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Optical-Bloch-equation method for cold-atom collisions: Cs loss from optical traps
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We develop an optical-Bloch-equation approach for modeling ultracold-atom collisions in optical
traps. The method incorporates a molecular picture of the atomic collision, laser-field dressing of the
molecular states participating in the dynamics, and decay of the population and polarization due to
spontaneous emission of excited states. The last is important to incorporate because the duration of the
cold collisions is longer than the excited-state lifetimes. The relative motion of the atoms during the
course of the collision is treated semiclassically with corrections for the time-dependent relative motion
of the atoms in the various channels. An application of the method to Cs trap loss due to fine-structure-
changing collisions is presented. Good agreement with experiment is obtained.

PACS number(s): 34.50.Rk, 34.50.Fa, 32.80.Pj

I. INTRODUCTION

Rapid advances in the laser cooling and trapping of
neutral atoms has led to much interest recently in col-
lisions of ultracold trapped atoms with T (1 mK [1—14].
Collisions at such energies in the presence of nearly reso-
nant radiation offer up a wealth of phenomena, including
collective effects in collisions, extreme sensitivity to the
long range of the potential, and collisions with initial
conditions corresponding to mixed states with both
ground- and excited-state character. Moreover, such col-
lisions are fundamentally different from those at normal
T because of the dissipative effect of excited-state spon-
taneous emission during the long time scale of the col-
lision. Therefore theoretical methods are required to
model and interpret these new types of experiments. Ul-
tracold collisions can cause loss of optically confined
atoms from atom traps. A good example is trap loss via
fine-structure- (FS) changing collisions of alkali-metal
atoms [4,8]

M( P3&2)+M~M +M+Aco, (1.2)

wherein a red-shifted photon is emitted in the wings of
the atomic transition and the separating atoms have
enough energy to escape the weak trapping forces. Trap
loss based on these mechanisms has been measured [9]
and calculated [8,10] for Cs atom traps, and predicted
[10] for all alkali-metal species. The simple theoretical
treatment of this process proposed by Gallagher and
Pritchard [8] (GP) was based on weak-field perturbation

M ( P3/p )+M ~M( P, )2 ) +M .

The fine-structure energy released is sufficient for the
heated atoms to escape the atom trap. Another mecha-
nism involves radiative escape (RE) [4,8, 10],

theory for exciting quasistatic distribution of ground-
state atoms. Julienne and Vigue [10] (JV) generalized the
GP model to treat the roles of angular momentum I and
the actual molecular states instead of an effective state
with averaged properties. Their picture addressed the
basic question of the energy variation of the reaction
rates for (1.1) and (1.2) from the normal to the ultracold
regime. In this picture, dissipation has two functions: to
establish the local steady-state excited population at each
R, and to cause the decay of this population as it evolves
to shorter distance under the accelerating inhuence of the
upper-state potential.

We present here a simple optical-Bloch-equation (OBE)
method of cold collisions in laser traps using a semiclassi-
cal treatment of the relative motion. An application of
the method to Cs trap loss due to fine-structure-changing
collisions is then presented. The method incorporates a
molecular picture of the atomic collision, laser-field
dressing of the molecular states participating in the dy-
namics, and population and polarization decay due to
spontaneous emission. The relative motion of the atoms
in the collision is treated semiclassically with corrections
for the time-dependent relative motion of the atoms in
the various channels. Time-dependent trajectory
methods have been employed extensively in the nuclear
physics literature to calculate the dynamics of the proba-
bility amplitudes for internal states of the nuclei [15].
They have also been used in atomic and molecular phys-
ics applications to model electron-atom excitation,
electron-molecule excitation, and atom-molecule excita-
tion, within the context of the time-dependent quasiclas-
sical close-coupling approximation [16]. The correction
factors incorporated here account for the widely different
trajectories in the ground and excited states. Thus the
cross sections and rate coefficients can be calculated so
that they are independent of whether the ground- or
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excited-state trajectories are used when suitably defined
correction factors are incorporated. The OBE method
has the following advantages over previous methods: (a)
saturation of the trap loss rate coeScient is automatically
included when the laser field is not weak, (b) multichan-
nel aspects to the trap loss process, e.g., when both FS
and RE mechanisms are simultaneously a6'ecting the loss
rate due to interactions among multiple molecular poten-
tial surfaces, can be easily treated, and (c) the OBE
method does not make the steady-state approximation for
the rate of optical excitation used in the JV and GP mod-
els. The consequences of the steady-state approximation
as made within the JV model are investigated and found
to be quantitatively inaccurate. Furthermore, the JV
theory will be derived by making the steady-state approx-
imation to the weak-field limit of the OBE for two chan-
nels.

The primary mechanism of excited-state trap loss col-
lisions in alkali-metal atoms is fine-structure-changing
collisions, which for Cs in the weak laser-field limit is

Cs(S,&2 )+Cs(S»2 )+fico~Cs2(O» P3/2+S)

~Cs(P, &2)+Cs(S,&z) . (1.3)

Although RE also contributes to trap loss, we consider
the FS process as the example for illustrating the OBE
method since it is the dominant mechanism for Cs trap
loss. Radiative escape can be treated by the same
method. Moreover, both processes can be calculated
simultaneously using the OBE method, with the mutual
effect of one on the other properly included [17]. Equa-
tion (1.3) can be viewed at weak laser fields as a three-step
molecular process. In the first step, the collision on the
ground 'X state of the Cs2 molecule leads to photoexci-
tation of the excited 0„+ state which asymptotically corre-
lates to the S1g2+P3y2 atomic term limit while the two
Cs atoms are very far apart (R ) 1000ao). In the second
step, the excited-state population evolves from the long-
range point of excitation on the 0„+ state component of
the A 'X„+ potential to R =R„, which defines the region
where a curve crossing of the A 'X„+ and the b II„states
occurs [R„=10ao ]. This leads to the third step, a transi-
tion to another 0„+ state which asymptotically connects
with the lower P&&2 fine-structure state. These processes
are illustrated in Fig. 1 which shows the potential-energy
surfaces involved (the X„+ state which correlates to
S&&2+S&&z does not play a role in the Cs FS-changing
collisions). The ground molecular state is designated by
g and the optically excited 0„+ state by a. In an ultracold
collision the motion is so slow on the time scale of the
excited-state lifetime, ~, =1/y, , and the thermal ener-

gy kT is so small that both steps 1 and 2 must take into
account the spontaneous emission that is responsible for
natural lifetime broadening of the excited state. At
strong-field strengths, both S&&2 and P3/2 atomic states
are asymptotically (R = ao ) populated, and the asymptot-
ic state of the system must be described in terms of a
mixed quantum state and is specified by a density matrix.
This complicates the depiction of the first step, but the
OBE treatment is fully capable of describing it.

18000

13500—

I I I I I I Ill

e a)

I I I I I I II1

2p
3/2

2p
1/2

E 9000—

QC

3g +
45QQ — u

0 + (state g)

I I I I I I II

10+
R 100

X
R (bohr)

R
C

FIG. 1. Potential-energy surfaces involved in the FS-
changing collisions of Cs. The ground state is designated by g
and the excited state by a in the t~o-state description used in
Sec. III.
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In this section we explain the reasons for using a densi-
ty matrix description to formulate the cold collision
theory, develop the OBE technique as applied to collision
phenomena, compare the OBE theory to the JV theory,
and use it to derive and generalize the JV theory under
the appropriate limits.

A. Rationale for optical-Bloch-equation method

A density-matrix description of dynamics is necessary
when incomplete information regarding a subsystem
(comprising the colliding atoins and the laser field) results
due to averaging over degrees of freedom associated with
the "bath" (corresponding to the spontaneous emission
degrees of freedom of the electromagnetic field). Averag-
ing results in a mixed state of the subsystem, which can-
not be described in terms of a pure state. The quantum-
mechanical description of such mixed states is in terms of
a density matrix [21]. The equation of motion for the
density matrix is ca11ed the Liouville —von Neumann
equation, or the Bloch density-matrix equation. In the
context of the interaction of light with rnatter, OBE's
have become a standard method to determine the dynam-
ics of a system which undergoes interactions with a radia-
tion field some of whose degrees of freedom are responsi-
ble for spontaneous emission and are reduced out of the
problem [22]. The elimination of the bath degrees of

For simplicity, we neglect the role of atomic hyperfine
structure, although it will be necessary to include such
structure in any complete theory. In principle, this can
be done within the OBE formalism, although it greatly
increases the number of channels.

Optical-Bloch-equation methods have been widely used
to interpret the complex optical pumping phenomena
that occur in laser cooling [18—20]. OBE's have also
been applied to show how very long-range collisions (at
distances comparable to the wavelength of light or more)
can interrupt the process of laser cooling and put a
density-dependent lower bound on the temperature which
can be achieved in some cases [14].

II. OPTICAL-BLOCH-EQUATION METHOD
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—p= ——[H(t),p] —Pt)p .
l

dt fi
(2.1)

The decay matrix I (t) accounts for the decay of the
excited-state populations and the polarizations (i.e., the
off-diagonal elements of the density matrix). Written ex-
plicitly in term of components, this equation takes the
form

l

& p;, =
&

IH—(t);»p», p;»H—(t)», ] I;, »(t—t)p»t, (22)
dt

freedom leads to expressions for the lifetime of the excit-
ed states and the line shape of the transitions between the
states of the subsystem [23].

The Bloch equation, dp/dt = —iLp, with the Liouville
operator incorporating spontaneous emission and decay
of excited-state levels, is given by

s (R(t))+Nfito 0
H (t)=o 0 e, (R(t))+(N —1)fito

(2.4)

Upon expanding the elements of the density matrix, p,-,
in slowly varying envelopes which oscillate at Fourier fre-
quencies men, p'; ', and making the rotating-wave approx-
imation, we obtain the set of equations governing the dy-
namics of the system [25,26].

As an example, let us take a two-channel case with a
ground-state molecular state (g) and an excited molecular
state (a), coupled to the ground-state channel via the
laser field. The two adiabatic channels, ~1) and ~2), are
given by ~1)=~g,N) and ~2)=~a, N —1), where the
second index indicates the number of photons in the laser
field. The zero-order molecule plus laser-field Hamiltoni-
an is given by

where summation convention over repeated indices is as-
sumed, and i,j,k, l =1,2, . . . , M, with M equal to the
number of channels used in the calculation.

where

s, (R (t))= V(R (t) }+Pi'l (1+1)/2pR (t)' .

The matter-field interaction Hamiltonian is given by

(2.5)

B. Practical implementation to ultracold collisions
in optical traps

A(R(t))
Il(R (t) )

0
(2.6)

In our application of the OBE method to cold-atom
collisions, both the Hamiltonian and the decay matrix are
in general functions of time through the relative coordi-
nate between the colliding atoms, R (t). We define a basis
set of states

~ T, I,P), where T is the entrance channel ki-
netic energy T=fi k /2p, p is the reduced mass, l is the
relative angular momentum of the colliding atoms, and I3
is an adiabatic channel index. The adiabatic channel is
taken to be a state of the molecule and the laser field.
The matter-field coupling operator H;„,(t) = E(x, t)p is-
not included in obtaining the adiabatic channel basis.
Here, E(x, t) is taken to be a single-mode electric field
which is nearly in resonance with an asymptotic atomic
transition, and is given by

E (x, t ) = [ 3 exp [ i ( kx tot ) ]+c.c—. ] /2, (2.3)

and p is the transition dipole moment matrix for the sys-
tem in the adiabatic channel basis. In the electric dipole
approximation exp[i(kx)] is taken to be unity [24], but
retardation effects can become important and lead to the
breakdown of the dipole approximation [10] (this can be
easily included within the present formalism). The
matter-field coupling operator is often expressed in terms
of the Rabi frequencies for the adiabatic channels,
0;~(t)= Ap, j.(R(t))/i}I, where p,j is the transition dipole
moment between adiabatic states i and j. The Hamiltoni-
an matrix elements take the form

H,,(t)=H. ..(t}—E(t)p,,
=H. ..(R(t))—A'Q, ,(t)e ' ' A'A,*,(t) 'e'. —

where

A(R(t))=(1~E(t)p(R(t))~2)/R . (2.7)

H;„,(t) has components which oscillate with e '"' and
e' ', whereas Ho(t) oscillates with e' ' with m =0, i.e.,
it does not oscillate. The density-matrix equations are
given by [25,26]

'&,p2'i'=[ 2i(R(t)) —to —'I, (R(t))]p,",'

—&(R (t) )(pIi' —pp2'),

iB,pzz'= [A(R(t))'p2", —c.c. ] iy ~22', —

iB,p, ,
'= —[Q(R (t))'p", —c.c. ]+iy ~2'~',

(2.8)

where I, is the decay rate of the polarization p2", , and

yg, is the decay rate of the population p22', and

to2, (R(t))=[e., (R(t))—eg(R(t))]/fi is the difference of
the two molecular potentials. We take I",s =y, /2, i.e.,
no proper T2 decay is necessary [21]. For the present ap-
plication to Cs, the decay rates are taken to be indepen-
dent of internuclear coordinate and given by yg, =

3

for the 0„+ state [10], where y„=(30X10 s) ' is the
atomic decay rate. For notational simplicity we shall
refer to p», p22, and p2, as pgg, p„, and p,g, respectively.(0) (0) (1)

Steady-state expressions for the density matrix can be
easily obtained at any given value of R by setting the time
derivatives in Eqs. (2.2) equal to zero. One thereby ob-
tains, after some algebra,

SS [n(R}/'
[[to,(R)—to] +I „(R)']y,(R)/21. (R)+21&(R)l'

SS Q(R) (1 2 ss)
[co~,(R ) to iI,s(R—)]—

(2.9}
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In the limit of small Rabi frequency these expressions reduce to

)Q(R)i'
[co2,(R)—co] +y,(R) /4

SS Q(R)
co2i(R ) co—i—y g,(R ) /2

(2.10)

where we have taken y, (R)/I, (R)=2. This reduces to the standard two-level result asymptotically where the Rabi
frequency and the decay parameters reduce to their R ~ 00 values.

For the case with a ground-state molecular channel g and two excited electronic state molecular channels coupled to
the ground-state channel via the laser field, which we call a and a', the three adiabatic channels ~1), ~2), and ~3) are
given by ~1) = ~g, N), ~2) =~a, N —1), and ~3) = ~ci', N —1). The zero-order molecule plus laser-field Hamiltonian is
given by

Ei(R (t))+NAco

Ho(t) = 0
0

E(R (t))+(N —1)fico 0
0 eq(R (r) )+(N —

1)enrico

(2.11)

and the matter-field interaction Hamiltonian is

H;„,(t)= —A' Q „(R(t) )

Q„(R(t))

Q»(R (t)) Q»(R (r))

d
Pij ijkl ( )Pkidt

(2.2')

the classical trajectory R (t) must be known, since the di-
pole moment, the molecular energies, and in general, the
decay rates are functions of time through the relative
coordinate. If we take the relative coordinate to be pro-
pagated on a reference potential surface, so(R),

dR = [2iLc[T—so(R (t))]I
' (2.13)

where T denotes the asymptotic relative kinetic energy of
the cold atoms, and if we take this same trajectory for all
channels to be this reference trajectory, the flux on a
given channel k will not have the correct motion. In or-
der to correct for this, we replace Eq. (2.2') by

d
P i

= iLijki(t)Pki Ck—(t)Ci( t),
dt

where the correction factors Ck(t) are given by

[&—[so(R (&))—so( ~ )]JCk(t)= .
[&—[sk«(r)) —sk( ~ )]]

(2.2")

(2.14)

(2.12)

The density-matrix equations for p'»', p22', p33', p'~z',

pi3', and pz3', similar to Eqs. (8)—(10), are easily obtained.
Generalization to more than three channels, and arbi-
trary radiative couplings between the channels is also
readily accomplished.

In order to solve the density-matrix equations,

These factors correct the terms in the equations for the
different velocities on the different channels. We shall ex-
plicitly demonstrate for the cases under study that the ar-
bitrary choice of propagating the trajectory R (t) on any
particular channel, say channel 1, and using the correc-
tion factors with channel 1 used as the reference channel,
produces results identical with those obtained by choos-
ing any other channel upon which to propagate R (t), say
channel a, and using the correction factors with channel
a used as the reference channel. Hence it really dues not
matter what trajectory is chosen. The choice is entirely
arbitrary and the results are insensitive to the choice.
Otherwise, no justification for choosing a particular tra-
jectory could be made. The. correction factors Ck are
designed to go to unity at large internuclear separation,
so that when R is large Eq. (2.2") reduces to (2.2').
These correction factors have been used in the quasiclas-
sical close-coupling approximation for probability ampli-
tudes [16]to obtain trajectory-independent results.

A heuristic explanation of these correction factors is as
follows. At a given value of R, the local velocities on
different channels are of course different. But this is not
accounted for in Eq. (2.2') for the rate of change of the
density matrix. Hence we multiply the terms on the
right-hand side of Eq. (2.2') proportional to pkk by
Ck(t)Ck(r) to account for the fact that the velocity in
channel k is different from the velocity of the reference
channel. Thus, if at a given R, channel k has a turning
point nearby, the contribution to the rates from the terms
with pkk will be enhanced because Ck(t)Ck(t) becomes
large. The form of the correction factor is motivated by
the WKB amplitude of the wave function which relates
to how much classical time is spent near a given value of
R. The correction factors modify the dynamics of the
density matrix so as to correspond to calculating a
trajectory-independent value of the density matrix P;.(R).
This can easily be seen by computing dp, - /dR, which,
from the expression
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dp; dp, dto

dR dto dR
1i—L,,k, (t)p„t C„(t)C,(t)

vo(t)

iL—Jktpk([2@[ T [s—k(R (t))—Ek( ~ )]]2@[T [E—((R (t) }—Et( oo )]]]
iL—(jktpkt [vk(R)vt(R)] (2.15)

is clearly independent of any reference trajectory; hence
p,"(R) is trajectory independent. Thus one need only
compute Eq. (2.15) and trajectory equations need not be
used, i.e., one need not compute (2.2") together with
(2.13), and therefore p;.(R) is trajectory independent.
Note also that without decay terms present, the density
matrix computed using Eq. (2.15) remains idenpotent.
Furthermore, with the decay terms such that state a de-
cays only to state g, and no decay out of the two-level
manifold is present, the density matrix computed using
Eq. (2.15) also remains idenpotent. A comparison of re-
sults using (2.15), close-coupled calculations, and wave-
packet density matrix calculations with the kinetic-
energy part of the Hamiltonian treated as an operator
will be presented elsewhere. We should mention that
the terms vk(R) ' =[2p[T [sk(R) ——sk( oo )]]]
which become singular near a turning point because the
local channel velocity goes to zero, can be regularized by
replacing them with amplitudes 3k ( R ) obtained from
uniform WKBJ wave functions [27].

Before beginning the propagation of Eqs. (2.2") and
(2.13}[or Eq. (2.15)], we must obtain the asymptotic den-
sity matrix p(t =0 [or p(R =large)], which serves as an
initial condition for the OBE, Eqs. (2.2"). To do so, we
perform an initial calculation by setting R (t =0) equal to
a large value (where the channel potential is very close to
its asymptotic value), and propagating the density-matrix
equation (2.13) with initial condition p; (t =0)=5;,5,
(i.e., the system is in the lowest molecular state asymptot-
ically), together with the coordinate with zero velocity,
dR/dt =0, until a steady-state value of the density ma-
trix is obtained. This procedure guarantees that the
steady-state asymptotic density matrix is obtained at
large R. The resulting density matrix is used as the initial
condition for the OBE equation (2.15) [or Eq. (2.2")
which is solved together with the trajectory equation
(2.13) with nonvanishing right-hand side], and the actual
propagation as a function of relative coordinate begins.

C. OBE theory of cold FS-changing collisions

The event rate R ( T} for the FS transition in the OBE
theory is given by

citation and survival due to steps 1 and 2 in Eq. (1.3) are
accounted for by the excited-state population,
p„(R~,l, b„g), which gives the total probability at
R =Rx that the molecule is found in the upper state due
to propagation in the region R )R&. The molecule in-
teracts in this region with radiation detuned by
A=co —

coo from the atomic resonance frequency coo, with
photon flux P (/=I/%to, where I is the laser intensity).
The structure of expression (2.16) looks like an ordinary
rate coefficient in which the colliding ground-state atoms
are converted to the P»2+S product atoms by a sequen-
tial process involving two probabilities, first
p„(Rz, l, b„g) for excitation and survival, then Px for
the FS transition itself. The probability P~ was calculat-
ed quantum mechanically by JV. In some cases it is well
approximated by the Landau-Zener probability at an iso-
lated crossing, though more generally, Rz merely indi-
cates a region in which the non adiabatic quantum-
mechanical coupling occurs.

D. Julienne-Vigue theory
of cold FS-changing collisions

ys, (R, b, )=[1+[25(R)/y,g] ] (2.18)

Here 5(R) is the detuning from the molecular resonance
frequency co2,(R), given by the R-dependent difference
between the upper and lower molecular potentials

A'to2, (R)=fito+fi5(R) . (2.19)

In the JV theory, the excitation in step 1 of the FS-
changing collision represented by Eq. (1.3) occurs from a
distribution of approaching atoms between R and R +dR
with relative angular momentum l and collision kinetic
energy Ek. The excitation rate G~, (R) is given by the
weak-field photoabsorption cross section,

G g, (R ) =o's, (R, b, )P =o P,""y,(R, b, )P, (2.17)

where o,"" is the peak photoabsorption cross section,

os,
""=A, /2m, and y, (R, 5) is the R-dependent Lorentzi-

an line-shape function normalized to unity at the peak,
5(RC) =0:

R(T)=K N = g(21+1)P~(l)

Xp„(R~,1,b„g)N (2.16)

where N is the atomic density, U = 6k /p is the asymptotic
velocity, g =2 is the ground-state degeneracy (for S,&2

neglecting hyperfine structure), both even and odd partial
waves contribute to the sum, and the symmetry factor of
—,
' accounts for homonuclear symmetry. All effects of ex-

In the conventional quasistatic picture, absorption only
occurs at the Condon point Rc(b, ) where the molecule is
in resonance with the light, i.e., tv2&(Rc ) = tv or
5(Rc)=0. Since the excitation step occurs in the long-
range part of the molecular potentials, where the
ground-state potential is flat and the excited-state poten-
tial varies as —C3/R, then Rc =(C3/A'b, )' . In the ul-

tracold theories of GP and JV, off-resonant excitation
when R is much smaller than the Condon point is also
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important, since the excited atoms are less likely to decay
by spontaneous emission if they are excited when they are
closer together.

The second step of the process in Eq. (1.3) is strongly
infiuenced by excited-state decay during the long propa-
gation time from the long-range R of excitation to the
crossing at R~ = 10a0. The excited-state population
which survives decay during this propagation is calculat-
ed semiclassically by

~ y,z(R')
S,(R„,R, l)=exp —f, dR'

~x v~ R ~1
(2.20)

where the trajectory is chosen for motion on the excited-
state potential a, and hence the velocity is taken as
v, (R', 1). There are ambiguities about the choice of this
trajectory that have been discussed by JV, and we will
also discuss these in Sec. II E below.

The third step, the FS transition at the R~ crossing, is
described by a probability P»(1) that for the case of Cs is

nearly independent of incident collision energy between
room temperature and T~O [10]. This probability can
be calculated quantum mechanically or semiclassically,
and is 0.43 for the Cs FS transition [10].

The event rate R (T) for the FS transition in the JV
theory is

R (T)=KgN =
2 g(21+1)P»(l)

The smallest R at which excitation is possible is the clas-
sical turning point on the ground-state potential for col-
lisions with relative angular momentum I; although
v (R ', 1) vanishes at this R ', the singularity in Eq. (2.22) is
integrable. Note that the semiclassical probability in Eq.
(2.22) should be interpreted as a dynamically determined
probability that is the consequence of motion on two tra-
jectories. The term dR'/v (R', 1) in Eq. (2.22) is the clas-
sical time spent in the ground state in dR ', and gives the
amount of time spent absorbing at rate G, (R'). It de-
pends on the ground-state trajectory. On the other hand,
the survival factor S, depends solely on the trajectory on
the excited-state potential. In our OBE formulation the
effect of both trajectories is included by using the correc-
tion factors described in Sec. II B. The integral probabili-
ty in Eq. (2.22) simply reflects the probability of being ex-

X Pg, (R», 1,b,g)N, (2.21)

where here N is the ground-state density. The effects due
to steps 1 and 2 of Eq. (1.3) are accounted for by the
excitation/survival factor, P, (R», l, b„g). In Eq. (2.21),
the colliding ground-state atoms are converted to the
P&&2+S product atoms by a sequential process involving
two probabilities, first P, for excitation followed by sur-
vival, then P» [the same P» as in Eq. (2.16)] for the FS
transition itself. The factor P', (R, l, b„g) gives the total
probability that the upper state will be excited at some R '

and survive to R:

P, (R, l, h, g)= f G, (R')S, (R,R', 1)dR'/v(R', 1).
R

(2.22)

cited to state a at R ' then surviving on a to R. Thus, we

see that the JV theory is actually a dynamical theory, al-

though it was originally derived as if it were a quasistatic
theory.

If we assume that v is large compared to the charac-
teristic velocity vs where the atoms move a distance
co/c =A. /2n in one natural lifetime rz„ then excited-state
decay during the collision can be ignored. In this limit
the integrand comes almost entirely from long-range ex-
citation, where R »A, /2n. , the parameters take on their
atomic values, and a simple limit is obtained [10]. The
integral in Eq. (2.22) becomes

Pg, (R, 1,b, P) =G„f exp[ —y ~ R '/v]dR '/v
gQ

=G~/r~ =f" (2.23)

where G„ is the atomic excitation rate and f is the
weak-field excited-state fraction. In evaluating (2.23) we
used the asymptotic limit yg, =y „[28],and take R» =0,
since R» «v/y„, the distance moved in a lifetime.
Thus the FS rate in this limit is

R (r) =K,N'=K' f"N'=K'NN', (2.24)

where E* is now the conventional excited-state rate
coeScient. The consequence of having an ultracold col-
lision with v &(Us is to move the excitation-survival pro-
cess from the atomic region, R »A, /2m, into the long-
range molecular region R & I,/2m. , where molecular exci-
tation and survival control the P, integral. Although in
the usual quasistatic theory the excitation is normally
thought to occur at the Condon point, the off-resonant
line-shape function in Eq. (2.18) allows excitation over a
wide range of R. In fact, JV showed that the rate for Cs
FS collisions at ultracold T comes primarily from dis-
tance R much less than R&, because the greatly improved
survival probability compensates for the smaller off-
resonance excitation rate. The effect of the off-resonance
line shape cannot be taken into account by standard
quantum collision theory based on calculating wave func-
tions, which assumes a conservative Hamiltonian, not a
dissipative system. However, the OBE method readily
handles the effect of dissipation.

E. Incorporation of OBE results into JV theory

We will now apply the semiclassical OBE theory to im-
prove the JV description of the collision and obtain a
better understanding of these novel collisions. We will
continue to work within the framework of a two-state ap-
proximation, using the relevant molecular potentials.

The density matrix p„(R,lb, , g) represents the proba-
bility of being in the excited state at R, given motion
along the trajectory from R = oo with angular momen-
tum 1, detuning 5, and photon flux P. But this same
probability in the JV theory is given by P~, (R, I, A, Q)
from Eq. (2.22), which integrates the excitation and/or
survival from R '= ~. Therefore P, and p„can be com-
pared directly. Also, the OBE version of the rate con-
stant, Eq. (7), is found by using p„(R») instead of
Pg, (R»). The JV expression for P, (R), from Eq. (2.22),
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uses the local steady-state excitation rate Gs, (R') found
by making a steady-state approximation to the OBE's.
The OBE equation for Btp„, is

~tpaa 2+ Impga ygapaa ~

for which the excitation rate at R in steady state is

G, (R ') =20 Imp, (R ')

(2.25)

ygNaa

Q(R')
5(R ') +[y,(R ')/2] +20(R ')

=G"(R')
5(R') + [ys,(R')/2]

(2.26)

in the weak-field limit. The weak-field excitation rate of
JV, Eq. (2.17},is equivalent to Eq. (2.26) given that

1Q(R'} = y s(R')$= —os~,""y,(R')P . (2.27)

Equation (2.26) immediately suggests another approxi-
mation which should be compared to the full OBE results
for p„(R). Instead of using the local steady-state solu-
tion Gs, (R') for the excitation rate in Eq. (2.22), use in-

stead the actual calculated rate,

G, (R')=2Q Imps, (R'), (2.28)

from the numerical OBE solutions for the given I, 6, and

P to calculate P, . Therefore we have three quantities
which will be directly compared in the figures, the nu-
merical p„(R), the quantity Ps, (R) calculated from Eq.
(2.22) using Gs, (R')=G, (R), and the quantity
P, (R) calculated from Eq. (2.22) using G, (R) in-
stead of Gs, (R'). When R is so large that all quantities
no longer depend on R, Eq. (2.23) can be written as

Ps, (R, 1, h, P) =p„(~ ), (2.29)

by using Eq. (2.26). So we see that the JV integral, Eq.
(2.22), goes to the OBE steady-state solution if neither the
potential nor detuning are dependent on R in the limit of
small intensities where saturation effects do not play a
role.

One other pleasing weak-field limit can be deduced
from the form in (2.26). When the detuning b, is compa-
rable to y „the region of excitation in the integrand of
(2.22) is spread out over a wide range, on the order for
u/y, . On the other hand, when the detuning is large,
6))y, [29], the excitation is concentrated in a narrow
region about the Condon point Rc(b, ), having a width of
about y, /Dc, where

den~, (Rc) d5(RC)
Dc= (2.30)

dR dR
Using the linearizing approximation dR =d6/D& near

R&, integration over the rapidly varying line shape in

(2.22) can immediately be done to give

lm(R, ) I'
P, (R, l, b, ))y „P)=2m S,(R,R', I) . (2.31)

A' Dcu(RC)

But the expression multiplying S, is just the single pass
Landau-Zener curve hopping probability that a transition
occurs at the Condon point from the g to the a diagonal
molecule-field potentials in (2.4) under the infiuence of
the field-induced coupling in (2.6). This shows that the
spontaneous emission width drops out of the excitation
probability when the excitation region is well localized,
and the conventional scattering-in-fields picture of the
collision applies, though now modified by the probability
& 1 of survival on the excited state.

There is an additional problem which needs to be ad-
dressed in relating the OBE and JV theories, namely, how
to choose the excited-state trajectory used in computing
the correction factors in the OBE theory. Both JV [10]
and Gallagher [13] have discussed the problem of choos-
ing excited-state trajectories in ultracold collisions. If the
excitation occurs when the atoms are very far apart and
noninteracting, then clearly both states g and a evolve
with the same velocity and the initial kinetic energy of
the excited state is the same as in the ground state:
T, ( ~ ) = Ts( ~ ), where we are using the notation
TI, (R ) = T e& (R ) =—(p/2) [ul, (R ) ] . Overall energy con-
servation is satisfied when Rayleigh scattering occurs
since the emitted photon has the same frequency as the
incident photon (we omit laser cooling considerations
here). On the other hand, when a molecular transition
occurs during a conventional collision in a radiation field,
energy conservation dictates that the excited state has
asymptotic kinetic energy T, ( oo ) = T ( ~ )+fib, . Overall
energy conservation is satisfied since the frequency of the
light emitted after the collision is the atomic transition
frequency no=co —b. This is the familiar process of the
collisional redistribution of light [30,31]. When an ul-
tracold collision occurs, the finite excited-state lifetime
leads to off-resonant excitation during the collision, lead-
ing to a spread of energy in the excited-state wave packet.
If the detuning is much greater than }s„Eq. (2.31) above
shows that the lifetime broadening effect is negligible and
the transition is localized near the Condon point Rc(b, ).
Conventional energy conservation applies, and choosing
the excited-state trajectory according to
T, (ao )=T ( oo )+RE ensures that the classical Franck-
Condon principle (CFCP) is satisfied at the Condon
point, that is, the excited-state velocity after the transi-
tion, u, (Rc), is the same as the ground-state velocity
us(Rc) before the transition.

For small detuning 6 on the order of y, the excitation
is delocalized, and the CFCP is only satisfied at R~ if the
conventional energy conserving trajectory is chosen. Be-
cause of the pleasing physical picture behind the CFCP,
i.e., no sudden velocity jumps occur in the semiclassical
picture when the photon is absorbed at a particular point
on the trajectory, both JV and Gallagher [13] argue that
it may be a good approximation for off-resonance excita-
tion in ultracold collisions. Enforcing the CFCP creates
an excited-state wave packet with a spread of energy. JV
found better agreement with the measured Cs trap loss
experiment [9] when the CFCP was used for choosing the
initial excited-state velocity for calculating the survival
integrals.
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F. Correction-factor modifications

In our OBE theory there is no identifiable "point" at
which a photon transition occurs, rather, the density ma-
trix evolves in time under the influence of radiative and
interatomic interactions. However, the trajectories,
which define the time dependence and the correction fac-
tors, must be preselected according to some criterion.
Our results for the density matrix are independent of
whether ground- or excited-state trajectories are used,
but the final density matrix does depend on the criterion
used to select the excited-state trajectories. This is one of
the limitations of the semiclassical OBE method. One
choice we make is T, ( 00 ) =Ts( ~ ), so the asymptotic ve-
locities in the ground and excited states are the same. We
call this the asymptotic trajectory choice. In this case,
the correction factors all go to unity as R ~00. This
choice does not satisfy the CFCP at R~, and tends to
make the survival factors too large, since the velocity will
be too large as the atoms come together. A second
choice, which we designate energy conserving, uses the
energy conserving excited-state trajectory, hence
T, ( ~ ) = Ts( ~ )+A'A. This satisfies the CFCP at Rc but
gives unphysical correction factors %1 as R~ao. A
third choice is a hybrid trajectory for calculating the
excited-state correction factors, namely, one which is the
ground-state trajectory for R )Rz and switches to the
conventional energy conserving trajectory for R &Rc.
We call this the switched trajectory choice. This satisfies
the CFCP at R =00 and at R =R&, though not else-

where, and has unit correction factors for R )R, . The
switched correction factor choice takes the velocity on
the excited-state trajectory equal to

Us(R) for R )Rc

[2p[T [s,(R)—s, (—~ )
—A'6]] ]' for R Rc

(2.32)

It leads to the right result, Eq. (2.31) for the case of large
red detuning, and hopefully is reasonably correct for
small detuning also. Table I summarizes the kinetic ener-
gies at R = 00 and R =Rc for the three choices.

In order to solve the problems associated with the
spread of the wave packet in space and energy, it is neces-
sary to use a fully quantal, rather than semiclassical, for-
malism. A time-dependent density-matrix approach is
needed with the kinetic energy treated as an operator
[32], i.e.,

l

dt ' '
fi

p(R, R '; t) = — [H (R )p(R, R '—
, t)

—p(R, R';t}H(R')]—I p, (2.33}

where the Hamiltonian matrix operator H(R )

= T(R)1+V(R) is a differential operator because of the
nuclear-kinetic energy term. Some preliminary treatment
along these lines has been given for very long-range col-
lisions by Smith and Burnett [14] and for trap loss col-
lisions by Julienne, Smith, and Burnett [33]. The present
OBE approach is only an approximation to the full
density-matrix treatment of Eq. (2.33) and the relevant
physics of the relative emotion has to be properly built in.
The full treatment will yield a continuous distribution of
asymptotic kinetic energies centered around Tg( ~ ) and

also centered around T ( ~ )+A'b, .

III. CS FINE-STRUCTURE-CHANGING
COLLISIONS

We will now test the OBE theory and compare it
against experiment and against the JV theory. In the cal-
culations reported here we only consider FS-changing
collisions. This is the dominant mechanism for trap loss
of Cs for small detunings and low laser intensities. In
planned publications we will report calculations includ-
ing both FS-changing collisions and RE for a number of
alkali-metal atoms.

A. Calculated density-matrix elements

Initially, we consider calculations at low laser intensi-

ty, where saturation effects are unimportant. The laser
intensity is taken to be 1.4X 10 W/cm . The laser fre-
quency detuning b, /2m is taken to be equal to Cs I'
excited-state decay width yg, /2m. =5.3 MHz, i.e.,
5/2m. =[co—coo]= —5.3 MHz. The calculation is per-
formed for a kinetic energy corresponding to a tempera-
ture of 0.3 mK (T=9.5X10 ' hartree). We first con-
sider the relative angular momentum 1=0 channel. In
these calculations we shall first use the asymptotic correc-
tion factor choice. The same excited-state trajectory was
chosen to calculate the survival factor in making compar-
ison with the I's, calculated from Eq. (2.22).

Figure 2 shows the calculated excited-state population
p„(R,1, b, P) versus internuclear distance R for the values
of 1, b„and P specified above. We started the propaga-
tion of the density matrix at R =4000 bohrs with the
equilibrium density matrix given in Eq. (2.9). Crossing of
the ground state g ['Xg +fico] and the excited state [0„+]
occurs at the Condon point R& =2931 bohrs when the
detuning equals —5.3 MHz. The probability for being in
the excited state increases as R (t) approaches Rc from
R )Rc. As R (t) decreases significantly below the cross-
ing radius, the population begins to decrease drastically.
Below R =2000 bohrs, oscillations in excited-state popu-
lation are superimposed on the generally decreasing
excited-state population. Figure 2 actually plots the re-
sults of two different calculations using different trajec-

TABLE I. Kinetic energies for the three choices of excited-state trajectories.

R =Rc
R =Do

Asymptotic

Tg ( ~ )—V. (R )
T (oo)

Energy conserving

T (ao) —M, —V, (R)
Tg( ao ) —fih

Switched

Tg( ao )—Ah —V, (R)
Tg(~ )
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FIG. 2. Excited-state population p„(R) vs internuclear dis-
tance R. The calculation is for 1=0, 5= —5.3 MHz, and
T=9.5 X 10 ' Ry (0.3 mK), I = 1.4X 10 W/cm . Two
different calculations using different trajectories are shown, as
described in the text. The results are practically indistinguish-
able.

FIG. 4. Comparison of excited-state population vs internu-

clear distance for1=0, 6= —5.3 MHz, and T=9.5X10 ' Ry
(0.3 mK), I =1.4X10 ' W/cm computed with correction fac-

tors and without correction factors using ground- and excited-

state trajectories.

tories. The first calculation solves Eqs. (2.11) and (2.13)
for the trajectory on the ground-state potential, using the
corresponding correction factor for the excited state, and
the second calculation solves for the trajectory on the
excited-state potential with the corresponding correction
factor for the ground-state trajectory. The differences in
the results are negligible and can hardly be seen in the
figure, despite the fact that the actual trajectories are rad-
ically different, as evident in Fig. 3 which plots R (t)
versus time for the two different potentials. It is for this
reason that we plot our results for the excited-state popu-
lation p„and the coherence p, versus R, and not time.
Figure 4 compares the excited-state populations obtained
using the correction factors which are trajectory indepen-
dent (solid curve) with the results using no correction fac-
tor and propagating on the ground- and on the excited-
state trajectories. The excited-state population obtained
without correction factors and using the ground-state tra-

0.06 ( I I I I I I I I I I I I I I I I I I I I I I I I I I I ) I I I I I I I I I I

:Cs

jectory decays more rapidly than it should because the
ground-state velocity is slower than the actual velocity on
the excited state. The excited-state population obtained
without correction factors and using the excited-state tra-
jectory decays as it should but is reduced because less
time is spent being excited from the ground state. (The
slight discrepancy between the results at R =4000 arises
because the correction factors are not quite unity at
R =4000 due to small nonvanishing excited-state poten-
tial, and the "asymptotic" values of p;. were computed at
R =4000 with these nonunity correction factors. We
could have started the calculation at larger R thereby re-
ducing this discrepancy. )

Figure 5 shows the coherence, Im[p, (R ) ], which
drives the difference in population, pgg

—p„', this quantity
is proportional to the rate of excitation of population [see
Eq. (2.25)]. Im[p, (R)] peaks at about R =2600 bohrs
(as opposed to the steady-state coherence which peaks at
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FIG. 3. R (t) vs time for the ground- and excite-state poten-
tials for the parameters of Fig. 2.
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FIG. 5 Im[p, i R)] vs internuclear distance R. Also shown is
the steady-state value of this coherence, Im[pss]. The calcula-
tion is for I =0, 5= —5.3 MHz, and T=9.5X10 ' hartree

(0.3 mK), I =1.4X10 W/cm .
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Rc for weak laser fields) and then rapidly decreases be-
fore beginning to oscillate rapidly around a value of zero
for R less than about 2000 bohrs. Also shown in the
figure is the steady-state value of this coherence, Im[p, s ],
versus internuclear distance. Im[p,s] and the calculated
value Im[p, ] have much in common. Im[p, s] passes
through the oscillations in Im[p,s] at small R, and the
quantities are very similar at large R. However, the tem-
poral variation of the coherence as a function of R is too
rapid for good agreement with the steady-state values of
Im[p, ] in the region 2000&R &3000 bohrs. The oscil-
lations in Im[p,s] about zero and its zero average value
are due to the large detuning 5(R)=co&i(R)—roo. (The
slight discrepancy between p; and p; at R =4000 arises
for the same reasons stated in the preceding paragraph. )

Figure 6 compares the calculated excited-state popula-
tion p„(R,I,b„g}versus R with the steady-state excited-
state population p„(R,I, b„P), the population
Ps, (R, l, b„g), and the population Pg, (R, l, h, g) deter-
mined using the numerically calculated p,s (R, I, 6,P ) as
described in Eq. (2.28). The steady-state population and
the calculated population are similar at large R, but at
smaller R, p„decrease with decreasing R much faster
than p„. The excited-state population is not in steady
state and the decay of the population is considerably
slower than the steady-state approximation yields. The
population P, behaves much more similarly to the popu-
lation p„ than the steady-state approximation. The de-
cay of the excited state as calculated by the semiclassical
excited-state survival factor (2.20) contains the right
physics to describe the decay. Nevertheless, there are
significant difFerences between the P, and p„. At small
R and near the peak of the excited-state population at
R =2600 bohrs the differences are quite apparent. Upon
using Eq. (2.26) for Gs, (R) in Eq. (2.22) to obtain P,
improved agreement with p„ is obtained.

We now consider higher relative angular momentum
channels. When I )0, propagation of the OBE's is
stopped for R & Rs(l), the turning point on the ground-
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FIG. 7. Excited-state population p„(R) vs internuclear dis-
tance for i=20, 5= —5.3 MHz, and T=9.5X10 ' hartree
(0.3 mK), I =1.4X10 W/cm .

state potential. No excitation is allowed for R &R (I)
and the dynamics only involves decay. Figure 7 shows
the excited-state population versus internuclear distance
for l =20, and the l =0 excited state is also shown for
comparison. The small peak in p„at R =1400 bohrs
arises due to the classical turning point on the ground-
state potential for collisions with relative angular
momentum I at this R. The velocity near a classical turn-
ing point on the ground state for finite l becomes slow as
the probability of excitation to the excited state increases
near the turning point. The population at small R is
enhanced for l )0 because of the longer time spent ab-
sorbing near the turning point on the ground-state trajec-
tory. Figure 8 shows the excited-state population versus
internuclear distance for I =40, the population
P, (R, l, b„g), and the population P, (R, l, b, g) calcu-
lated using Eq. (2.26} for Gs, (R) in Eq. (2.22) to obtain
P, . Here the peak due to the classical turning point on
the ground-state potential is much more pronounced and
it occurs at larger R because of the larger I. Again, the
P, shows fairly good agreement with the calculated
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I=1.4X10 ' W/cm'.
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p„. For l =40, the probability p„(R+,l, b, ,g) is already
very small and it continues to decrease with increasing l.
The cutoff in I is numerically performed in analogy with
the discussion in JV and is determined by either ground-
or excited-state trajectory considerations, depending
upon detuning [10].

We now change the laser intensity to the regime where
saturation becomes significant. The laser intensity is tak-
en to be 0.07 and 35 mW/crn . The laser detuning is not
changed, and we initially consider l =0. Figure 9 shows
the OBE excited-state population versus internuclear dis-
tance for these intensities. The 0.07 mW/cm result
looks like the low intensity result shown in Fig. 2, but the
population is higher, whereas at 35 mW/cm the popula-
tions are highly saturated asymptotically, and the behav-
ior of the populations as a function of internuclear coor-
dinate is significantly different, e.g., the oscillations of
population with internuclear distance does not occur.
Also shown as dashed curves are the OBE results using
the excited-state reference trajectory with the appropriate
correction factor, and as is evident, the results are almost
indistinguishable (except inside 1250 bohrs for 35
mW/cm where there is a small discrepancy that is due
to integration inaccuracies). Figure 9 also compares
p„(R ) with Ps, (R, l, b, P) for the high intensity case. At
high intensities, the population Pg, (R, l, h, g) does not
follow p„(R) at large R, since the JV model is a weak-
field model which does not take into account the finite
asymptotic value of the excited-state population or the
strong-field coupling occurring during the collision. The
expression for P~, (R, l, b„g) overestimate the excited-
state population at large R because the excitation rate is
calculated assuming all the population is in the ground
state.

If the asymptotic choice in Table I is made, the formu-
lation for the correction factors in Eq. (2.2") insures that
the [ Ck (R )] are asymptotically equal to unity. In other
words, the asymptotic kinetic energy on the excited-state
surface is taken equal to the kinetic energy on the

I I I I I I I I I I I I I I I I I I I I I I I I I I « I I I I I I I I I I I1

p JV(
W/cm

ground-state surface. The rationale for this is that upon
asymptotic absorption of a photon and excitation of the
ground state to the excited state the kinetic energy does
not change, even if the detuning of the laser frequency
from resonance is large. However, what happens to the
kinetic energy if a photon is absorbed at finite R? In par-
ticular, what happens to the kinetic energy if the photon
is absorbed at the Condon point Rc(b, )? The local veloc-

ity on the ground-state trajectory is given by
vg(Rc)=[2p[T [eg—(Rc)—eg( ~ )]]]'~, whereas the lo-
cal velocity on the excited state is given by
U, (Rc ) = [2p [ T [Eg (—Rc )

—
eg ( ao ) ) ] ]' ~ . Thus the local

kinetic energies on the two channels are not equal at the
Condon point. This does not correspond to the usual as-
sumption that the local velocity does not change if the
optical transition occurs at the Condon point. The
switched correction factor choice described in Sec. II F
and Table I takes the velocity on the excited-state trajec-
tory equal to

U (R) for R )Rc
[2IM[T [E,(R)——e, ( oo )

—Ab ] j ]' for R Rc

(3.1)

and thus, the correction factors depend on the detuning
for R ~Rc, and the CFCP is satisfied at Rc. We have
numerically computed the dynamics using such switched
correction factors. Figure 10 shows for the weak-field
case and small detuning, h=y „the results of the three
different trajectory choices indicated in Table I. These
choices affect the way the correction factors are calculat-
ed, and lead to different results, even though, for a given
choice, running ground- or excited-state trajectories give
the same results. The curve labeled "asymptotic" corre-
sponds to the choice used in Figs. 2 —9. For this choice
the excited-state kinetic energy is the highest throughout
the trajectory, so survival tends to be better. The curve
labeled "switched" is smaller in magnitude, since survival
is less because of the slower motion on the excited-state
potential. The curve labeled "energy conserving" has a
choice equivalent to the "switched" choice for R &Rc,
but is unphysical in that the ground and excited states
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FIG. 9. Excited-state population p„(R) vs internuclear dis-
tance, R for two different intensities, I =0.07 and 35 mW/cm',
and I =0, 6= —5.3 MHz T=9.5X10 ' hartree (0.3 mK).
Two different calculations using different trajectories are shown,
as described in the text. The results are practically indistin-
guishable.
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evolve with different velocities as R —+DO. Because the
velocity in the excited state is too low at large R, it has
poorer survival from large R. However, since most of the
excitation for the Cs case comes with R &Rz, where the
"switched" and "energy conserving" trajectories are
equivalent, both give essentially the same results for the
probability p„(R) at small R.
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FIG. 11. Trap loss rate vs detuning calculated using asymp-
totic and switched correction factors for laser intensity I =10
mW/cm . Also shown is the JV result assuming the CFCP is
satisfied at each R at which excitation occurs.

B. Fine-structure rates
versus detuning and intensity

Figure 11 shows the calculated FS contribution to the
trap loss rate coefficient, as a function of red detuning for
a total laser intensity of 10 mW/cm . The rate coefficient
is 2K, where E is calculated from Eq. (2.16), since two
atoms are lost from the trap for each FS transition. Re-
sults are shown for the asymptotic" and "switched" tra-
jectory choices discussed in relation to Table I. For small
detunings, A=y „the two methods give similar results.
However, the rate for the former rises faster than the rate
for the latter as detuning increases. The "asymptotic"
choice violates the CFCP at Rz, brings the atoms to-
gether too fast, and causes the survival factor to be too
large. Although the "switched" and "energy conserving"
trajectories in Table I are equivalent for R &Rz, the
"switched" trajectory is to be preferred to the "energy
conserving" one, since when Ah))kT, the excited-state
kinetic energy for the latter is negative or nonclassical
over much of the long-range part of the trajectory where
R )R&. Figure 11 also shows the result of the JV formu-
la, calculated with the "L" approximation of JV, for
which the excited-state survival factor, Eq. (2.20), was
found by assuming the CFCP is satisfied at each R at
which excitation occurs.

Figure 12 compares the calculated rate coefficients
versus laser intensity with the data points reported by

I
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5 10
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FIG. 12. Trap loss rate vs laser intensity for 5= —5.3 MHz.
The points show the data of Sesko et al. [9].

Sesko et al. [9] due to ground- plus excited-state col-
lisions in a magneto-optical Cs trap at about 300 pK.
The FS contribution was calculated using the OBE
theory with the "switched" trajectory correction factors.
We added to this the smaller RE contribution calculated
by the JV theory [10].The results of the JV calculation is
also shown in the figure, where the JV survival factors
were calculated as for Fig. 11, that is, the CFCP is
satisfied at each R at which excitation occurs. Since most
of the excitation in the JV theory comes from the region
with R &Rc, the survival factors tend to be smaller in
the JV theory than in our OBE calculation, and the JV
rate coefficient lies below our OBE result. The data are
bracketed by the two results.

The near-linear intensity dependence indicated by the
data in Fig. 12 is also reproduced by the OBE calculation
(the JV theory is a weak-field theory inherently linear in
intensity). The Rabi frequency 0, defined by Eqs. (2.7)
and (2.27), equals one molecular linewidth, ys„at an in-
tensity of 36 mW/cm . The atomic on-resonance satura-
tion intensity is about an order of magnitude less. Al-
though the experimental power is above the atomic satu-
ration intensity, our calculations show the molecular
transition is not yet saturated. Careful examination of
Fig. 12 shows that the OBE curve does show some curva-
ture, implying the beginning of saturation. Moreover,
the slope of the OBE curve at very low intensities is
larger than the apparent linear slope seen in Fig. 12. At
an intensity of 40 mW/cm the calculated rate is only
about half of that found by assuming the linear intensity
dependence extrapolated from the slope of the calcula-
tions with power ~2 mW/cm . Since the FS mecha-
nisms are very different in the various alkali-metal
species, we might expect the saturation properties of trap
loss might also vary among alkali-metal species, a con-
clusion indicated by preliminary calculations on trapped
Na.
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data.

Sesko et al. [9] also reported the result of a "catalysis"
laser experiment, in which the loss rate was enhanced by
the addition of a second "catalysis" laser in addition to
the trapping lasers. Figure 13 shows our calculated loss
rate versus catalyst laser detuning for the parameters of
the experiment, namely, a total trap laser power of 13
mW/cm and detuning of h=y, and a catalysis laser
power of 24 mW/cm . The RE contribution of the JV
theory was added to the FS contribution from the OBE
calculations for the detuning-independent background
due to presence of the trapping lasers, and the FS loss
rate due to the catalysis laser was added to that.
Switched trajectories were used to calculate the correc-
tion factors in the OBE calculation. The figure also
shows the calculated catalysis laser contributions of the
JV and GP theories. The GP results were calculated
from Eqs. (36) and (37) of the JV paper [10], that is, the
same molecular potentials and parameters were used as
for the JV theory. Both JV and GP results are calculated
assuming the local CFCP is satisfied at the point of exci-
tation.

Figure 13 shows basically good agreement between the
theory and experiment. Sesko et al. [9] had also reached
this conclusion on the basis of their application of the GP
theory. We also see that the OBE, JV, and GP theories
approach one another in the limit of large detuning, al-
though there are appreciable differences in the detuning
range —300-0 MHz. The agreement at large detuning is
expected as a consequence of Eq. (2.31), from which the
GP expressions can be derived as a limiting case at large
detuning for weak fields. At large red detuning, but not
so large that discrete bound-state structure becomes
significant, the excitation is localized in a small region
near the Condon point and all three theories give
equivalent results.

IV. SUMMARY AND CONCLUSION

The optical-Bloch-equation approach developed here
incorporates a molecular picture of the atomic collision,
laser-field dressing of the molecular states participating in
the dynamics, and decay of the population and polariza-
tion due to spontaneous emission. The relative motion
degree of freedom is treated semiclassically in the sense
that an appropriate trajectory is used for each channel.
This leads to a trajectory-independent method. The
present approach incorporates the correct molecular as-
pects of the collision, the dissipation which causes decay
of the population and the coherence as the dynamics of
the system evolves, the saturation of the optical transition
when the laser field is not weak, the multichannel aspects
of the trap loss process, and the non-steady-state charac-
ter of the optical excitation as the internuclear coordinate
changes. It reduces to the JV theory when the steady-
state approximation is made and the weak-field limit is
taken. An application of the method to Cs trap loss due
to fine-structure-changing collisions is presented. Good
agreement with experiment is obtained. The method can
be adapted to also calculate radiative escape trap loss, au-
toionization trap loss, and redistribution of radiation.
However, there are aspects of cold-atom collision in opti-
cal traps that are not properly treated in the present for-
mulation. Cold-atom collisions in optical traps can pro-
duce ground-state atoms having different asymptotic ki-
netic energy than they had before the collision, i.e., the
energy of the matter and laser field is not conserved be-
cause of the interaction with the spontaneous emission
degrees of freedom that are so important in such col-
lisions. Similarly, excited-state atoms with different
asymptotic kinetic energy can be produced. Any ap-
proach (e.g. , close coupling of optically dressed states)
which conserves energy in the matter —laser-field subsys-
tem cannot properly account for the spread of asymptotic
kinetic energies which occurs because of the interaction
with the spontaneous emission degrees of freedom. Al-
though the GP, JV, and OBE models can incorporate as-
pects of this spread within their semiclassical framework,
it seems that to correctly model this aspect of the col-
lision dynamics, a time-dependent density-matrix wave-
packet approach is needed with the kinetic energy treated
as an operator [32], i.e, .

—p(R, R', t) = — [H(R)p(R, R—', t)d, l

dt ' ' A'

—p(R, R', t)H(R')] —I p,
where H(R)= T(R)1+V(R), is a differential operator
because of the nuclear kinetic-energy term. It is clear
that a wealth of new physics is present in the study of
cold-atom collisions occurring in optical traps, and much
new physics remains to be uncovered.
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