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Statistical analysis of compressible turbulent shear flows with special emphasis
on turbulence modeling
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Compressible turbulent shear flows are analyzed using a two-scale direct-interaction (propagator-
renormalization) approximation with the density, velocity, and internal energy as the primitive variables.
This method elucidates the effects of fluid compressibility on various important correlation functions

that appear in the equations for the mean field. Specifically, density fluctuations are confirmed to be

closely linked with compressibility effects. These results show that the current one-point turbulence

model based on mass-weighted averaging, which is widely used in aeronautical studies, obscures many

important features of fluid compressibility. On this basis, modeling based on the combined use of ensem-

ble averaging and primitive variables is recommended as the one-point turbulence modeling applicable
to the study of aerospace and astrophysical phenomena.

PACS number(s): 47.25.—c, 47.40.Nm

I. INTRODUCTION

High-speed flows in aerospace phenomena, which often
accompany large changes of fluid density, are of very
high Reynolds numbers and are beyond the scope of the
direct numerical simulation of the primitive fluid-

dynamical equations in the foreseeable future. Such a
difficulty is more prominent in astrophysical phenomena
associated with huge spatial scales and large velocity. As
a result, some kind of turbulence model is indispensable
for supplementing the process of energy transfer to
small-scale motions that result in the loss of kinetic ener-

gy as heat generation. The first step in the compressible
turbulence modeling is the straightforward extension of
the one-point incompressible turbulence models to the
compressible ones with the change of the mean density
incorporated. This step has been made usually under the
mass-weighted averaging [1]. The averaging keeps the re-

sulting system of equations very similar to the incompres-
sible counterpart and brings the least alteration of the
current computational codes for compressible turbulence.

The reverse side of the mass-weighted-mean models is
that the effects of density change are apt to be obscured.
As a result, the success of the mass-weighted-mean mod-
els hinges on how properly the effects of compressibility
can be incorporated into the mean correlation functions
in the mean-Geld equations whose forms are very similar
to the solenoidal counterparts. A typical instance of the
attempts of incorporating compressibility effects into the
solenoidal two-equation turbulence models of the k-e
type is the modeling of the effect of dilatational energy
dissipation. Most simply, the increase in the energy dissi-
pation due to the dilatation is related to the turbulent
Mach number and the dissipation rate related to the ve-
locity strain [2,3]. Under this modeling, the solenoidal
k-e models based on the eddy-viscosity approximation
are extended to the compressible ones by interpreting k
as the sum of the solenoidal and compressible turbulent
kinetic energy and e as the dissipation rate due to the ve-

locity strain motion. The extended model has been
confirmed to work well in unseparated flows along a plate
for Mach numbers as large as 10 [4]. The correction to
the density-change effects, however, has not yet succeed-
ed in coping with the high-compressibility effects that are
encountered in shock-wave —turbulence interactions.
This fact signifies that the incorporation of compressibili-
ty effects through the mean density is rather weak.

Another shortcoming of the modeling based on the
mass-weighted averaging is that the results of the tur-
bulence theories based on two-point closure or spectral
methods, which are always founded on the simple ensem-
ble averaging, cannot be used apart from the analogical
use. In the context of the solenoidal turbulence model-
ing, some two-point closure theories have contributed to
the theoretical examination of the models constructed in
a phenomenological manner and their improvements
[5—12]. For compressible turbulence, the author [13]
previously proposed an attempt of reconciling a two-
point closure theory with the mass-weighted-mean mod-
eling. In it, a two-scale direct-interaction (propagator-
renormalization) approximation (TSDIA) is combined
with the density-weighted velocity and internal energy in

place of the velocity and internal energy themselves. One
of the major results is the suggestion about the pressure-
dilatation correlation function, which is a representative
quantity associated with fluid compressibility. Namely,
the function cannot be expressed without the information
about density fluctuations. This result inevitably leads to
a three-equation model with the density-variance equa-
tion added. Such a three-equation model has been fur-
ther developed and the importance of density-fluctuation
effects has been confirmed in the application to compres-
sible boundary layer and mixing layer ilows [14].

The previous TSDIA analysis of compressible tur-
bulent shear flows, however, suffers from the shortcom-
ings closely related with the density-weighted velocity, al-

though it, as we11 as the density-weighted internal energy,
is instrumental to preserving the properties intrinsic to
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the mass-weighted averaging. Its typical shortcoming is
the difficulty in the satisfaction of the Galilean-
transformation rule. It comes from the fact that the ve-
locity fluctuation is Galilean invariant, whereas the coun-
terpart of the mass-weighted velocity is not so. The re-
normalization methods of perturbational expansions like
the TSDIA often lead to the breakage of the Galilean-
transformation rule. As a result, those results are incom-
plete in the use as a guiding principle of compressible tur-
bulence modeling. To overcome this difFiculty is urgent,
considering the importance of the construction of a tur-
bulence model that can cope with high-compressibility
effects. This point is one of the major motivations of this
work.

Another motivation of this study is associated with the
difficulty with the mass-weighted averaging that leads to
the mixture of the mass-weighted-mean and simple
ensemble-mean quantities. Under the averaging, the pure
ensemble-mean quantities also appear, except the advec-
tion terms in the momentum and internal energy equa-
tions to which the density always attaches. A typical in-
stance of such a mixture comes from the viscosity term in
the velocity equation, and it becomes necessary to
represent the ensemble mean of the velocity in terms of
the mass-weighted-mean quantities. As a result, the en-
semble mean of the velocity fluctuation around the mass-
weighted-mean value is required. At present, we do not
have any theoretical guiding principle for estimating it.
The usual ensemble-mean modeling is free from such a
difficulty. This fact signifies that the mass-weighted-
mean modeling is not so simple, although it is widely
used. Considering the above circumstances, the
ensemble-mean compressible turbulence modeling
deserves serious consideration. To this end, it is neces-
sary to construct a two-point closure theory for compres-
sible turbulent shear flows and get some useful informa-
tion about their mathematical properties.

In this paper, we shall apply the TSDIA based on the
original primitive variables, that is, the density, velocity,
and internal energy to clarify the mathematical structures
of various important correlation functions in compressi-
ble turbulent shear flows. This paper is organized as fol-
lows. The fundamental equations are given in Sec. II and
the comparison between the ensemble and mass-weighted
averagings is made in Sec. III. The major steps of the
TSDIA and the final results are given in Sec. IV. In Sec.
V, the results obtained are discussed in detail from the
viewpoint of application to the ensemble-mean tur-
bulence modeling. The supplementary explanation about
the details of the TSDIA calculation is given in Appendix
A and the prototype of a compressible turbulence model
based on the ensemble-mean quantities is proposed and
discussed in Appendix B.

Bp
Bt

+V.(pu) =0,

Bp—pu + puu, = — + ps;. ,Bt ' Bx, ' ' Bx, Bx,

—pe+V (p. eu)=V (AV8) p—V u+P .
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(3)

Here p is the fluid density, u is the velocity, p is the pres-
sure, e is the internal energy, 8 is the temperature, p is
the viscosity, and A, is the heat conductivity. The devia-
toric part of the velocity strain s," is given by

BQJ BQ;s"= + ——'V.u5;
EJ g g 3 J

I J

and the dissipation function P is defined as

BQJ.
4'=ps(g

~

p =Rp8=(y —1)pe,

where

e =C„(8)8,

y =C~(8)/C„(8)

(C„and C~ are the specific heats at constant volume and
pressure, respectively).

III. ENSEMBLE AND MASS-WEIGHTED
AVERAGINGS

We firstly give the ensemble-mean and mass-weighted-
mean forms of the fundamental equations (1)—(3). After-
wards, we discuss the major features of the two.

A. Ensemble averaging

The ensemble averaging of a quantity f is written as

f =F+f', F=(f), (9a)

f'=f F, — (9b)

where

As the thermodynamic relation, we assume that the
gas is a perfect gas; namely, we have

II. FUNDAMENTAL EQUATIQNS

f =(p, u, p, e, 8,$),
F =(p~, U, P, E,B,@),
f ' = (p', u', p ', e ', 8', P' )

(10a)

(10b)

(10c)

The motion of a viscous compressible fluid is governed
by the conservation laws for mass, momentum, and inter-
nal energy:

(subscript M denotes mean).
On taking the ensemble average of Eqs. (1)—(3), we have
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~PM +V.(pMU+ (p'u') ) =0,
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where pM and A,M are the mean of p and k, respectively,
and the fluctuations of p and A. have been neglected.
Moreover, S... P, and p' are given by

S, (s;, ), si SJ+sj,
P=(r-I)«E+&p. )),
p'=(r —1)(p '+p'E+p' ' —(p' '))

=(r 1)(p—Me +p E }

(14)

(16)

In Eqs. (12) and (13), we have dropped (p'uz'u ) and
(p'u'e'), compared with U (p'u ) and U(p'e'). The
inclusion of the former two does not bring any essential
diSculty, but the latter two directly dependent on the
mean flow are considered more important. The mean dis-
sipation function 4 is

(p'u'), (u,'u,'), (p'e'), (e'u'), (p'V u') . (21)

The quantities (p'u'), ( u,.'u
' ), and ( e'u' ) represent the

transport rates of mass, momentum, and internal energy,
respectively. The pressure-dilatation correlation function
(p'V u') plays an important role in close connection
with the enhancement of the conversion of kinetic energy
to heat by fluid compressibility. This point will later be-
come clear.

Next we consider the equations for the fluctuations
(p, u', e'). To this end, we rewrite the left-hand sides or
the advection terms of Eqs. (2) and (3) as

where the second part represents the dissipation effect
due to the dilatation.

From Eqs. (11)—(13), the mathematical properties of
the following correlation functions need to be elucidated:

aU,
PMSi ' +PM~ &" Bx,

(17} BQ;—pu;+ pu u, =p +(u V)u, . (22a)

where e is the contribution of the fluctuation u' to the
dissipation of the kinetic energy, which is

a—pe+V (pue)=pt
Be +(u V)e (22b)

BzlJ
VM Sip x

(18}

with

+M I MiPM ' (19)

(20)

In the case that u' can be regarded as nearly isotropic,
Eq. (18) is approximated as

2

a;ra*, +,Iv, p),

using Eq. (1). Under Eq. (22), the pu and pe equations
change into the time evolution equations for u and e.
This rewriting not only considerably reduces the
mathematical burden in the TSDIA analysis of the fluc-
tuating field, but it is also instrumental to keeping the re-
sults from breaking the Galilean-transformation rule, un-
like the previous treatment [13],as will be later discussed.
Therefore Eq. (22) is not trivial in constructing a
compressible turbulence theory.

The fiuctuating field (p', u', e' ) obeys

I

, +v (p' ' —&p' '))+ v = —( v) — v U, (23)
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(p'u ' —(p'u ' )), (24)
PM BX-

I I I I

+(u'. V)e' —((u'. V)e') —V.(~Mve')+(P/pM )V u'+ — +(p'/pl )V u' —((p'/pM )V.u')
Dt pM Dt pM Dt

I= —
( u'. V )E — —(p '/p~ )V U —

( 1/p~ )(p'u' —(p'u' ) ) .VE,
pM Dt

(25)
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D =—+(U.V),Dt Bt

+M ~M/(C PM)

(26)

In what follows, we shall show that the spectra of the
density and velocity variances defined by

(p' )/2=K

& u') /2=X, (29)

play a key role in various correlation functions. They
obey

where the quantities of third order in p', u', and e' have
been dropped, as in Eqs. (12) and (13),and

using Eq. (6). Here we should note that

{V.u j
—V u = —((u" V)p ) /p~

= —[(( ").V)p ]/p (3g)

namely, we have I V ujAV u. This point will later be re-
ferred to.

Entirely similarly, we can construct the equation for
the mass-weighted-mean turbulent energy I( M defined by

ture of ensemble-mean and mass-weighted-mean quanti-
ties under the mass-weighted averaging. The pressure-
dilatation correlation function (p V.u) is written as

(pV u) =(y —1)pM[e {V.uj+ {e"(V.u)" j ], (37)

DEd
&p'u'—) Vp rC V —U+p (u' Vp')

—p v &p' '& —(p'v (p' ')&,

Dg BU DU= —&u,'u,') ' —(1/psr)&p'u').
Dt Bx, M Dt

—[e—(1/p )(p'V u'&]+2),

(30)

(31)

(39)

The detailed are not given here since we adopt the
ensemble-averaging procedure in the later theoretical
treatment (see Ref. [4] for the details).

C. Comparison between the ensemble
and mass-weighted averagings

where 2) denotes the diffusionlike terms which are defined

by

S=—(1/p )V (p'u') —V ((u'/2)u')+ ((u'/2)V u')

aU, , Du'—( I /p~) & p'u ~,' &

&

'
( I /pM ) p—'~ '

DBx; Dt

In order to capture the difference between the ensem-
ble and mass-weighted averagings, we consider two kinds
of mean-field equations (11)—(13) and (34)—(36). A prom-
inent feature of the mass-weighted averaging is the com-
pactness of the left-hand sides of Eqs. (35) and (36).
Namely, the Reynolds stress and the turbulent internal-
energy flux are given by

+ v (s'u )
ax,

M (32) PM{ "i "g j ~

PM {"
(40)

(41)

B. Mass-weighted averaging
respectively. Their counterparts under the ensemble
averaging are

The mass-weighted averaging of a quantity f is defined
by

(33a}

—(PM(u u')+ U~(pu ) + U;(pu') ),

p (u'e') +U(p'e') +&(p' u)

(42)

(43)

(33b)

PM + V (psst u) =0, (34)

a a aI a
&

PM" +& PM"J"
& +& ( PM{"1"

Taking the ensemble mean of Eqs. (1)—(3) and using Eq.
(33), we have

The reverse side of the compactness under the mass-
weighted averaging results in the complexity of all the
terms except the advection terms. Its typical instance is
the pressure-dilatation effect (PV u), which is given by
Eq. (37). In order to express the mass-weighted mean of
V u or {V u j in terms of the mass-weighted-mean quan-
tities like u, we need Eq. (38), which includes the ensem-
ble mean of the velocity fluctuation around the mass-
weighted-mean value. From the relation that

a+
~

(PM~p) *
Bx~.

(35} &u" &= —&p'u" &/pl (44)

—&PV u)+e . (36)

Here the ensemble-mean dissipation function 4 has al-
ready been given by Eq. (17). On the right-hand side of
Eq. (35), we should note that P and S," are the ensemble-
mean quantities, whose appearance illustrates the mix-

~e+V (p~ue)=V (7 ~V.e)+V ( pM {u"e"j).—
at

&p u & vdvpM (45)

with resort to the concept of gradient diffusion, where vd

we have to construct a model for the turbulent mass flux
(p'u" ), which is similar to (p'u') in Eq. (42).

In the usual modeling, (p'u" ) is written as
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is a dimensional coeKcient. The counterpart under the
ensemble averaging or (p'u'), which appears in the mean
density equation (11) as well as Eqs. (42) and (43), is
modeled as

(p'u') = —v' Vp (46)

in correspondence to Eq. (45). On substituting Eq. (46)
into Eq. (11},the resulting equation is very similar to the
mean equation for the scalarlike temperature. Here vd is
the so-called turbulent diffusivity and expresses a kind of
scalar cascade process. Such a process is natural for the
internal energy or temperature since the equation origi-
nally includes the diffusion term given by the first on the
right-hand side of Eq. (3). On the other hand, the origi-
nal p equation has no counterpart. Therefore the
relevance of the modeling (45) and (46) is doubtful. Even-
tually, the modeling of the turbulent mass flux is in-
dispensable for both the mass-weighted and ensemble
averagings. What is a di5culty in the mass-weighted-
mean modeling is that the current turbulence theories
cannot become a guiding principle for the modeling since
they are always founded on the ensemble averaging.

Another feature of the reverse side of the compactness
of the advection terms under the mass-weighted averag-
ing is linked with the modeling of the Reynolds stress (40)
and the turbulent internal-energy flux (41). For instance,
Eq. (40) is usually modeled as

pM [ i Qj I 3pMKMfiji+pMve [~ij I (47)

using the eddy-viscosity concept. As a result, the direct
effects of density change appear only through pM. On the
other hand, the counterpart (42) is directly dependent on
the density fluctuation through (p'u ) in addition to the
mean density pM. This fact signifies that the usual
ensemble-mean models can more easily incorporate the
effects of density change, specifically those of density fluc-
tuation, compared with the mass-weighted-mean models.

The modeling of (p'u') also becomes critical in the
study of the low-Reynolds-number effects near a solid
wall. The viscosity or pM-related term in Eq. (35) under
the mass-weighted averaging is also written using the
ensemble-mean velocity U through S; [Eq. (14)]. This
term is important in the construction of a model possess-
ing the correct asymptotic near-wall behavior, which
leads to accurate results, as was stated in Sec. I [4]. Un-
der the mass-weighted averaging, it is indispensable to ex-
press U using the mass-weighted-mean velocity u. These
two velocities are related as

U =U —(P'U' ) /pM . (48)

Therefore the modeling of (p'u') is also necessary in the
context of the viscosity effects.

Finally, let us simply see the structures of the equations
for the density variance and the turbulent kinetic energy.
Under the ensemble averaging, the K equation (31)
reduces to

DZ = —(Q Q') 6—
Dt ' ' Bx,

+V.[ —((p'/p+u' /2)u')+vVK]

In this work, the last term will be neglected, compared
with the third term.

The K equation (31) is similar to Eq. (49). The first
term in Eq. (31) corresponds to the first term of Eq. (49).
The role of each term, however, is not so simple as in Eq.
(49) since K is part of the turbulent kinetic energy, as can
be seen from Eq. (51). The pressure-dilatation effect
((p'V u') ), which is combined with e in Eq. (31), leads to
the enhancement of kinetic-energy dissipation in the case
that it is negative. The role of the effect will be clear in
the later analysis. In the diffusionlike term (32), the first
term is the counterpart of the p'-related part in Eq. (49).
In the solenoidal limit, ((p'/p)u') is combined with
((u' /2)u') to be modeled as

((p'/p+ u'2/2)u') = v~ VK, — (52)

where vz is the diffusivity of K. As a result, the feature
of p' is obscured, but its effect is generally considered
small compared with the triple-velocity correlation (this
point is also confirmed using the TSDIA analysis [15]).
In compressible turbulence, however, p' is given by Eq.
(16) and is directly linked with the mean field E and pM.
In a highly compressed region near a shock wave where
the temperature rises, the first term in Eq. (32) possibly
becomes more important than the second term or the
triple-velocity correlation. In such a case, the relative
importance of the two terms reverses, compared with the
solenoidal case. Not enough attention, however, has been
paid to this point in the current turbulence modeling.

In the Kd equation (30), the first and second terms on

the right-hand side bear a role of the Ed production rate.
The first term expresses the contribution from VpM, just
as in the effect of Ve for the ( 8' ) production in the case
of temperature diffusion. The second term also expresses
a kind of Ed production effect since V.U is large and neg-

ative in a highly compressed region just in front of a
shock wave. The situation with large ~V U~ is much
different from the case subject to homogeneous shear,
where V-U=O. This point will be discussed in Appendix
B. The properties of the remaining terms in Eq. (30),
specifically those of the third and fifth terms, are not
clear. This point is closely related to the fact that

J(p )dV is not a conserved quantity. The two-point

closure analysis of these density-related quantities is in-

dispensable for the theoretically sound turbulence model-

ing of those terms.

in the solenoidal limit (V u'=0), where v=p/p. The
role of each term on the right-hand side of Eq. (49} is
clear and these terms are called the production, dissipa-
tion, and diffusion rates, respectively. The clarity of the
physical meaning of each term comes from the fact that
the mean total kinetic energy f (u /2)dv is conserved

in the absence of v. In the case of compressible flows, its
counterpart in the absence of v and A, is

f (p(u /2+e) )d V . (50)

The kinetic part f (pu /2 )d V leads to

f (pU /2+pMK+U (p'u')+(p'u' /2) )dv . (51)
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IV. TSDIA ANALYSIS OF COMPRESSIBLE
TURBULENCE

Theoretical studies of compressible turbulence are few.
One of them is the study by Hartke, Canuto, and Alonso
[16], who used the direct-interaction approximation
(DIA) [17] to investigate the homogeneous turbulence
subject to a uniform temperature gradient. Another is
the author's application [13] of the TSDIA to turbulent
shear flows, which aims at incorporating the effect of den-
sity fluctuations into the turbulence modeling. In the
latter, p, j (=pu) and to (=pe) were adopted as the funda-
mental variables. This choice seems very natural since
the fundamental conservation laws are written for these
variables. We have encountered, however, a difficulty
with the satisfaction of the Galilean-transformation rule.
Namely, when we move from one coordinate system A to
another one B with the relative constant velocity V, we
have the relation

(25) for the u' and e' equations is helpful in retaining the
Galilean invariance under the DIA since u' and e' are
combined with the Galilean-invariant operator D/Dt. In
what follows, we shall proceed to the TSDIA analysis
along this line. Here we shall give only the main pro-
cedures and results.

g (=x}, X (=5x}, s (=t), T (=5t}, (55}

using a small-scale parameter 5. Namely, g and s are the
fast variables expressing the rapid variation of the Auc-

tuating field, whereas the slow variables X and T describe
the slow variation of the mean field. In terms of (55), a
quantity f [Eq. (9)] is written as

A. Key mathematical procedures

In the TSDIA, we first introduce two time and space
variables

Ja Jw +PV . (53) f =F(X;T)+f'(g,X;s, T) . (56)

&Jsfa, & =&J~f~, &+ v;&P J~ &+ v &P jA, )

+(p'&v, v, . (54)

The theoretical methods like the DIA are founded on
some chains of approximations like the renormalization
of a perturbational solution [17]. On using j, whose fluc-
tuating part j' is not Galilean invariant unlike u', it is
specifically difficult to construct a formalism that exactly
satisfies Eq. (54). A method of reducing the above
difficulty is the direct use of ensemble-mean quantities.
Namely, the use of the nonconservational form (24) and

I

In the previous formalism using j, the correlation func-
tion (j,'j') /Psr bears a role of the Reynolds stress in the
mean momentum equation for (j ), which should obey
the transformation rule

Here the slow variables X and T are also important in
connecting f' with F, since turbulence fluctuations are
maintained by the gradient of the mean field like the
mean velocity shear.

Second, we express f' in the Fourier-representation
form of g' as

f'(g, X; Ts)= ff'(k, X;s, T)exp[ ik (—g Us)—]dk .

(57)

This procedure is equivalent to the viewpoint that the

fluctuating motion consists of a lot of small eddies in the
frame moving with the mean velocity U. Applying Eqs.
(55)—(57) to the equations for the fluctuating field
(23)—(25), we have

p'(k;s) ik, f f 5—(k p —q)—dpdqu (p;s)p'(q;s) —ik, plu (k;s)
s

5p BU,=5 —u, '(k;s) —p'(k;s)
&x,

'
ax,

p'(k;s )+D

I
(58)

u (k;s) —i f f 5(k —p —q)dpdqM;. (p, q)u'. (p;s)u' (q;s)+vlk u (k;s)+vMk;k u'(k;s) ik; p—'(k;s)+R
Bs PM

BU. i DU,.

=5 —u (k;s) — p'(k; )
i PM

u,'(k;s) — p'(k;s)+%, (59)
D, 1

I PM +Ii

e'(k;s) i f f 5(k —p ——q)q;dp dq u,'(p;s)e'(q;s)+aMk e'(k;s) ik, u, '(k—;s)+.A
s PM

=5 —u (k;s)
BE DEp'(k;s )

— p'(k;s) D, P Be'(k;s) — u,'(k;s)+%, (60)
PM B&1;
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where v~ =vM /3 and

M,/k(p, q) =(q/5;k+pk5;& )/2, (61)

confusion.
Third, we expand the fluctuating field f' using a scale

parameter 6 as

D
DT~

'
BX~;

D=exp( i—k Us), exp(ik. Us),
DT BX,-

f'(k;s)= g 5"f„'(k;s) .
n =O

(63)

(62)

with D/DT=d/dT+ U;(8/BX; ) and A denotes the
terms nonlinear in the fluctuating field of 0 (5 ) and 0(5)
(their details are omitted here). Here and hereafter, the
dependence of f ' on the slow variables X and T is not
written explicitly except when it is necessary for avoiding

I

On applying Eq. (63) to Eqs. (58)—(60), the direct eff'ects

of inhomogeneity given rise to by the mean-field gra-
dients like VU, VE, etc. , appear in the equations for f„'
(n ~ 1), which depend on both fo and the gradients of pM,
U, and E. The f„' equations can be integrated formally

by introducing the Green's functions for Eqs. (58)—(60).
They satisfy

G—z(k;s, s') ik—; f f 5(k —p —q)dp dq us;(p;s)G&(q;s, s') =5(s —s'),a
S

(64)

G, (k;ss ,) '2—i f f 5(k —p —q)dpdqMk (p, q)u~„(p;s)G' (q;s, s')+vMk G/(k;s, s')+vMk;k G', (k;s, s')
Bs

=5;,5(s —s'), (65)

—6,'(k;s, s') i f f—5(k —p
—q)dp dqq;us;(p;s)G, '(q;s, s')+~~k 6,'(k;s, s') =5(s —s'),a

S
(66)

respectively. Here uz is the basic velocity field defined by
Eq. (A 1) in Appendix A and represents part of uo whose
interactions with po and e o are smallest. In Eqs.
(64)—(66), it is more accurate to write, for instance,
Gz(k, k';s, s') and 5(k —k'}5(s —s') in place of Gz(k;s, s')
and 5(s —s'), respectively. Within the present framework
based on the DIA, we can put

( Gz(k, X;s,s', T) ) =G„(k,X;s,s', T),

( G/(k, X;s,s', T) )

=G/(k, X;s,s', T)

(71)

(72a)

=D, (k)G, (k, X;s,s', T)+ II,/(k)G, (k, X;s,s', T),
(72b)

G~(k, k';s, s') =5(k —k')Gq(k;s, s'), (67)

( G,'(k, X;s,s', T) ) = G, (k, X;s,s', T), (73}

which leads to Eq. (64}. As a result, we reach the same
conclusion.

The solution f„' (n ~ 1) can be formally integrated us-

ing the Green's functions and are written in terms of f0.

We apply the DIA renormalization procedure to calcu-
late various important correlation functions. They are
expressed in terms of the statistics of the 0 (5 ) field fo.

We write these statistics as

(po(k, X;s, T)po( —k, X;s', T) }/5(0)=Qz(k, X;s,s', T),
(68)

(uii, (k, X;s, T)uo, (
—k, X;s', T)) l5(0)

where subscripts S and C denote solenoidal and compres-
sible parts, respectively, and

D,, (k) =5, k, k, lk, II,,—(k)=k, k, lk2 . (74)

In Eqs. (68)—(73), we have assumed the isotropy of the
0(5 ) field. This approximation is plausible since the
field is not directly dependent on the mean-field gradients
leading to anisotropy, except the implicit dependence
through the slow variables X and T. The density vari-
ance Q~ is related to the compressible part of the velocity
variance Q, as

=Q;, (k, X;s,s', T) (69a)
I

Q~(k, X;s,s', T)=k pM f 'dsi f ds2Q, (k, X;s, ,s2, T) .

=D, (k)Q, (k, X;s,s', T)+ II,, (k)Q, (k, X;s,s', T),
(69b}

(eo(k, X;s, T}eo(—k, X;s', T) ) l5(0) =Q, (k, X;s,s', T),

Here and hereafter, the lower limit of the time integral is

the infinite past or —~ . The fact that the density vari-

ance is linked with the variance of the compressible part
of the velocity fluctuation will become important in in-
corporating the latter effects into the one-point tur-
bulence modeling.
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B.TSDIA results

Io[ A j =f A (k,x;s, s, t)dlt, (76a)
I

In order to show the results compactly, we introduce
the following abbreviation form for time and wave-
number integrals:

I„[A,8 ] =f k "1kf ds, A (k,x;s,s„t)8(k,x;s,s„r),
(76b)

where the lower limit of time integral is the infinite past
or —oo, as has already been noted.

Using Eq. (76), we finally have

&pu &= 3(2IO[Gd Q j+Io[Gd Q j)Vpm —,'(2Io[G„Qdj+Io[G„Q&j)(y—1)(1/p~}VE

—
—,'(2IO[ G„VQd j+Io[G„VQd j )(y —1)(1/pM)E —

—,'(2IO[Gs~Qd j+Io[Ge~Qd j }(1/PM )
D

& u, 'u
'

&
=—,'E5,"—

—,', ( 7IO [ G„Q, j + 3IO j G„Q, j + 3IO [G„Q, j + 2IO [G„Q, j )S;J,

&P'e'&= Io[G—. Qd j(1/PM } ()' 1— V U+ DE

(77)

(78}

(79)

& e 'u'
&
= —

—,
'

( 2Io [ G„Q, j +Io [ G„Q, j )VE—
—,
' (2IO [ G„VQ, j +Ic [ G„VQ, j )( y —1 )E

—3(2IO[G. Q, j+Io[G, Q. j)(r 1)(1—/PM}VPM 6(2—IO[Gs VQ. j +ID[ G. VQ. j)(1' 1)&—

&p V.u'&= —Ii[G„Q,j(r —1}p Z —I, [G„Q,j(y —1)'p +I, [G„Q,j(y —1

&p'u'& =(y —1)(&p'u'&E+ &e'u'&PM),

&u 'VP & Ii [G Qd j(3 1)+/PM+Il [Gd Q jPM .

(80)

(81)

(82)

(83)

In Eq. (78), E ( = &
u' /2 &) is the energy of the velocity fluctuation given by

K =I [Q, j+I [Q, j/2 I {G„DQ,/D—t j ,'I [G„D—Q,—/Dtj
—

—,'(2I [G„Q,j+ ,'I [G„Q,j—)V.U . (84)

Finally, we summarize the relationship between the above correlation functions and the equations for p, U, E, K,
and Ed, which is given by the following:

(a) psr equation [Eq. (11)]: &p'u'&;

(b) U equation [Eq. (12)]: &u u.'&, &p'u'&, &p'e'& through I' [Eq. (15)];
(c}E equation [Eq. (13)]: &e'u'&, &p'e'&, &p'u'&, &p'V u'&;

(d) Kd equation [Eq. (30)]: &p'u'&, &u'. Vp'&,

(e) E equation [Eq. (31)]: &u uj'&, &p'u'&, &p'V u'&, &p'u'& through S [Eq. (32)] .

(85a)

(85b)

(85c)

(85d)

(85e)

Here we should note the importance of the mass flux
& p'u' & since it enters all of the transport equations. This
fact signifies that &

p'u'
& is most closely connected with

compressibility effects. Therefore its proper modeling is
indispensable for the construction of a turbulence model
that can cope with strong compressibility effects encoun-
tered in shock-wave —turbulence interactions.

V. DISCUSSIONS AND SUGGESTIONS
TO TURBULENCK MODELING

A. Two-point closure modeling

In the analysis of Sec. IV, we have reached the
mathematical expressions for the correlation functions

that appear in the equations for the man field (pM, U, E).
These correlation functions are related to the mean field
and the two-time statistics of the O(5 ) fluctuating field.
The O(5 ) field does not directly depend on the mean-
field gradient, as can be easily seen from the left-hand
sides of Eqs. (58)—(60), and obeys the same system as for
homogeneous compressible turbulence, except for the im-
plicit dependence on the slow variables. The most ortho-
dox theoretical approach to turbulent shear flows is to
construct the equations for the O(5 ) statistics using the
DIA or other two-point closure formalisms and connect
these quantities with the mean-field equations that con-
tain them through the correlation functions Eqs.
(77)—(83). Here the O(5 ) statistics are sustained by the
mean-field gradients through the Kd and E equations,
etc. As a result, these statistics are determined, in princi-
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pie, in a way consistent with the mean field. Such a pro-
cedure in the solenoidal case is given in detail in Ref.
[18].

In the context of two-point closures, the eddy viscosity
v„which is the coefficient of S;, in (u u,') [Eq. (78)], is
written as

v, = Jv, (k)dk,

where the eddy-viscosity spectrum v, (k) is

v, (k) =
—,', J ds, [7G,(k;s, s, }Q,(k;s, s, )

+36,(k;s, s, )Q, (k;s, s, )

+36,(k;s, s, )Q, (k;s, s, )

+26,(k;s, s, )Q, (k;s, s, )] .

(86)

(87)

Equation (87) shows that the eddy-viscosity spectrum in
compressible turbulence consists of four kinds of effects.
Namely, they are the combinations of the solenoidal and
compressible time scales (the Green's functions) and tur-
bulent intensities. As a result, the eddy viscosity in
compressible turbulence may behave differently, com-
pared with the solenoidal case.

It is surely academically interesting to pursue the
above line of two-point closure theories, but it is entirely
not feasible in the study of real-world phenomena appear-
ing in the aerospace and astrophysical fields. For in-
stance, the DIA system of equations derived by Hartke,
Canuto, and Alonso [16] for homogeneous turbulence,
which corresponds to the O(5 ) field, is suggestive in the
qualitative investigation of compressibility effects, but the
quantitative results have not been abstracted at least at
the present since the system is very complicated.

Inhomogeneity of turbulence, which is the cause of the
complexity not comparable to the homogeneous counter-
part, is an essential factor in aerospace and astrophysical
phenomena. Therefore it is much more fruitful to make
full use of the results from two-point closure theories and
proceed to the one-point turbulence modeling that
possesses a theoretically sound basis. Specifically, the
construction of such a model that can cope with strong
compressibility effects in a region with a shock wave is

urgent in the aeronautical field in close relation to the
design of high-speed aircrafts. In reality, a lot of
compressible turbulence models are being proposed from
the conventional methods mainly using dimensional
analysis. The present results are expected to give a start-
ing point in the sense that the relationship of the correla-
tion functions with the mean field and the turbulence
quantities characterizing compressibility effects has been
obtained.

B. Importance of the mass flux (pu')

First, we look at (u,'u.') [Eq. (78)], which is the coun-

terpart of the Reynolds stress in the solenoidal case. As
has already been stated below Eq. (87), the way to model
the eddy viscosity v, depends on whether we distinguish

between the solenoidal and compressible parts of velocity
intensities. In the current one-point turbulence model-

ing, we do not distinguish between them and adopt their
sum or K [Eq. (29)] as an indicator of the strength of tur-

bulent velocity intensities since the separate treatment
needs at least two more turbulence transport equations.
The increase in the number of equations not only leads to
an increase in computational burden, but it also gives rise

to difficulties with boundary conditions (this point can be

easily understood considering the upstream condition on

the dissipation rate of the compressible turbulent energy}.
From the standpoint of not distinguishing between the
solenoidal and compressible turbulence intensities, the

simplest model for v, is

v, =C~K je, (88)

using K and its corresponding dissipation rate e [Eq.
(18)], where C, is a model constant. This modeling of v,
results in covering the explicit effects of compressibility
and therefore they need to be incorporated through other
correlation functions.

The above point linked with the eddy-viscosity approx-
imation is crucial in the mass-weighted averaging. In the
averaging, the Reynolds stress [Eq. (47)] results in not in-

cluding the density effect under the eddy-viscosity ap-
proximation of type (88), except through the mean densi-

ty pM. On the other hand, the counterpart (42) under the
ensemble averaging can be directly dependent on the den-

sity fluctuations through (p'u' ) . Therefore compressibil-
ity effects can be incorporated under the use of the eddy-
viscosity approximation based on Eq. (88) for (u uj') if
(p'u') is properly modeled. Entirely the same situation
holds for the mean internal-energy equations (13) and (36)
[see Eqs. (41) and (43)]. In this sense, the ensemble-mean
modeling is more appropriate for the efBcient description
of compressibility effects than the mass-weighted-mean
one.

The absence of the p'-related terms in the rnass-
weighted-mean Reynolds stress does not always reduce
the burden of turbulence modeling. In the averaging, the
effect very similar to (p'u' ) has to be modeled in connec-
tion with the pressure-dilatation effect in the internal-
energy equation (36) as well as the molecular-viscosity
effect near a solid wall. This point has already been re-
ferred to in Sec. III C [see Eqs. (37) and (38)]. In this con-
text, the mass-weighted averaging does not always lead to
the essential simplification of compressible turbulence
modeling.

Second, let us examine the property of the mass flux
(p'u'). The elucidation of this quantity is a major con-
cern in the present work since it typically expresses the
effects of compressibility on turbulence. It is simply ex-
pressed by writing Eq. (46) using the concept of gradient
diffusion [4,14]. As has already been noted below Eq.
(46), this approximation based on the eddy density

diffusivity inevitably results in the enhanced diffusion of
the density that is very similar to that of the temperature
and energy. The p equation (1) originally contains no

density-diffusion term, entirely different from the A, -

related term in the e equation (3). Therefore the familiar

eddy-diffusivity approximation for (p'u') is doubtful.
The present TSDIA result (77) clearly shows that

(p'u' ) consists of several kinds of effects. Namely, the
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first term in Eq. (77) corresponds to the familiar eddy-
diffusivity representation. Of the remaining effects, we

pay special attention to the second term dependent on
VE. In the case of increasing E or the temperature, p
often decreases. In such a case, the Vp~ and VE effects
in Eq. (79) have the opposite contributions and tend to
cancel each other. In other words, the existence of the
Vpl-related term does not always signify the cascade of
p. This point is consistent with the fact that the mass
conservation law (1) does not possess the diffusion term.
Therefore some proper effects like the second VE-related
term in Eq. (77) should be taken into account in the
modeling of (p'u' ) so as not to destroy the fundamental
mathematical property of the mass conservation law. In
the connection with the effect of (p'u'), we should refer
to the previous work [13]based on the variable j ( =pu).
In it, the Reynolds stress in the ( j ) equation is given by
(j jJ ) /pM. The TSDIA analysis shows that the quantity
includes the U-dependent term in addition to the eddy-
viscosity effect. The origin of the term also depending on
the density-variance spectrum is linked with the p'-
related term in Eq. (42).

The origin of the VE-related term in (p'u') [Eq. (77)]
is clear. On considering the generation process of (p'u'),
the first term on the right-hand side of Eq. (23) generates
the Vpl-related effect in Eq. (77). On the other hand, the
fifth term on the left-hand side of Eq. (24) or (1/pM )Vp'
produces the VE-related term, as can be easily under-
stood from Eq. (16) for p' [note that the E-related term in
Eq. (16) includes p', which leads to the dependence of
(p'u') on the density-variance spectrum]. In other
words, the VpM effect in (p'u') is the contribution from
the p' equation, whereas the VE effect comes from the u'

equation.
The mass flux (p'u') also becomes important near a

solid wall, in close relation to the low-Reynolds-number
effects under the mass-weighted averaging, as was noted
near Eq. (48). Therefore the above point also deserves
serious consideration under the averaging.

C. EfFects of pressure

energy equation (31) and the counterpart under the
mass-weighted averaging. It has been confirmed that
compressibility effects lead to the suppression of tur-
bulence. Therefore (p'V u') is a promising candidate
for explaining such a suppression mechanism. This point
has already been pointed out in the author's previous
work [13], where the result similar to Eq. (81) was ob-
tained. As the first term of Eq. (81) shows, (p'V. u') is
closely connected with the compressible part of the veloc-
ity fluctuation, which is related to the density fluctuation,
as in Eq. (75). Therefore it is relevant to relate the first
term to the density fluctuation so long as we do not dis-
tinguish between the solenoidal and compressible parts of
the velocity fluctuation. The importance of the role
borne by the density fluctuation can also be seen from the
Q, - and Qd-related effects in the other correlation func-
tions, for instance, the first term in (p'e') [Eq. (79)]. In
order to incorporate the density-fluctuation effects into
the one-point compressible turbulence modeling, we need
the equation governing the density variance Ed.

Another important effect of the pressure comes from
the first pressure diffusion term (p'u') in 2) [Eq. (32)].
As is seen from Eq. (52), no special attention has been
paid so far to (p'u') in the solenoidal case. This point
makes a sharp contrast with the situation concerning the
presure-strain correlation (p's'J ). In fact, some experi-
mental supports have been given to the approximation of
neglecting (p'u'), compared with the triple-velocity
correlation function ((u' /2)u'). In compressible tur-
bulence, this situation may change drastically at high
Mach numbers since p' can contain the contribution
through the thermodynamic relation (6). Specifically,
(p'u') is related to the mass flux (p'u') and E, as is seen
from the first part of Eq. (82). In a highly compressed re-
gion where the density change and the temperature rise
are large, (p'u' ) is considered to be more important than
((u' /2)u') (note that the intensity of velocity fluctua-
tion is suppressed in such a region). Therefore the validi-
ty of the straightforward use of the solenoidal model (52)
in compressible turbulence is doubtful.

Let us discuss the pressure-dilatation correlation func-
tion (p'V. u'). In general, the pressure decreases in the
expansion phase and increases in the contraction phase.
This fact suggests that (p'V u') is negative. In the
present result (81), the leading term supports the sugges-
tion. Concerning the sign of (p'V u'), some interesting
works based on the direct numerical simulation have re-
cently been done for decaying isotropic turbulence and
homogeneous shear turbulence [19—21]. These works
show that (p'V u') is predominantly positive in decaying
isotropic turbulence, whereas it is predominantly nega-
tive in homogeneous shear turbulence. Specifically, Sar-
kar [21] examined the generation mechanism of the quan-
tity to elucidate the difference between the two cases. In
this sense, we should note that the present theoretical re-
sult partially accounts for the effect of the pressure-
dilatation correlation.

In the case of negative (p'V u'), the quantity gives
rise to the increase in the kinetic-energy dissipation, as
can be seen from the combination with e in the kinetic-

D. One-point modeHng

Let us refer to the construction of a one-point model
based on the ensemble averaging. Such a model is in-
dispensable for the aerospace and astrophysical research
where the Reynolds number of flows is extrem. ely high.
A critical point in the modeling is the choice of the one-
point quantities properly characterizing compressible tur-
bulence. The present TSDIA results (77)—(83) show that
the quantities indispensable for the modeling are

Ed, E, e

since Q, and Q, give the major part of K and Qd is the
counterpart of Ed. Here Ed is a quantity necessary for
expressing the degree of compressibility effects, whereas
K and e are needed for expressing the intensity and time
scale of turbulence. It is more relevant to include K,
(=(e' ) ) in Eq. (89) since some of the correlation func-
tions (77)—(83) are also dependent on the internal-energy
variance Q, [for instance, see the third and fourth terms
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in Eq. (80)]. Most of those correlation functions, howev-
er, are linked with the density and velocity variances.
Therefore the one-point modeling based on Eq. (89) is
considered to satisfy the least requirement from the
TSDIA of compressible turbulence. A proposal for the
model, making full use of the present theoretical results,
is given in Appendix B. One remarkable point in this
model is that we have the nondimensional parameter g
[Eq. (B13)]as the indicator of the importance of compres-
sibility effects, which is written in terms of pM, E, K, and
Kd.

VI. CONCLUSION

We performed a two-scale DIA analysis of compressi-
ble turbulent shear flows to gain some information that is
useful in the construction of an ensemble-mean one-point
turbulence model. Such a model is indispensable for the
study of aeronautical and astrophysical flows at extreme-
ly high Reynolds numbers. One of the major achieve-
ments of this work is to clarify the cause of the paradoxi-
cal points related to the eddy-diffusivity expression for
the turbulent mass flux whose original conservation law
does not possess the molecular diffusion effect. Another
is the estimate of the pressure-dilatation and pressure-
velocity correlation functions in the transport equation
for the turbulent kinetic energy. Specifically, the impor-
tance of the latter has been missing in the current tur-
bulence modeling since the counterpart in the solenoidal

I

case is not so important as the triple-velocity correlation
function.

Through the present investigation of various correla-
tion functions appearing in the mean equations, the im-
portance of the effects of density fluctuations has been
elucidated. On the basis of this result, a three-equation
model with a transport equation for the density variance
added to a current model of the two-equation type was
proposed for aerospace applications.
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APPENDIX A: SUPPLEMENTARY EXPLANATION
OF TSDIA

In the DIA renormalization procedures, the fundamen-
tal equations for the fluctuations (58)—(60) are solved us-

ing a perturbation expansion method. There the O(5 )

equations, which are given by neglecting the 5-related
terms on the right-hand sides of Eqs. (58)—(60), still cou-
ple with one another. In order to solve such a system sys-
tematically, we introduce the concept of the basic field

(u~, es), obeying

us, (—k;s) i f f 5—(k —p —q)dpdqM, " (p, q)us (p;s)us (q;s)+vlk uz;(k;s)+vMk;k us (k;s)=0,B (Al)

e—~(k;s) i f—f 5(k —p —q)dpdqq;us;(p;s)es(q;s)+sMk ee(k;s)=0 .
S

(A2)

X [i (1/pM )k p0(k;s, )+%],
e0(k;s) =e~ (k;s)+ f ds, G,'(k;s, s, )

(A3)

X [i (P/pM)k;u0;(k;s, )+%] (A4)

around the basic field (us, es), where G' and G,
' are the

Green's functions for Eqs. (A 1) and (A2), which obey
Eqs. (65) and (66), respectively. On the other hand, pa is
related to u0 as

p0(k;s) =ip~k, f ds, Gd(k;s, s, )u0;(k;s, ), (A5)

Here we should note that Eqs. (Al) and (A2) do not cou-
ple with each other directly.

Using Eqs. (Al) and (A2), the O(5 ) equations are in-
tegrated formally as

u0, (k;s)=us;(k;s)+ f ds, GJ(k;s, s, )

with Gd obeying Eq. (64).
The O(5) field (pI, u'„eI) satisfies Eqs. (58)—(60) with

(p', u', e') on the right-hand sides replaced by (p0 u0 e0).
They can be integrated entirely similarly using the
Green's functions.

Using these solutions of O(5 ) and O(5), we can calcu-
late various correlation functions with resort to the DIA
renormalization method. The resulting expressions are
written in terms of the statistics of the basic field, which
are obtained by replacing (pa, ua, ea) in Eqs. (68)—(70)
with (p~, us, es). Our final aim is to write various impor-
tant correlation functions using the statistics of the O(5 )

field. To this end, we first express Q, [Eq. (69)], etc. , in
terms of the counterparts of the basic field Qe,". Thereaf-
ter, we revert such expressions by iteration [17] to get, for
instance,

Qz, (k;s, s') =Q, (k:s,s')+higher-order terms, (A6)

Qe, (k;s,s')=Q, (k;s, s')+(y —1)Ek'[f dw f dw, G, (k;s, w)Gd(k;w, w')Q, (k;s', w')

+ f dw f dw, G, (k;s', w)G„(k;w, w')Q, (k;s, w')], (A7)
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where the higher-order terms depend on the terms that
are of fourth order in the Green's functions and the ve-
locity or internal-energy variances.

We substitute Eqs. (A6), (A7), etc. into the correlation
functions expressed using the statistics of the basic field

Qs, etc., and obtain the final results. Within the frarne-
work of the DIA, only the leading terms in Eqs. (A6) and
(A7), etc., are usually retained to lead to Eqs. (70}—(84).

APPENDIX B: THREE-EQUATION MODEL

1. Modeling

(p'u'& = —(p, /~i)V(lnp~) —(p, /o2)yV(lnE),

(u u,'. ) =—32KB; —v, S;

(p'e') = —(p, /, )y V. U,
(e'u') = —(v, /o4)VE,

(p'V. u') = (—p, /o, )y(e/K)',

with pe =pM~e where

(B7)

(B8)

(B9)

(B10)

(Bl 1)

The correlation functions in Eqs. (Bl)—(B3) are
modeled as

apM

at
+V (p U)=V ( —(p'u')),M (Bl)

—pst «+ (pst UJ «)dt Bx

+ ( —p~ & u,'u, '
&
—

U, & p'u, '
&

dP 8

I J

—U, (p'u, ') )+ pMS,;, (B2)
a

axJ.

a
~

PME+V'(PMUE)
at

=V(X Ve)+V ( —p (e'u'& —U(p'e'& —E&p'u'))

where

(PV U+(p'V —u'))+4, (B3)

P=(y —1)(p E+(p' '))=(y —1)p

e=E/C„,
aU,

N=kMS, +PM''1 ax,

(B4)

(B5)

(B6)

[S;J is defined by Eqs. (4) and (14)]. On the left-hand sides
of Eqs. (B2} and (B3), (i}/Bt)(p'u') and (i}/Bt)(p'e')
have been neglected since the ensemble-mean model aims
at mainly treating the stationary properties of turbulence.
The terms apM/at, etc., are retained since such a system
is usually solved by a time-marching method.

Let us propose a turbulence model based on the
present TSDIA results. The aim of this modeling is to
construct a model that is as simple as possible and retain
some essential properties of compressible turbulence.
The simplicity is also important from the viewpoint of
applicability to real-world interesting phenomena in the
aerospace and astrophysical fields. The starting point of
modeling is the choice of three fundamental one-point
quantities Kd, K, and e [Eq. (89)]. Here K and e are in-

dispensable for constructing the dimensions of length and
time, whereas Ed is also needed for incorporating the
density change in a highly compressed region since vari-
ous density-related correlation functions are linked with
its spectrum. In the following modeling, only the most
important aspect of the TSDIA results will be taken into
account.

The mean-field equations are

v, =C,K /e,

y = (y —1)(E/K) /(pst /Kd ),
(B12)

(B13)

and 0 „(n = 1 —5) and C, are positive model constants.
The modeling of Eqs. (B7)—(Bl1) using the one-point

quantities (89) is rather trivial by dimensional analysis
once the dependence of these correlation functions on the
mean field and the spectra of (89) has been clarified on the
basis of the TSDIA, as in Eqs. (77)—(83). Here we should
note that Q„gives the leading contribution to Kd,
whereas the sum of Q, and Q, is the counterpart of K
since they are the contributions of the 0(5 ) field. In the
modeling of (p'u') [Eq. (77)], we have retained the first
two terms [the importance of the second term in Eq. (B7)
for eliminating the effect of virtual density cascade was
discussed in Sec. V B and will be further discussed below].
In Eq. (80) for (e'u'), we modeled only the first term in
accordance with the eddy-viscosity representation for
( u uj ) [Eq. (78)]. In Eq. (81) for (p'V u'), the first two
terms are essentially the same, where the third term was
neglected since (e' ) is not adopted as the fundamental
turbulence quantities in this modeling.

The remarkable feature in Eqs. (B7)—(Bl1) is that the
effects of compressibility are tightly linked with the non-
dimensional parameter y [Eq. (B13)], which depends on
pM, E, E, and Ed as well as the ratio of specific heat y.
In Eq. (B13),E/K is the inverse of the inagnitude of the
turbulent kinetic energy relative to the mean internal en-
ergy, whereas pM/ECd is the inverse of the magnitude of
the density variance normalized using the squared mean
density. At very low Mach numbers regarded as in-
compressible fiows, pM /Kd becomes infinitely large,
whereas E/K can remain finite. As a result, y vanishes.
This fact signifies that y is a proper indicator of the
strength of compressibility effect. At higher Mach num-
bers where pM/Kd is finite, the increasing importance of
the y effects is natural from the viewpoint of modeling
(p'u') [Eq. (B7}]. On neglecting the second y-related
term, Eq. (B7) leads to the enhanced diffusion effect of
pM, but the original mass conservation law (1) has no
diffusion term, as was discussed in Sec. III C. If the y-
related term becomes important with the increasing
Mach number or g, the relative importance of the pM-
related term decreases in Eq. (B7}and the problem of the
virtual enhanced diffusion effect can be resolved.

The transport equations for the turbulence quantities
Ed, K, and e are given by
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DKd = —(p'u' ) Vpl —Kz V U —C,pM ( e/K )y

+p V( —&p'u'))

DK = —( tt,'tt . )B. U. /Bx, (E (p V u )/pM)

(814)

+(I/p~)V ( —(p'u') )+V [(v, / oz)VK], (815)

De aU,= —C3(E/K)(u u')
Dt Bx,

C~—(e/K)[e (p—'V u') /pM

+(1/p )V ( —(p'u') )]

The reasonableless of some of these constants has been
confirmed using the TSDIA [7,13]. As a result, five con-
stants o. , —o.3, o~, and C2 are to be determined using
direct numerical simulation data or through the applica-
tion of the model.

The present model given by the system of equations
(81)—(83) and (814)—(816) seems to include many corre-
lation functions, compared with the counterpart under
the mass-weighted averaging. However, this is not the
case. The number of different correlation functions is
five, including Eqs. (88) and (810). Modeling the coun-
terparts of (p'u'), (u u,'), (e'u'), and (p'V u') is also
indispensable under the mass-weighted-mean modeling,
as has already been noted.

+V [(v, /oo)Ve], (816) 2. Qualitative assessment

where

&p'u') =(y —1)( & p'u') E+ &
e'u') p ), (817)

and C2 —C4, o.z, and oz are model constants. On the
left-hand sides of Eqs. (814)—(816), for instance, DKd /Dt
can be rewritten as

DKd

Dt
1

pMKd +—V (pMUKd )+Kd V (p'u')
PM

(818)

C, =0.09, C3 =1.43, C4=1.9,
o.4=0.7, o.~ =1, o.

L, =1.4 . (819)

with the aid of Eq. (81).
In the Kd equation (30), the last term that is of third

order in p' and u' was neglected, compared with the
second-order terms. The term to be newly modeled in
the equation is the third term pl(u' Vp'). The TSDIA
result for it is given by Eq. (83), consisting of two terms.
Of the two, we have retained the first E-related effect
since such an effect can become important in a region
near a shock wave with large E or high temperature. In
the K equation (31), the first two terms in 2) [Eq. (32)]
have been retained. In the solenoidal case, they are com-
bined to be modeled as V [(v, /ox )VK], as was referred
to in Sec. III C. In compressible turbulence, however,
(p'u') is directly dependent on (p'u'), F., etc. , as is seen
from Eq. (817), which are expected to becoine important
in a highly compressed region. Therefore this pressure-
transport effect should be separately taken into account,
as in Eq. (815). The second DU/Dt related term in -the

K equation (31) was dropped since the stationary proper-
ties of turbulence is our major concern. The theoretical
derivation of the e model equation is difficult in general.
The author has proposed a systematic method [9,10] for
recovering most of the major effects in the current model
e equation by using the TSDIA results. Equation (816)
has been derived following the method (see also Appen-
dix C) of Ref. [13].

In this model, we have 11 model constants, which are
C„(n = 1 —4), o„(n = 1 —5), o x. , and a.o. In the

solenoidal limit, this model should reduce to the familiar
two-equation model for the K-e type. This constraint
fixes six model constants as

One prominent feature of this model is the role borne
by the density variance Kd. In a highly compressed re-

gion near a shock wave ~here pM and E, as well as their
space derivatives, become large, Kd is generated by the
first two terms in Eq. (814) or the Vpl- and VE-related
terms (note that V.U is negative in a compressed region).
The effects of Kd thus generated enter the other equa-
tions through the Kd- or y-related terms in the correla-
tion functions. Specifically, negative (p ' V u

' ) [Eq.
(811)] leads to the enhancement of energy dissipation in
the K equation (815). This effect is considered to be
closely linked with the mechanism of turbulence suppres-
sion due to compressibility effects in turbulent shear
fiows, as was discussed in the previous works [19,21].

In the context of the pressure-dilatation correlation
function (p'V u'), we should refer to the relationship of
the present model with homogeneous shear turbulence
that has already been investigated by Sarkar, Erlebacher,
and Hussaini [19] and Blaisdell, Reynolds, and Mansour
[20] using the direct numerical simulation (DNS). In the
Aow situation, we have no mean dilatation or V U=O;
namely, the mean velocity field is solenoidal. Of the two
Kd-generation mechanisms that are connected with VpM
and V U in Eq. (814), respectively, the latter is lost. As a
result, the present model leads to vanishing of (p'V u')
since we usually have VpM =0 under V U=O. The DNS
of homogeneous shear turbulence [19,20] shows that
(p'V u') is still nonzero, specifically, negative. There-
fore the present model lacks the Kd-generation mecha-
nism under no mean dilatation or V.U=O. Sarkar [21]
used the DNS data to propose a model for (p'V u') that
can deal with homogeneous turbulence for Mach num-

bers as large as about 0.6. As will be discussed below, the
present three-equation model possesses an interesting
property in the case of V UWO as in a highly-compressed
region near a shock wave. Therefore Eq. (811) for
(p'V. u') is expected to bear a role of supplementing
Sarkar's model at high Mach numbers leading to large

We have already mentioned that our main interest lies

in the study of high compressibility effects that are en-

countered in shock-wave —turbulence interactions. In
such a case, we have V-UWO as we11 as VPM&O. In or-
der to see the potential usefulness of the present model,
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let us perform the qualitative assessment of the model in

a flow situation retaining the feature of a shock-wave re-

gion. As such a typical example, we consider the case
where U[=(U, O, O)], pl, and E change rapidly in the
strearnwise or x direction. Their profiles are written as

p~ = 2—{ps p—F }[a»«'+a')'1,
E'=(Es E—F)[al(x +a )],
E"= 2—(Es E—F)[ax/{x +a ) ] .

(826d)

(826e)

(826f}

U = U~ —( U~ —Us )H, (x),
p~ =pF+{ps pF }—H.{x»
E =EF+(Es E~—)H, (x),

with

(820a)

(820b)

(820c)

Using Eqs. (821) and (826), the first part in Eq. {825) is
negative for x (0 and positive for x )0. On the other
hand, the second term in Eq. (825) is negative for both
x (Oand x &0.

Next we consider the contributions of —U~(p'u, ') and
—

UJ {p'u ) to show the importance of (p'u'). Both the
terms lead to

UF UB & PF PB & ~F EB (21)

where subscripts I' and 8 denote front and back, respec-
tively, and

U(p'u') = U[(v, /a', )pM+(p, /o i)(y/E)E" ]
dx

+ U'f(v, /rri)ps'+(p, /a&)(y/E)E'] .

H, (x)=tan '(x/a) (822)

(a is a positive constant representing the width of the re-
gion with steeply varying flow structures). From Eq.
(822), we have

H,'(x) = H, (x—) = 0
x +Q

which leads to

(823)

H,'(x)—+5(x) (824)

in the limit of vanishing a [5(x) is the Dirac 5 function].
Namely, H, (x) tends to the step function H(x) in the
limit and the flow structure described by Eq. (820) retains
the feature of a shock-wave region (the center of the re-
gion is located at x =0). The regions for x (0 and x )0
correspond to the ones in front of and behind a shock
wave, respectively. This type of Bow structure is familiar
in considering Rankine-Hugoniot s relations among
shock-related quantities.

Let us investigate the roles of various terms in the
present model in the case of small but finite a. As the
representative example, we consider the mean velocity
equation (82). First, we look at the contribution of the
eddy-viscosity approximation [Eq. (88)] to —pl{u uj)
in Eq. (82), which is given by

„(-p &u'))d
~v. =EMU +PMU (825)

U'= —(U~ —Us}[a/(x +a )],
U"=2(U~ —Us}[ x/(ax +a ) ],
p~=(pa pF }[«(—x'+a') 1

(826a)

(826b)

(826c)

where U'=dU/dx, u' is the streamwise velocity fluctua-
tion, and the spatial change of v, has been neglected for
the simplicity of discussion. From Eqs. (820) and (823),
we have

From Eq. (826), the first or U-related part including the
second-order derivatives is positive for x (0 and negative
for x & 0, whereas the second part is negative for both
x &Oandx &0.

From the above consideration, we have found the fol-
lowing properties of Eqs. (825) and (827): (a) the first
parts dependent on second-order derivatives have the op-
posite signs in each of x (0 and x )0, and (b) the second
parts dependent on first-order derivatives have the same
signs in each ofx (Oandx &0.

A prominent feature of the eddy-viscosity approxima-
tion to —

pM (u,'u' ) lies in the diffusive property charac
terized by second-order spatial derivatives, which leads to
the destruction of steeply-varying structures like a
shock-wave region and tends to smooth out such struc-
tures. This point is considered to be a cause for the
insuSciency of the eddy-viscosity approximation in the
study of shock-wave-turbulence interactions. The prop-
erty (a) shows that the diffusive property of the eddy-
viscosity approximation is weakened by the effect given
rise to by (p'u'). Therefore the incorporation of the
effect into compressible turbulence modeling is con-
sidered to be instrumental to the proper description of
shock-wave structures in turbulent flows. The similar ar-
gument can be done for the E equation (83). At this
time, {p'e') bears the role siinilar to {p'u') in the U
equation (82).

Finally, this model does not include the so-ca11ed low-
Reynolds-number effects. It has already been confirmed
that the correct asymptotic near-wall behaviors of the
model are very important for obtaining accurate resu1ts
in both solenoidal and compressible turbulence [4,22,23].
The study of those effects is beyond the scope of this pa-
per, but some of the findings about the near-wall behav-
iors of models obtained in Ref. [4] are applicable to this
model.
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