitely thin rod. Indeed one might argue that the den-
sity fluctuations in the sponge phase have a fractal di-
mension of 1 rather than 2 (which would be the usual
Ornstein-Zernike case, and would apply for a Gaussian
polymer). As a result, the hydrodynamic interaction is
only marginal [31,20].

A suitable choice for the maximum q cutoff in Eq. (3.3)
is q,„=1/d where d ( -g ) is the cell size of the sponge.
[Since this is the short-length cutoff for the Landau-
Ginzburg analysis, we may also assume for consistency
that g &d.] We then find [20,32] that A,s diverges as
in(g„/g~) Ref. [33]. Therefore for g„&&g (i.e., close to
the transition} and small enough k we obtain [34]

ksT
D,s(k ~0)- ln (3.4)

(3.5)

For kg„&)1 we then obtain [32] using Eqs. (2.4), (3.5),
and (3.1},

k~T
ln k

tjs k
p

(3.6)

which demonstrates an unusual k dependence of the re-
laxation rate. This result differs only in the logarithm
from that calculated by neglecting hydrodynamics [as dis-
cussed following (3.1)].

The above discussion is based on the Gaussian-
fluctuation theory using mean-field exponents. It is in-
teresting to see qualitatively the effect of using the exact

This result resembles the Stokes diffusion coeScient of a
rod of width g and length („Ref. [28]. It differs by the
logarithmic factor from the Stokes diffusion coefficient of
a sphere of radius g„, which is the Stokes-Kawasaki-type
result for a normal Ornstein-Zernike correlation func-
tion.

For kg„)&1 one has to use a more general expression
than Eq. (3.3) for the effective Onsager coefficient, which
becomes explicitly k dependent [25,28]. Physically, this
corresponds to separating the system into blobs of size
k ' rather than g„. The formal result, which is valid for
arbitrary k [and reduces to Eq. (3.3) for k ~0], is [25,28]

k, r
A,ft(k) =

4m. p, k

q +k2 k+q

critical exponents, which become relevant very close to
the S-A line far from any tricritical point. In this case,
we find that hydrodynamics is irrelevant for the critical
behavior [20,32]: the effective Onsager coefficient in Eq.
(3.3) is not critical (due to the fact that a/v(1) and the
conventional Van Hove theory [26] for critical slowing
down holds; the critical slowing down is entirely due to
the divergence of the structure factor S (0). We then
have

k~T
for kf„«1

+ gl
—a/v ga/v

k~T
k 2+a/v fol kf » 1

L-1 —a/v 7l

Pssp

(3.7}

The calculations given above should apply for
sufficiently small values of k, when the (presumed non-
conservative) intrinsic relaxation of q is fast compared to
the conserved, and therefore slowly relaxing, p fluctua-
tions. However, for finite k and close enough to the S-A
transition, it is possible instead that the opposite condi-
tion would apply. This is because near the transition g is
intrinsically critical whereas p is not: p develops long-
wavelength fluctuations only by virtue of its coupling to
g. Likewise at a fixed distance from the transition, we ex-
pect at some k* a crossover to a limit where the intrinsic
fluctuations of p are much faster than those of g. Next
we consider in detail this new regime, which we expect to
be the relevant one in most experiments. The estimate of
the crossover wave number k* is deferred to Sec. VI.

C. The fast-p case

We wish to find the dynamic structure factor
S(k, t):—(5pz(t}5p z(0)) in the regime where the intrin-
sic relaxation rate for p is fast compared to that for g. In
this case, p can be adiabatically eliminated from the equa-
tion governing the dynamics of g, since p samples its full
equilibrium distribution (conditional on a specified state
for g) on a time scale rapid compared to changes in g it-
self. Therefore slow fluctuations of the order parameter
g are controlled by the effective free energy, found by in-
tegrating over fluctuations in p [cf. Eq. (A13)].

However, since scattering experiments probe only p
fluctuations, we must after finding the dynamics of g use
this to work backwards and compute the fluctuation
spectrum for p. In this part of the calculation,
represents a slowly varying driving force (of known statis-
tics) on the p fiuctuations. The coupling between p and q
is present already in the free energy (2.3) (the terms in C
and y, ). We may exclude the possibility that any further
coupling originates from nondiagonal terms in the On-
sager matrix for q and p,' such couplings are forbidden
since the motion of p must be invariant under the change
g~ —g Ref. [17].

We may therefore assume the following kinetic equa-
tions for q and p:
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5p=p —
po, and for kAO)

6I',~+fdr'A„(r —r')V, , +8(r, t),' 5i}(r')
6Fp(r—, t)= dr'A (r —r')V, , +a(r, t) .

Bt
' ~ ' 5p(r')

(3.8)

(3.9)

—5i}„(t)= —L,(k)5ili, (t),

where

L„=[r '+k A~(k)](A+y„k )

(3.10)

(3.1 1)

The first term on the right in Eq. (3.8) represents the non-
conservative motion of solvent across the bilayer from
"inside" to "outside" regions. The corresponding kinetic
(Onsager) coefficient is simply r ' as discussed in Sec.
III A. The second term in Eq. (3.8) represents conserva-
tive (diffusive) motion of i} with an Onsager coefficient
A„. A similar coefficient for conservative p relaxation ap-
pears in Eq. (3.9). Thus the dynamics involves three ki-
netic coefficients in addition to the parameters in the
Hamiltonian. In Eqs. (3.8) and (3.9) 8(r, t) and ~(r, t) are
white-noise terms whose correlation functions may be
determined by the fluctuation-dissipation theorem. These
terms do not contribute to the dynamic structure factor
S(k, t) and are therefore not discussed further in this pa-
per [35].

In Eqs. (3.8) and (3.9) the Onsager coefficients A (r)
and A„(r) for conservative relaxation modes are taken to
be nonlocal. This form allows for hydrodynamic interac-
tions to be included [25,27,28,36]. Such interactions arise
because the solvent velocity field is generally coupled to
fluctuations in the fields i} and p [see, e.g. , Eq. (3.5)]. This
could be handled by introducing explicitly a third sto-
chastic equation for the fluctuating velocity field [25,19];
however, this can be avoided if appropriate forms for the
nonlocal Onsager coefficients are chosen. Suitable ex-
pressions are discussed later in this section.

Within our fast-p approximation, fluctuations in g can
be described by an autonomous equation which does not
involve p [namely, Eq. (3.8)]. This allows us to treat i} in
Eq. (3.9) as time-dependent random source field. Trans-
forming Eqs. (3.8) and (3.9) to the k space, and using Eqs.
(2.3) and (A13), we obtain (for small 5g=g —

rto and
I

and

5p—k(t}=—L (k)5pi, (t) —k A (k)gi, (t),a
(3.12)

where

L =k A (k)(a+y k ), (3.13)

and where gk is given by

g„=i}0(C+—,'y, k )5ilk+ —,
' g (C+y, k q)5rtq5rt„q .

(3.14)

S(k, t)= exp[ L t]S(k—,O)

—k A dt'exp —L t —t'

X (g„(t')5p i,(0) } . (3.15)

In Appendix B we calculate explicitly the expectation
value (gk(t)5p i,(0) }.Using the result in Eq. (3.15) and
integrating over t', we then obtain

The effective source term in the p dynamics, gi„ in-

cludes a part which varies essentially like (5g )i, [i.e., the
Fourier transform of 5g(r) ]. As discussed in Sec. II for
the static structure factor, one can view the p fluctuations
as being biased locally with a mean value that varies as g
in real space. The structure of the source term g in our
dynamical calculations precisely reflects this effect.

We can now solve Eq. (3.10) and use the solution to
find the source term gi, (t). From Eq. (3.12), we obtain, in
terms of gk,

S(k, t)=exp[ —L (k)t]S(k, O)+ k'A (k)
C+ —,'y, k

a+y k

C+ —,'y, k exp[ L(k)t] —exp[ ——L (k)t]

L,(k) —L (k)

C+y, k q

q (A+y„q')[A+y„(k —q) ]

exp[ —[L„(q)+L„(k—q)]t I
—exp[ —L (k)t]

L (k) L„(q}—L„(k—q}—
(3.16}

The static structure factor S(k, O) appearing on the right
in Eq. (3.16) is precisely as given by Eq. (2.4).

Equation (3.16}is the most important result of this pa-
per. Obviously it is a complicated expression, but one
that can be reduced to simpler forms in many limiting

cases, several of which are discussed below. Note that,
for the symmetric (S) phase i}0=0 and the first term in

the large curly brackets does not appear. On the other
hand, in the asymmetric ( A } phase we can replace

' in Eq. (3.16) by (2B —C /a) ' which is a non-
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critical constant.
In Appendix C we argue that, for the regime of rapid p

relaxation to which Eq. (3.16) refers (rather than the
fast-g limit considered in Sec. III B), the inequality
L (k) »L„(k) always applies. While the same inequali-

ty cannot hold for all q in the sum in Eq. (3.16), it may be
checked that so long as either L t ))1 or
(g„/g )'i (kg„) i »1 [37], the part of the sum for
which the inequality L (k) »L„(q) does not hold is
negligible [38]. Under these conditions, we obtain a
simplified form for S (k, t) by formally taking the limit
L /L„moo —while keeping L t of arbitrary magnitude.
Making use of Eq. (2.4) for S(k, O) [39],we then obtain

Q(x)= —,'x [1+x +(x —x ')tan 'x] . (3.23)

each of which can be obtained by combining Eq. (3.5)
with a suitable Ornstein-Zernike expression for the corre-
lation function. (Note that, in the case of p, this diffusion
constant is that which would arise without coupling to g,
and is therefore of a conventional form rather than the
anomalous type obtained in Sec. IIIB [19].) In Eqs.
(3.21) and (3.22), p, is the solvent viscosity, and Q(x) is a
scaling function which has the following limits: Q(x)~ 1

for x ~0 and Q(x)-x for x && l. (The latter leads as re-
quired to a k behavior of the relaxation rate at large k.)

More precisely [25,28]

S(k, t)=
exp[ —L (k)t]

a+y k

(C+ zy~k ) exp[ L(k)—t]rl

(a+y k')' 1+('k' and

(k)= ~ (1+( k )+D
g2

(3.24)

Restoring finally the nonconservative decay term (-r ')
for g, the relaxation rates may be written as

+Y(k, t) ', (3.17)
L (k)=D k (3.25)

where we have defined

Y(k, r)= 1

(2C+y, k )

C+y, k.q

q (A+y„q )[A+y„(k—q) ]

Xexp [
—[L„(q)+L (k —q) ]t ] . (3.18)

Note that the result reduces, as it should, to the static
structure factor for t =0 Ref. [40]; the first term in
exp[ L~t] ensur—es this even if it gives a negligible con-
tribution at larger times. Moreover, Eq. (3.17) can also
be obtained from the defining equation
S (k, t) =—(pl, (t)p 1,(0) ) by writing pk(t) =

pl, (t)+ b l,(t),
where the biased mean is Pl, (t)=

gt,(t)/(a+y —k )

and we assume that the fiuctuation bl, (t) decays
rapidly from its initial value: ( bl, (t)h l,(0) )
=(a+y k ) 'exp[ —L (k)t].

To make Eq. (3.17) useful, knowledge of the three ki-
netic parameters involved is required. While an estima-
tion of the leakage time ~ is rather dificult, we can com-
ment on the form of the Onsager coefficients A„(k) and
A (k) or, equivalently, the diffusion coefficients

IV. CONSERVATIVE AND
NONCONSERVATIVE RELAXATION

A. Nonconservative case

Here we discuss the case where the relaxation of g is
dominated by the leakage process, so the relaxation is
nonconservative. If r ' »k A„(k) Eq. (3.24) reduces to

(1+(2k')
I r g2

(4.1)

For this case we have derived the following scaling form
for Y(k, t) (see Appendix D):

where the D's obey Eqs. (3.21) and (3.22).
The multiexponential decay of Y(k, t) in Eq. (3.18)

should lead to a clear fingerprint of the slow dynamics of
the underlying S-A order parameter (ri) as observed by
scattering from the surfactant density (p). This term is
also responsible for the characteristic arctangent scatter-
ing form for t =0 (see Appendix A): the same physics
that leads to the breakdown of Ornstein-Zernike scatter-
ing for S (k, O) leads here to a nonexponential time depen-
dence. This is explored more fully in Sec. IV where we
calculate Y(k, t) for some special cases.

D~—:A„(k)(A+y„k ),
D =A (k)(a+y k ) .

(3.19)

(3.20)

Y(k, r) = y„'(„U(kg„,t/r. ),
16m

where

(4.2)

Within the Kawasaki-Stokes approximation [25,28], the
incorporation of hydrodynamic interactions leads to the
generalized Stokes laws

(4.3)

k~T
D„(k)= Q(kg„),

6m.p, g~

k, T
D (k)= Q(kg ),

6mp, gp

(3.21)

(3.22)

and where the scaling function U(x, z) is given in Eq.
(D2).

The function U(kg„, t/~, ) is a strongly nonexponen-
tial function of time t. Its precise form may be found by
numerical integration. However, for small k (kg„«1)
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we can replace U(x, z) by U(O, z), which obeys

U(O, z) = (1+4z)[1—@((2z)' )]
—2(2z/vr )

' exp( —2z), (4.4)

where 4( u ) is the usual error function [41]
[@(u)=2/v mf. oe

' dt]. Hence the relaxation rate of

I'(k, t) in this limit scales as g„, the well-known mean-
field result for critical slowing down in systems where hy-
drodynamic interactions do not dominate [42]. Combin-
ing Eqs. (4.2), (4.4), and (3.17) yields a relatively simple
expression for S(q, t) which could be a useful form for
fitting to experimental results; for example, in a sym-
metric sponge we have

exp[ l. t]— 1 (C+ —,'y, k')'
S(k, t)= + y„a+y k 16~ (g+y k )

1/2

exp( 2t /~, )— (4.5)

where the first term is not critical, and may be small in
practice.

The asymptotic behavior of the scaling function
U(O, z) is as follows:

1 —3. 19z' for z «1
U(O, z)= '

0.20z e ' for z »1 .
(4.6)

(4.7)

Hence for small k (i.e., for kg„« 1) the anomalous relax-
ation is manifested at short times as
Y(k, t) cc 1 —const X t ' and at long times as
Y(k, t)o-t ~ exp[ —constXt). We see that S(k, t) has
an algebraic prefactor even at long times, and the relaxa-
tion is never purely exponential [43].

We now consider (4.3) in the high-k regime (kg ))1),
which of course encompasses all k when one is at the crit-
ical point (g„~~ ). In this case we find that

the relaxation rate is proportional to k in this regime.
The scaling function U(z) has the following asymptotic
forms (Appendix D):

1 —1.02z for 2 «1
—&ra —z0.25z ' e ' for z »1 .

(4.9)

At short times this implies that Y(k, t) ~1—const Xt'
as for the low-k limit discussed above (though the con-
stant is different). At long times we obtain
Y(k, t) cc t '~ exp[ —const Xt), which again has a
power-law prefactor.

In Fig. I we present a logarithmic-linear plot of the
scaling function U(0, z) (which is relevant to the limit of
small kg„) as a function of the reduced time z. It is clear
that U(O, z) is a strongly nonexponential function, espe-
cially for short times. The same applies for the high-
wave-vector limit kg —+ ac for which the corresponding
scaling function U(z) is plotted in Fig. 2.

where

y
Tb (4.8)

and where U(z) is given by Eq. (D10). This shows that

B. Conservative case

We now turn to the case where r ' in Eq. (3.18) is so
small that it can be neglected. In this case we can use
without modification the Kawasaki approximation for
the hydrodynamic relaxation rate as given in Eq. (3.21).

0.1

-0. 1 0.1 0.3 0.5 0.7 -0. 1

I I I I

0.1 0.3
I I I I I

0.5 0.7 0.9
Z

FIG. 1. Nonconserved g, and k g'„=0. Scaling function
U (0,z j against the reduced time z = t l~, on a logarithmic-
linear plot. r, is given by Eq. (4.3).

FIG. 2. Nonconserved rt, and k(„~ao. Scaling function

U(z) against the reduced time z =t/v. b on a logarithmic-linear
plot. ~b is given by Eq. {4.8).
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We thereby find the following scaling form:

Y(k, t) = y„'gg( kg„, t/r, ),
16~

where ~, obeys

(4.10}

0.1

(4.11)

and is the "Zimm time" of a blob of linear size g„. The
full form of the scaling function F(k g„,t lr, ) is given in

Eq. (D17).
In the low-k regime ( k g„« 1) we can use

F(x,z) =F(O, z) for which we obtain a simple expression

0.01

-0.2 0.60.2
I I I I

1.4 1.8

4 2

F(O,z) =—f dy exp[ —2zy Q(y)]
o (1+y2)2

(4.12)
FIG. 4. Conserved r), and kg„= l. Normalized scaling func-

tion F(1,z) against the reduced time z =t/~, on a logarithmic-
linear plot. ~, is given by Eq. (4.11).

which has the following asymptotic forms [44]:

1 —2.29z' for z ((1
F(O,z)= '

0.20z for z))1 . (4.13)

Hence in the short-time limit Y(k, t) ~ 1 —const X t '~ .
For long times the relaxation becomes a purely algebraic
decay in time: Y(k, t) ~t ~ . This contrasts with the
conservative case discussed in Sec. IV A and is obviously
a very unusual behavior for S(k, t).

For the high-k limit (kg„» 1) we obtain in the conser-
vative case the following scaling form:

so that Y(k, t) ~ 1 —c onst Xt'~ at short times, and
Y(k, t)~t '~ exp( —constXt) at long times. The alge-
braic prefactor here, t ', is different from the one ob-
tained in long-time limit for nonconservative relaxation,
Eq. (4.9). The scaling function F(x,z) is plotted ir. Figs. 3
and 4 for reduced wave vectors x =0 and 1 (x =kg„),
and the scaling function F(z) (relevant for large kg„) is
plotted in Fig. 5.

C. Combined case

F(t lrd )
Y(k, t) =

—,', y

where

(4.14} When the two relaxation channels for g are compara-
ble we have to use a scaling function of three variables.
We can write

k~T
d k6', (4.15)

and where the scaling function F(z) is given in Eq. (D21).
Here the relaxation rate scales as k . The following
asymptotic forms are obtained (Appendix D):

Y(k, r)=y„'(„8'(kf„,r!r., tlr, ), (4.17)

Y(k, t)=y„'k

'8'(tlat,

,

tlat„),

(4.18)

where r, and r, are given by Eqs. (4.3) and (4.11). For
kg„»1 this reduces to

1 —0.87z'" for z«1
F(z)= '

027z e 8 for z )) 1
(4.16)

with Eqs. (4.8) and (4.15) for rs and rd. The scaling func-
tions W(x,y, z) and 8'(y, z) can be found numerically in a
similar way to those introduced above.

1
I I I I I I I I I I

0.1

0.01

0.001 I I I I I I I I I
I I I I

3 5 7 9 -0. 1 0.1 0.3 0.5 0.7 0.9

FIG. 3. Conserved q, and kg„=O. Scaling function F(O,z)
against the reduced time z =t/~, on a logarithmic-linear plot.
r, is given by Eq. (4.11).

FIG. 5. Conserved rI, and kg„~oo. Scaling function F(z)
against the reduced time z =t/~d on a logarithmic-linear plot.
7 d is given by Eq. (4.15).
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V. EFFECTIVE RELAXATION TIMES:
DYNAMICAL SCALING

S(k, O)
(5.1)

In the previous sections we have discussed in some de-
tail the shape of the time-relaxation function for the dy-
namic structure factor. Most previous theories of dy-
namics near a phase transition deal mainly with the cal-
culation of an e+ectiue relaxation rate I &

which does not
contain detailed information about the line shape
[14,15,19,16]. In the present context, the effective relaxa-
tion rate can be computed from Eq. (3.16) according to

dt S(k, t)

estimate the crossover wave vector to be at
1/2

1 ygPs

(( ) ks T'pin(g„/gp)
(6.3}

If the system is not too close to the transition (or for large
leakage time r), such that

k~T
ln " y„'r (6.4)

Ps kp

the regime k ' « k «g„' is wide enough to have a cross-
over to Eq. (6.2) and to the other results for the slow-rt
regime, before our assumption of kg„« 1 fails.

If the condition (6.4) is reversed, namely, if

S(k, t)=S(k, O)f(I kt), (5.2)

The (extended) dynamical scaling hypothesis (of Halpe-
rin, Hohenberg, and Ma [15])then states ksT

ln " y„'r
Ps p

(6.5)

where f (x) is some scaling function. We now check that
our results for the fast-p limit (and for the symmetric
phase) obey this dynamical scaling law. We consider as
before the two regimes (i) kg„&(1 and (ii) kg„))1. For
nonconservative relaxation of g, we can easily find using
Eq. (3.16) in Eq. (5.1) the results (i) 1 k -g„, and (ii)
I I,

-k . In the case of conservative relaxation of g
(where the Onsager coefficients are renormalized due to
the hydrodynamic coupling) we obtain for the corre-
sponding cases (i) 1 k -g„and (ii) I 1,

-k'. It is clear
from these results that the dynamic scaling hypothesis
(5.2) is consistent with the scaling forms found in Sec. IV.

VI. DISCUSSION AND CONCLUSIONS

k~T
I I,

— ln " k
Ps q p

with

yq ) k~T

v, g

(6.1)

(6.2)

which corresponds to the slow-g calculation [45], we can

We now want to determine the different regimes of ap-
plicability of the results discussed in Secs. III and IV. As
discussed in Sec. III B, the results reported there for the
fast-g regime should apply to the ultimate k~0 limit,
where the relaxation should be pure exponential. But as
k increases we should have a crossover to the behavior
reported in Secs. III C and IV (slow q). First, we assume
the crossover to occur when k(„&(1. Equating the
effective relaxation rate of the fast-g case

we have, contrary to our original assumption, a crossover
in the high-k region (k'g„&)1), so that k* is no longer
given by (6.3). Instead, we have to equate the result of
the slow-g calculation for kg„)&1:

k~T
I'k — ln k (6.6)

Ps k
p

with

k, r7J

7 Ps
(6.7)

corresponding to the fast-rt calculation for kg„»1. We
then obtain

k *ln 1

k'g
y cps

k~ T~
(6.8)

To summarize, if k g„« 1 then it is given by Eq. (6.3);
in this case (i) for k «k, I „ is given by Eq. (6.1), (ii) for
k* « k «g„', I k is given by (6.2), and (iii) for g„' « k,
I 1, is given by (6.7). If, on the other hand, k 'g„)& 1 then
it obeys Eq. (6.8), and in this case (i) for k «g„, I „. is

given by Eq. (6.1), (ii) for g «k «k, I „ is given by
(6.6), and (iii) for k &(k, I k is given by (6.7). Consider-
ing the relaxation function, for k &(k* we expect single
exponential decay, while for k »k* we predict nonex-
ponential decay as discussed in Sec. IV.

For the regime k »k', it should be useful to distin-
guish between regimes where either the conservative rate
gr the nonconservative rate dominate. Indeed, although
both terms in (6.7} contribute, for large enough k values
the conservative relaxation becomes dominant; we denote
this crossover by k*'. In Tables I and II we summarize

TABLE I. Effective relaxation rates I k and corresponding relaxation functions in different k re-

gimes, for the case k «g' ', where k —[1/(g„l' ][y~, /ks Trln(g„/( )]' and k**—y~, /kss Tr

ksT
ln —" k'

exponential

k'&k&(, '

y„1 kBT7]

v, g
Eq. (4.17)

f„'&k &k**

Bk T
'r Ps

Eq. (4.18)

kBT k'
p~

Eqs. (4.14), (4.16)
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TABLE II. Same as Table I but for the case k"»(„', where k obeys k*ln(1/k*g~}
-y~, /k&Tr, and k* -y~, /k&T~.

Y(k, E)

k &g„'

ksT
ln —" k

v, k,
exponential

g„'&k &k

k~T
1n k'

p, k

exponential

k &k&k

Eqs. (4.7), (4.9)

k**&k

k~T k'
Ps

Eqs. (4.14), (4.16)

the effective rates obtained for the four different regimes

of k values. The corresponding relaxation functions asso-

ciated with these regimes are also noted.
The above discussion is based on the mean-field treat-

ment and should therefore hold close enough to a tricriti-
cal point (or to the double critical end point). Far from
these high-order points, the mean-field exponents should
be replaced by "exact" exponents. A complete dynamical
analysis for this case is, however, beyond the scope of this
paper.

Nonetheless our mean-field results exemplify the
unusual decay profiles that can be expected from dynamic
light scattering in sponge phases. According to Eq.
(3.17), S(k, t) decays essentially in two steps: A fast
single-exponential decay, in which only a '(I+/ k )

decays, followed by a slow highly nonexponential decay
in which the critical part of S(k) decays. This is a clear
effect, which should be easily amenable to experimental
check. The crossover time from the single-exponential
decay to the multiexponential one should roughly scale as
—[Dzk ]

' [Eq. (3.22)]. Obviously, for a clearcut obser-
vation of both regimes the two terms in Eq. (3.18) [for
S(k)] have to be comparable.

Our results suggest that dynamic light scattering
should be a powerful probe of relaxation behavior in

sponge phases. To extract the best information from the
data it will be important to study decay prajtles as well as
simply the average relaxation rates as a function of k and

The predicted regimes of nonexponential decay, and
(for example) the marked differences between conserved
and nonconserved g, indicate that careful study of dy-
namic light-scattering data may enable key dynamical pa-
rameters of sponge phases (such as the leakage time r) to
be estimated for the first time. We hope that experimen-
tal work to test our new predictions will be forthcoming
in the near future.
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Ref. [2]. First we consider the free energy for small fluc-
tuations 5p=p —

po, where po is the average value of p.
Expanding the free-energy density (2.3) up to quadratic
terms in 5p, we obtain (omitting a constant)

f (r) = P5p+—,'a5p'+—,'y (V5—p)'+,' A rt'+—,'Brt'—

+—'y (Vrl) +—'y rlVg V5p+ —'C5prj

where we have defined

(A 1)

a =a +3bpo,

3 =A+Cpa,

—p=apo+bpo —p .

(A2)

(A3}

(A4)

It will be shown below that the constraint (p ) =po leads
to p =C ( g ) /2 or equivalently

p =apo+~po+
p
C('9 ) (A5)

Defining the Fourier transform of any field h (r) by
h (r) =+1,e'"'hk and taking the volume V to be unity, we
obtain 4=+1,f(k) with

f«)= —
P5P1,5(k)+-,'(a+yP'}5P~5p &

+—,'(A+y„k )r)),rt q+ ,'B g r) rtq-
q, q'

+ ,'5p „g(C+y—,k q)rt rlk (A6)

—(a/a „) f g dpdq„. -
k

[5(k) is the Dirac 5 function]. We must keep track of
any terms in 5pk o so as to obtain Eq. (A5) for p, al-
though these do not affect our result for S(k}. To obtain
the correlation function (static structure factor)
S(k)—= (5p&5p z) we add to f(k) a source term

e1, 5p&5p „and calculate S(k) according to

S(k)= (A7}
APPENDIX A:

THE STATIC STRUCTURE FACTOR

1. Formalism

Here we calculate S(k) in a nonperturbative way. This
calculation closely follows the perturbation calculation of

g dp~dg„e
k

Since the coupling to g is linear in pk it is possible to car-
ry the integration over the pk variables exactly. First we
rewrite f (k) as
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+ Cp lk l k0—k0 —k

2(a+y k +2@& )
(AS)

gk
—p5(k)f(k)= —,'(a+y k +2@„) 5pk+

a +rpk +2Ek

k
—p5(k)

X 6P k+ a+r k +2ek

+ —,'(A+yP )nkn i+—lB & nqnk —qnqn-k-q
q, q'

self-consistent equations for A and r „which lead to Fish-
er renormalization of the critical exponents. This is dis-
cussed in Ref. [2] and we do not dwell on this point here. ]
Thus within the Gaussian approximation for q we have
in the S phase A = A+C (571 )/(2a) and yz=y~
+C'y, (5q') /(2a').

In what follows we assume that r, is not too large so
that y„ is positive [21]. [More precisely we require

y, (y„a/(rloC)+Cy /a. ] According to Eqs. (A9) and
(A10) and (A13)—(A15), the structure factor is then ob-
tained as

(omitting a constant), where

k=T~ g (C+ Y,k q)vlqvlk q
.

q

We then obtain from Eq. (A7) (for kWO)

(A9)

S(k)= 1

a+r k

+ [ halo(C+ —,'y, k ) (5gk&] „)f(a+y k )
eff

S(k)= + ((kg k)f, (A10)
a+ypk2 (a+ypk2)2

where we have defined

+Q(k)], (A16)

where ( )f means average with the following effective
eff

Hamiltonian for [gk]:

f ff (A+y k )lkl —k+ B g lqlk —ql 'l —k—

Q(k)= —,
' g (C+y, k q)(C —y, k q')

X(5rl 5rlk 5rl 5rl „q )f (A17)

0k(—k CP lk l k-+
2(a+y k ) 2(a+y k )

(Al 1)

The calculation of Q(k) is similar to the perturbation cal-
culation of Ref. [2], but we nonetheless repeat it in the
second part of this appendix, where we show that

The origin of Eq. (A10) is very clear from the form of Eq.
(AS): —gk/(a+y k ) is essentially the average of 5pk
(for kWO) and (a+y k )

' is its variance. Note that for

y, =O we simply have gk~(g )k. Thus the fluctuating
field p describing the surfactant density is everywhere
biased by an amount that varies as q . To obtain a
Gaussian approximation for f,ff, we should expand f,ff to
order 5g where 5g=gp and gp is the average of g.
therefore minimizes the k =0 component off,ff, namely,

S(k)= 1

a+r k

(C+ —'y k )
+

(a+y k )

BOA
'

1 tan '[kg /2]
X +

16~ " " kg /2
7l

(A 18)

+CPo+ C vip+ B
a

C2
gp=0 .

2a
(A12)

The effective Hamiltonian also includes some terms of
higher than quadratic order in k, which are of no physi-
cal significance as they are omitted in the original expan-
sion Eq. (A6). Therefore it is enough to expand f,ff to or-
der k . We thus find (omitting a constant)

This differs from the perturbative result of Refs. [1,2], in
that effective values of coefficients replace bare ones: A

replaces A and y„replaces r„. In the symmetric phase

gp
=0 so that the first term in the square brackets does

not appear. In the asymmetric phase (g~AO) we may use
Eqs. (A12) and (A14) to equate goA

' in (A18) by
(2B —C /a ) ', which is a noncritical constant.

f ff —,'( A +y „k )5"7k5 1

where

(A13)

2. Calculation of Eq. (A18)

and

C2
2 C P

2a

Cr Cpr
r„=r„+up— ' —r, +

a a a

(A14)

(A 15)

Here we calculate Q(k) of Eq. (A17) as in Ref. [2].
The quartic correlation function can be written in terms
of sums of products of quadratic correlation functions
since the distribution is Gaussian [16]. We then obtain
(for any k&0)

5(k+ q' —q) +5(q+ q' )

(A+y„q )[A+y„(k—q)']
The constraint (5p) =0 then leads to p=C(g )/2 [see
Eq. (A5)]. [If the effective free energy Eq. (A13) is used
to calculate (5g ), then Eqs. (A14) and (A15) become and we thus obtain

(A19)
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C+y k.q(k)= —,'(C+ —,'y, k )

q (A+y„q )[A+y„(k—q) ]

(A20)

Converting the sum to an integral [i.e., dividing by
(2n ) ], performing the angular integration, and changing
the variables to x =kg and y =qg„where g„=y„/A
leads to

Y, (k)=
(C +y.k'/2)k'„

1+(x +y)
1+(x —y)

X . (1—x —y')ln
8x

+ —,'(y —tan '[y —x]—tan '[y +x])
)7 = oo

—y+tan '[y] ' =0. (A25)
Q(k)=(C+ —,'y, k ) Y(k),

where

Y(k) = A [ Yi(k)+ Y2(k)],
8m

(A21)

(A22)

y=0

The integral in Y2(k) is easily eff'ected to give [41]

Y2(k) = tan '[kg /2]
g3 9

so that we finally obtain

(A26)

yc 1
1

1+(x +y}
y ln

2 dJI
(C+y, k /2)g„4» 1+(x —y)

tan '[kg„/2]
Q(k)= (C+ —,'y, k } y„2$„ (A27)

dy
1+y

(A23) which leads directly to Eq. (A 18).

APPENDIX B: CALCULATION OF (gp)

Y(k)= ' " ~
1

'+' +"' d
1+& 1+(x —y)

(A24)

Although both integrals in (A23) diverge, Y, (k) is identi-
cally zero, as may be proved by integrating the first term
by parts; evaluating the resulting integrals, we obtain

To calculate (gl, (t)5p l,(0) ) in Eq. (3.15) we again ob-
serve that 5p l,(0) can be replaced by [46]
—gz(0)/(a +y k )+6 &(0) where b 1, is the ffuctuation of
pl, around its mean value —

gl, /(a+y k ); clearly

(bl, ) =0 and it does not contribute to Eq. (3.15}. We
therefore obtain

(g„(t)5p „(0))=— 1
go( C + —,

' y, k ) ( 5g|,5g „)exp[ —L „(k)t]
a+y k

+-,' g (C+y, k q)(C —y, k.q')(5g, 5'„,5g, ,5' ~,. )
q, q'

Xexp[ —[L„(q)+L„(k—q))t] ' (B1)

and using Eq. (A19) we get explicitly

(C+—,'y, k )
(g„(t)5p „(0)) = —

go exp[ —L„(k)t]
a+y k A+y„k

C+y, k q+ —,'(C+ —,'y, k ) g exp[ —[L„(q)+L„(k—q)]t]
(A+y„q )[A+y„(k—q) ]

Substituting Eq. (B2) in Eq. (3.15) and integrating over t
we obtain Eq. (3.16).

APPENDIX C: ADIABATIC LIMIT

To justify the claim made in Sec. III 8, we note that
close enough to the transition, g„)&g . We assume that
scattering wave vectors of interest always obey kg' «1.
(In many systems we expect that g is of the order of the
cell size d so this restriction is necessary any way for the

Landau-Ginzburg approach to be applicable. ) Therefore
for kg„«1, we have D„«D (namely, critical slowing
down). On the other hand, for kg'„» I, we have D„-k
and (since kg « 1)D -g ', hence D„«D .

We conclude that in the regime where g„&)g we have
D ))D„. This implies that in the regime k ))k, where

1/2

(C 1 )
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we have L (k) »L„(k). Comparing Eqs. (Cl) and (6.3),
we see that k* is smaller than k*, the crossover wave
vector between fast- and slow-g relaxation regimes.
Hence in the slow-g regime where the approach of Sec.
III B applies (k »k*), we always have L (k) ))L„(k).

APPENDIX D: SCALING FUNCTIONS

1. The nonconservative case

U(O, z) = (1+4z)[1—C&((2z)'/ }]
—2(2z/vr)' exp( —2z), (D6)

where 4( u ) is the usual error function [41]
[4(u)=2/3/vr fOe

' dt]. For z ((1 (short times) we

therefore have

For x ~0 we find from Eq. (D2) the following useful
expression:

In this case the angular integration in Eq. (3.18) can be
carried out in terms of known functions. We first obtain
[with scaling variables x =kg„, z =t/r, as defined in
(4.3)]

Y(k, t) = y„(„IU(x, z)+ U2(x, z)+ U3(x, z)],

8 2

3 77

1/2

3/2+
(

5/2
)

and for z ))1 (long times) it is

1/2

U(O, z) = 1 —4 — z +4z2 1/2

(D7)

where

U(x, z)= f dy exp[ —z(1+y )]
mx 0 1+y2

X [ Ei( —[1+(x+y) ]z)
—Ei( —[1+(x—y) ]z)],

U2(x, z)= f dy exp[ —z(1+y )]
2rrxz g 0 1+y

(D 1)

(D2)

1 exp[ —2z]
2V 21r z

For larger x ( =kg„}values, x ~ 1, we find, for z ~ oo,

exp[ —
—,'(4+x )z]

U(x, z) =
23/H. 1+x' z'" (D9}

Considering now the result (D2) at large k we find that
for kg„~ ~, Y(k, t) is given by Eq. (4.7) where the scal-
ing function U(z) is given by

and

X(exp[ —[1+(x+y) ]z]
—expI —[1+(x—y) ]z] ),

(D3)

U(z) = —f exp( —zy ) I Ei( —(1+y)2z)
0 y

—Ei( —(1 —y) z)]

with

= 2mz =k2
7

(D10)

(Dl 1)

U3(x,z)=, f dyy exp[ —z(l+y )]
2mx(„

X j Ei( —[1+(x+y) ]z)
—Ei( —[1+(x—y) ]z)],

(D4)

where Ei(x) is the exponential integral function [41]
[Ei(x)=—f" (e '/t)dt) We have fou.nd numerically

that

For z ((1we obtain

U( ) 1
1/2

3/2

and for z &) 1 we have

3/2 e
3/2 i /27r z

2. The conservative case

(D12)

(D13)

U2(x, z)+ U3(x, z) =0 (D5)

for an exhaustive range of values of x and z (although we
are not able to prove this analytically). This result is the
generalization to z&0 of Eq. (A25) (which corresponds to
the z =0 limit). The validity of Eq. (D5) is essential in
obtaining the scaling form Eq. (4.2) which is given in
terms of U(x, z) defined in Eq. (D2) above.

Y(k, t)= y„2(2Y(k, t),
8m

where

(D14)

In this case as well the scaling result (4.10) is not evi-
dent at first sight. Converting the sum in Eq. (3.18) to an
integral, we first obtain

Y(k, t)= f dq f dx
C+ —,'y, k'

q (C+y, kqx)

(I+/„q )[1+(„(k +q —2kqx)]

Xexp[ Dot/ '[q Q(qg„)+—(k +q —2kqx)Q((k +q —2kqx)'/ g„)]], (D15)
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where Do=ktt T/(6srls, ) and Q(x) is given by Eq. (3.23). We have checked numerically that

Y(k, t;y, )= Y(k, t;y, =0) (D16)

although we were not able to find an analytical proof for this relation. It is the equivalent of Eq. (D5), and is a generali-
zation to Eq. (A25) which corresponds to the t =0 case. Equation (D16) leads to the scaling form (4.10), with the scal-
ing function F (x,z) given by

oo
2

F(x,z)= —f dy f du exp[ —z[y Q(y)+(x +y —2xyu)Q((x +y —2xyu)' )]] .
(1+y )(1+x +y —2xyu)

For x =0 (i.e., when x « 1) we simply obtain

2

F(0 z}=—f dy
y exp[ —2zy Q(y)]

0 ( I+yz)z

which for z )) 1 behaves as

F(O,z) = 1
z 3/2

2(2sr )'/

In the regime kg„»1, we can use Q(x)~ax for x ~ 00 where u= 3sr/8, to obtain

F(Duk t)
Y(k, t) =

—,', y„'

(D18)

(D19)

(D20)

where

F(z)=
z dy du

2 i exp[ —az[y +(1+y —2yu) / ]]
0 —1 1+y —2yu

(D21)

For z « 1 it then follows from (D21)

F(z)= 1 —0.87z' (D22)

numerical integration), and for z » 1

41 (1/3) exp( —az)
2(2 )

t/3 1/3 (D23)

(where the numerical constant 0.87 has been obtained by [I (x) is the usual gamma function [41]].
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