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Exact effective-stress rules in rock mechanics
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The standard paradigm for analysis of rock deformation arises from postulating the existence of “an
equivalent homogeneous porous rock.” However, data on the pore-pressure dependence of fluid permea-
bility for some rocks cannot be explained using any equivalent homogeneous porous medium. In con-
trast, a positive result shows that deformation measurements on both high-porosity sandstones and low-
porosity granites can be explained adequately in terms of an equivalent two-constituent model of porous
rocks, for which exact results have recently been discovered.

PACS number(s): 47.55.Mh, 03.40.Dz, 62.20.Dc, 81.40.Jj

In poroelasticity [1], variations in confining pressure
and pore pressure both induce volume strains, but the
signs of these strains are opposite and the magnitude
differ. Some linear combination of these stresses will
therefore produce no measurable strain even though the
pressures themselves are changing. This fact leads natu-
rally to the concept of effective stress [2].

Virtually all previous theoretical analyses of effective-
stress relations for rocks [2,3] have used the same restric-
tive assumption used by Gassmann [4], postulating a mi-
croscopically homogeneous solid frame. Since natural
rocks are normally quite heterogeneous and therefore ob-
viously do not satisfy the homogeneity condition, the va-
lidity of such analyses rests on an implicit assumption
that an “equivalent homogeneous rock” can be found and
that the analysis of this fictitious homogeneous rock will
satisfactorily explain all available data. However, we give
a rigorous demonstration that some effective stress data
on fluid transport through porous rocks cannot be ex-
plained in terms of any equivalent homogeneous rock.
This counterexample to a common practice in rock
mechanics shows clearly that more sophisticated methods
are required to explain the behavior of porous media.

Rather than being model-based, our analysis relies on
scaling rules that porous media must obey. For example,
an insulating porous rock saturated with a conducting
brine solution is known to have the conductivity
g =g;/F, where gy is the conductivity of the brine and F
is called the formation factor. Neglecting some small
internal surface conduction effects, the formation factor
is a bulk property depending only on the twisted shape of
the internal pore space of the rock. Furthermore, F is a
scale-invariant property of the rock; if the rock and its
pore space could be uniformly expanded or contracted
everywhere, then neither the porosity ¢ nor the forma-
tion factor F would change. Although, in general, a
change of confining pressure 8p. and fluid pressure &p in
a rock does not produce uniform swelling or shrinking,
there is one set of circumstances where this happens:
Consider a microhomogeneous rock (one containing a
single type of solid grain) with no change in differential
pressure 6p; =8p. —8p;. Then, it is well known [2] that
this idealized rock undergoes a uniform expansion or
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contraction (implying constant ¢ and F), and therefore
the formation factor of such a rock can only be a function
of the change in differential pressure. Corresponding ar-
guments for the bulk and shear moduli (both of which are
also scale-invariant properties) show that they must also
be functions of the differential pressure, assuming only
that the material bulk and shear constants K,, and y,,
for the grains do not change significantly as a function of
the ambient pressure.

In terms of fluid pressure 6p, and differential pressure
Op, variations, the isotropic-stress—volume-strain rela-
tions are
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for the pore volume strain. The definitions of the various
moduli may be easily inferred from the statements of
these relations. The bulk modulus K is known as the
“jacketed” modulus, K, is the ‘“unjacketed” modulus,
and reciprocity [5,6] shows that K, =¢K /a, where

K

I—K—s. (3)

a

The remaining modulus K, is independent of the others
in general. Thus, the total volume and pore volume
strains depend only on the porosity and the three con-
stants: K, K, and K¢.

The effective stress principle for total volume V follows
immediately from the general stress-strain relation (1),
giving

8V _ 1

—7=k—(5pc—a5pf) , (4)

where the coefficient a was defined in (3). This coefficient
is often measured [3,7]. See Table I. The usual range of
valuesforais¢ <a=1.

Considering variations in porosity ¢="V,/V, we find
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TABLE 1. Values of ¢, K, K, and « for two different confining pressures applied to various rocks measured by Coyner [7]. The
value of the effective-stress coefficient 6 for expansion and contraction is computed from the given values of K and K.

p.=0 2.=10 MPa p.=25 MPa
Rock sample ¢ (%) K, (GPa) K (GPa) a K, (GPa) K (GPa) a 6
Weber sandstone 9.5 37.0 4.0 0.89 38.0 10.0 0.74 0.995
Navajo sandstone 11.8 340 13.0 0.62 34.5 16.5 0.52 0.974
Berea sandstone 17.8 39.0 6.0 0.85 39.0 10.0 0.74 1.000
Bedford limestone 119 66.0 23.0 0.65 66.0 27.0 0.59 1.000
Barre granite 0.7 54.5 13.5 0.75 55.5 215 0.61 0.988
Westerly granite (red) 0.8 53.0 24.0 0.55 54.0 34.0 0.37 0.971
Chelmsford granite 1.1 54.5 8.0 0.85 55.5 17.0 0.69 0.995
5¢ a—¢ throuzgh a2 Kozeny-quman relation [11,12] of the form
—72 oK (6p. —x8ps) , (5)  k=¢*/2s°F, where s is a measure of the specific surface
area (for an equivalent smooth-walled pore), so
where the coefficient is given by s ?=constX V2. Thus, H=¢,/F=¢*"" and
n ~2+m =4, which is in reasonable agreement with ex-
_ 1/K,—1/K; periment [13].
X=1- 1/K. —1/K 6) To find the effective stress for the permeability in the
’ Gassmann limit, we combine (4), (7), and (8). Then we
Experiments consistently show that an increase in  find
confining pressure results in a decrease in porosity, so
empirically the leading coefficient in (5) is positive and Sk _8H 238V _ a—¢ —=_ |(8p,—«x8p,)
$<a. k H 3V oK 3K | Pe"OPrls
Note that when only one solid constituent is present,
K, =K,=K,,, so x=1; thus, in the Gassmann limit, the )
effective pressure for porosity is just the differential pres-  ywhere the effective-stress coefficient for permeability is
sure p,, as expected. Fatt [8] has shown that y=0.85 in
some sandstones. Since Yy =1 is required for all homo- =1— 2¢(1—a) <1. (10)
geneous solid frames, this result is one clue that no 3n(a—¢)+2¢

equivalent homogeneous rock or set of rocks can be used
to explain all available effective stress data.

In contrast to formation factor F and porosity ¢, fluid
permeability for porous media is not a scale-invariant
material property: Darcy’s constant k has the dimen-
sions of (length)?, so a uniform swelling or shrinking of
the isotropic porous medium changes the value of the
permeability proportional to ¥2/3. The dependence of
the permeability on geometry may therefore be expressed
in general as

k =const X HV?*"? | (7

where H depends only on the relative positioning of the
grains and is therefore rigorously scale invariant. Like F,
the factor H will generally be a complicated function of
the confining and fluid pressures with no combination
leaving it invariant. However, also like F in the
Gassmann limit, when the pore space swells or shrinks at
the same rate as the grains, H is rigorously seen to be a
function only of the differential pressure. Well-known ar-
guments for the formation factor [9,10] show that
S8F/F~md¢/¢p, where m ~2 is Archie’s cementation ex-
ponent. In analogy with these arguments, suppose that

SH 8 _ _ |a—¢

The constant n may be related approximately to m

The inequality follows from the facts that ¢ <a <1 for
the homogeneous frame and that the denominator is al-
ways positive as long as ¢ > 0.

The bound (10) is important for an analysis of rocks. If
we suppose that any porous rock can be well approximat-
ed by an equivalent homogeneous rock, then (10) makes a
definite prediction that the effective stress coefficient «
must be less than unity for microhomogeneous porous
materials. Considering Table II, this prediction is verified
by the data on two corundum (Al,O;) samples with no

TABLE II. Sample properties from Zoback and Byerlee [14]
and Nur et al. [15].

Clay

Porous content

sample ¢ (%) (%) ko (mdarcy) K
Al,O;(A) 26 0 817 0.43
Al,04(B) 29 0 50 0.86
St. Peter 20 0.5 944 1.2
Brownstone 21 45 624 2.4
Berea 500 21 4.3 470 32
Massilon 24 6 995 3.5
Berea 19 8 42 4.0
Bandera 16 20.0 0.4 7.1
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clay content. However, (10) is in direct conflict with all
the other experimental results in Table II, showing that
the effective stress coefficient « for fluid permeability can
be significantly greater than unity for a variety of rocks
containing multiple constituents [7,14,15]. Thus, it is im-
possible to explain this aspect of the behavior of these
clay-bearing porous rocks under stress in terms of an
equivalent homogeneous frame. This result does not im-
ply that it is never appropriate to use “an equivalent
homogeneous frame” postulate when analyzing rock
data, but it does show that circumstances can arise in
very inhomogeneous rocks that invalidate such a postu-
late.

This negative result provides a strong motivation to
pursue a more rigorous analysis of porous media contain-
ing at least two constituents. Suppose the solid frame is
composed of two distinct porous constituents (say, type 1
and type 2), each of which obeys a volume stress-strain
relation analogous to (1) so that, microscopically, we
have —8V /v V=8p’/K'"+8p["/K\D, for i=1,2.
For two constituents, Berryman and Milton [6] have
shown that there exists a ratio of the macroscopic pres-
sure increments 8p. /8p =6 such that the relative
change in the volumes of each constituent (and therefore
of the composite) is the same. Thus, the composite
porous medium undergoes a uniform swelling or shrink-
ing so the shapes and relative positions of all the porous
constituents remain fixed while the overall size increases
or decreases. Furthermore, the microscopic pressure
changes equal the macroscopic ones, so 8p, =8p ;"' =6p ¥
and 8p,=58p;'=8p/*. The resulting formula for 6 is

1—6 1 a( 1) __ a(Z)

K _K_S=K‘“—K‘2) ' (1D

Both this result and another one for a [6] show how these
coefficients depend on the various constants of the
composite’s constituents.

The analysis just presented also demonstrates the ex-
istence of a new effective-stress principle. For the two
constituent medium, relative positions of the porous con-
stituents remain unchanged if the quantity
dp. —08p,=const, so changes in geometry depend only
on changes in this new effective stress. In the Gassmann
limit, 6=y =1.

Supposing the jacketed modulus K could be varied
without changing the properties of the two constituents
(for example, by somehow changing only the volume
fractions), then (11) implies

3(1/K,)
3(1/K)

(12)

This rule can be used to compute 6 from experimental
data on K and K| as a function of confining pressure [7]
to the extent that both properties are in fact changing
due to variations in the volume fractions of the constitu-
ents. For this approach to be valid, it is necessary (but
not sufficient) to find that the value of & computed this
way remains constant over some finite range of variation
8K, or equivalently that 1/K; is a linear function of 1/K.
It is normally observed that 3K, /9K =0 and, therefore,
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that d(1/K;)/3(1/K)=0.

To check whether these ideas agree with experiment,
we have replotted some of Coyner’s [7] data on K and K
(see Fig. 1) for various rocks to illustrate the linear
dependence of 1/K; on 1/K for confining pressures less
than 30 MPa. We have purposely excluded data on all
the materials for higher pressures since these rocks are
not expected to satisfy the simple linear model presented
here at the higher pressures. To validate the equivalent
homogeneous rock paradigm, these curves should all be
constant. To validate the ‘“‘two-constituent porous medi-
um” paradigm, they only need to be linear or nearly
linear over a small range of pressures. Although some of
the curves are indeed constant (Berea sandstone, Bedford
limestone), all the curves are observed to be nearly linear
over this range of pressures. Table I summarizes the re-
sults for 6.

Now consider a special case called the <‘“clayey-
sandstone model.”” One of the constituents of this model
has no porosity, so K‘?’=K!? and a'¥=¢*=0. The
other constituent has a very soft frame, so K‘"’—0 and
a'V—1. Substituting these limits into (11), we find that
a=~1—K/K!? and 0—a'’ 1. So K, ~K? and, using
the exact results [6], we find
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FIG. 1. The unjacketed compressibility 1/K; as a function of
the jacketed compressibility 1/K for six of Coyner’s [7] suite of
seven rocks. (Chelmsford granite is not shown since its curve is
close to that for Barre granite.) Pressure variation is illustrated
on the curve for Navajo sandstone, showing that the high end
corresponds to lower confining pressure (10 MPa) and the low
end to the higher pressures (25 MPa). In fact, Coyner’s mea-
surements continue to 100 MPa and almost all the curves begin
to deviate from linearity for the higher pressures, but this be-
havior is beyond the scope of the present study and therefore is
not shown.
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Defining v ,=V'V/V (the volume fraction occupied by
clay and voids), for this model the variation of v 4 is given
approximately by

1
K(Z) K(l)
m

m

(13)

Sv 4 1
o) ﬁ—F(SPC—OSpf). (14)
Then, we find that
vy—¢ 1 1
x=1+ - P IK . (15)

The porosity is given by ¢ =v ,¢'! initially. We use these
results when we need to evaluate formulas for the
effective-stress coefficient of fluid permeability.

It is shown elsewhere [16] that k ~k, /F ,, where k, is
the intrinsic permeability of the clay-void assemblage and
F, is the formation factor associated with the void space
surrounding the sand grains (i.e., with the clay absent).
Supposing that, as in (7), k; ’:constX(b';‘ V33, where
ny=~2+m;~4 and using V;=v,V together with
Archie’s law for F,=v 4 m’*, the effective-stress formula
for the permeability bound in the clayey-sandstone model
is given by

bk 8 28V bvu,
Ok _ L 28V
koM ¢ 3V 9 0y
=— a—¢ |, 2 _q B
=M g | T3k g |©OpexOp), (6

where ¢=¢v 4,9 =n,—m  —2, and

3n,(a—¢)x—a)—3qdK (6—a)/K'"
k=a+ ) %)
3n,(a—¢)+2¢—3qpK /K

Rigorous bounds on « are difficult to obtain because the
terms in the denominator of (17) do not have the same
sign.

In general, the total volume effective-stress coefficient
satisfies a <1, but the porosity coefficient ¥ can have
values either less than or greater than unity. Also, 6 is
restricted by the empirical inequalities a =<6 =1. Thus,
we find that the expression (17) can take a wide variety of
values because of the variability of y and K‘". For the
clayey-sandstone model, taking the limit K M _,0 we find
that k—6—1. However, if K''/K <<1 but remains
finite, then we can get a magnification effect due to some
cancellation in the denominator of (17). In the case of
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most interest, the result for « is given approximately by

k~a+M(x—0), (18)

where the magnification factor M ~40 if n;, =4, =0.85,
v,=0.25, ¢=0.2, ¢ =%, and K /KV'=10. Evaluating
(17) assuming Y ==1.1, the result for the effective-stress
coefficient is k~5. This estimate agrees reasonably well
with the experimental result for the Berea sandstone con-
sidered by Zoback and Byerlee [14] and Coyner [7].
Thus, if the effective grain modulus of the pore-filling ma-
terial K!!’ is sufficiently smaller than that of the sand
grains K,(,,Z’, we can easily find that both y > 1 and x> 1.

The theory shows that it is possible for the effective-
stress coefficient k to be greater than unity as observed by
Zoback and Byerlee [14], Nur et al. [15], and Coyner [7].
To obtain better quantitative agreement between theory
and experiment, we need to know values of constants
usually not measured, such as K ; or y.

Having demonstrated the necessity of using a two-
constituent paradigm for clay-rich sandstones, the next
question is how generally applicable this approach may
be. The presence of cracks in rock implies the presence
of at least two types of constituents: (1) the intact mi-
crohomogeneous material and (2) regions of otherwise in-
tact matrix material altered by the presence of cracks.
The deformation properties of these two types of constit-
uents may be quite different, since intact material gen-
erally will have a bulk modulus that is essentially in-
dependent of pressure for a very wide range of pressures,
whereas the bulk modulus of the cracked material is
much smaller. If—during the fluid-saturation process—
some fraction of the cracks remains unsaturated while
the remaining cracks become fully saturated, then a two-
constituent porous medium paradigm will be appropriate.
Table I and Fig. 1 show that, even for quite homogene-
ous granites like Westerly, the effective stress coefficient 6
deviates measurably from unity—suggesting that the
two-constituent model could be used in place of the
demonstrably inadequate equivalent homogeneous rock
approach.
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