
PHYSICAL REVIEW A VOLUME 46, NUMBER 6 15 SEPTEMBER 1992

Dynamic properties of liquid cesium near the melting point: A molecular-dynamics study
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We present results of a molecular-dynamics study on liquid cesium, just above the melting point; i.e.,
we have performed a computer experiment on exactly the same system that was studied recently in a very
accurate neutron-scattering experiment by Bodensteiner et al. In this simulation the interaction of the
cesium atoms is based on an Ashcroft empty-core pseudopotential; the total simulation length extends
over 100000 time steps, i.e., 8 X 10 ' s real time. Both static and dynamic structure factors are in very

good agreement with experimental results: as in the experiment, we also get —within very good
accuracy —a positive dispersion relation. However, concerning propagating sound modes beyond the

a
main peak in S(q) (q &

q~
—1.4 A) we cannot find sufficient evidence for their existence. Analysis of the

transverse current correlation function shows that the corresponding decay mechanism is built up by
o

two relaxation processes (a fast binary one and a slow collective one); starting from —1 A the latter
one is completely extinguished. The correlation functions are fitted to hydrodynamic and memory-
function models that contain generalized thermodynamic and elastic quantities as parameters. In several
cases —if statistics allows —the true physical values can be recovered; then agreement with experimental
values is quite satisfactory (differences of 10-15 %%uo are observed).

PACS number(s): 61.20.Ja

I. INTRODUCTION

In a recent series of contributions, Bodensteiner et al.
[1] presented results of a very detailed and accurate
neutron-scattering study of the dynamic properties of
liquid cesium just above the melting point (i.e., at a tem-
perature of 308 K and a mass density of 1832.1 kgm ).
This contribution reports on investigations on the same
system; however, this time the experiment has been per-
formed by a molecular-dynamics (MD) simulation on a
computer. Preliminary results have already been present-
ed [2].

The first calculations ever done on the dynamic proper-
ties of a liquid date back to 1964 (Rahman [3]) which
were performed for a Lennard-Jones (LJ) system. Since
that time, such systems have been studied thoroughly
(starting from the work by Levesque and co-workers [4,5]
up to recent contributions by Hoheisel and co-workers
[6—8]; for an overview see Boon and Yip [9]). Besides LJ
systems, also hard spheres have been studied very careful-
ly (again see Boon and Yip [9]), so that we have now a
very detailed picture of the dynamics of these two liquids.

Concerning liquid metals, the situation is different: al-
though the first calculations were already done in 1974
(again by Rahman [10] in a parallel project to neutron-
scattering experiments [11])and although it was already
clear around 1980 that liquid metals and LJ systems do
have a distinctly diff'erent dynamic behavior [12,13], our
knowledge on the dynamic properties of liquid metals ex-
tracted from computer experiments is not so cornprehen-
sive as it is in the case for LJ liquids. This is of course
partly due to the fact that liquid metal potentials are —in
contrast to a LJ potential —explicitly density dependent,
therefore —even if we restrict ourselves (as in this study)
only to a simple model potential —a large variety of po-

tential forms exists across the Periodic Table [14].
Among the liquid metals investigated recently in comput-
er experiments we find Rb [15,16], Bi, and Pb [17]; this
list does not claim to be complete.

During the past few years experimentalists have made
much progress in the determination of dynamic proper-
ties of liquid metals: better neutron sources, improved al-
gorithms for correcting different errors, etc. , guarantee
extremely accurate experimental data. If we restrict our-
selves to the alkali metals only we now have experimental
results for practically all elements of this group (Li [18],
Na [19],Rb [20], and Cs [1]);in the case of Li and Na, we
even have both coherent and incoherent neutron-
scattering results due to the fact that the corresponding
cross sections are sufficiently large. This development, in
turn, is a challenge for the theorist: improved MD codes
(which, e.g. , guarantee a very accurate integration of the
equations of motion) and improved methods to interpret
the raw computer data have been developed [9,21] and
applied. Nowadays, high-performance computers allow
even the treatment of large systems (e.g. , up to 16000
particles [17])over an extremely large number of integra-
tion steps (100000—1 000000).

To check the reliability of our method we have chosen
Cs for this study. Extension of our calculations to other
liquid metals, especially the other alkali metals, is
planned. Our Cs atoms interact via a simple Ashcroft
empty-core pseudopotential [22], using the Ichimaru-
Utsumi [23] parametrization for the local field correction.
Despite its simplicity, this model gives for the static
properties good agreement with experimental data [24].
Using a time step At of 8 X 10 s the simulation was
performed over 100000ht for different system sizes up to
2048 particles. The positions r, (t) and velocities v, (t) of
the particles are sufficient to construct all the dynamic
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correlation functions (CF's) presented here: the self-
dynamic-structure-factor S,(q, co), the velocity autocorre-
lation function (VACF) %(t), and the transverse and lon-
gitudinal CF's [the latter being closely related to the dy-
namic structure factor S(q, cg)]. Unfortunately the single
particle CF's could not be compared to experimental
data, since a too small incoherent neutron-scattering
cross section does not allow their determination from ex-
periment. We have compared our S (q, co) and the disper-
sion relation co& (q) with the experimental results: we find
an astonishingly good agreement; especially, the positivi-
ty of the dispersion relation is reproduced with high ac-
curacy. Investigations on the transverse CF (which is not
accessible from experiment) confirm in agreement with
Jacucci and McDonald [12) that liquid metals are able to
support shear waves from very small q's onward (in our
case q -0.0732 A '); furthermore, we find that the relax-
ation process of the transverse modes is built up from two
relaxation processes (a fast binary and a slow collective
one), the latter one being completely extinguished from

q —1 A onward, thus including the position of the
main peak in S(q).

The different CF's have been fitted via hydrodynamic
and memory-function models, which contain generalized,
q-dependent thermodynamic and elastic constants as pa-
rameters. In principle the true physical values of these
quantities are recovered by extrapolating them towards
q =0. However, it turns out that not in all cases is such
an extrapolation possible due to numerical reasons. If we
can recover thermodynamic and elastic constants from
our calculations they are in general in good agreement
with experiment [25,26] (differences of 10—15% are ob-
served).

This paper is organized as follows: in Sec. II we have
compiled all the details about the theoretical tools neces-
sary for our investigations, i.e., the construction of the
potentials and parameters of the MD run. Section III
contains the definitions of the dynamic CF's calculated
here and related quantities; different methods which in-
terpret those CF's by means of models are presented.
Section IV is devoted to the discussion of our results in
comparison with the experimental data (static and dy-
namic CF's as well as thermodynamic and elastic proper-
ties). The paper is concluded with a summary.

e(q) = 1 — g(q) 1+
z G(q)y(q)

q q
(2)

y(q) is the usual Lindhard susceptibility function, G (q)
is the local field correction, and U(q) is the bare local
pseudopotential. Among the many approximations pro-
posed in the literature for G(q) (for an overview see
Hafner [27]), the parametrization of Ichimaru-Utsumi
[23] seems to us to represent the best compromise be-
tween accuracy and computational efficiency. For u(q)
we have chosen a simple Ashcroft empty-core pseudopo-
tential [22], given by

4m.e
U(q)= — cos(qr, ) .

q
(3)

B. The simulation

Although nowadays more sophisticated methods exist
to construct effective interatomic potentials in liquids (for
an overview see again Hafner [27]), we stick to this rather
simple model; this type of interaction has only one pa-
rameter (r, ) and it has turned out that such a potential is

able to produce excellent results for the static structure
(using different liquid-state methods, as computer simula-
tions, perturbation theories and integral equations) not
only for the alkali metals, but also for quite a large num-
ber of simple metals [28]. In our case r, is chosen to be
2.72 a.u. , a value which is usually accepted in the litera-
ture and which is justified by the following criteria: (i) it
provides good agreement between theory and experiment
for the static structure factor S(q) of liquid Cs over a
wide range of temperature [24], (ii) it guarantees a zero-
pressure condition for the solid state [27], and (iii) result-
ing values of the longitudinal and transverse phonon fre-
quencies of the solid state are in good agreement with
those obtained by more sophisticated pseudopotential
theories (as, e.g., the "generalized pseudopotential
theory" [29]) and with experiments [30,31] (cf. Table I).
4(r) is depicted in Fig. 1. The potential constructed in

this way shows the we11-known long-ranged Friedel oscil-
lations which represent a characteristic difference to sim-

ple model potentials as the LJ potential. This, in turn,
will cause a different dynamic behavior, as will be seen in

this contribution.

II. MODEL AND SIMULATION
The simulation has been performed using a standard

microcanonical MD code with the usual periodic bound-

A. The interatomic potential

2 2
@~

( )
477e 4&e

q q

—1 iv(q)i
e(q)

The system we have studied is liquid cesium just above
the melting point, i.e., at a temperature T =308 K and a
mass density n =1832.1 kgm [1,25]; it is exactly the
same state which was investigated recently in an experi-
ment by Bodensteiner et al. [1].

The cesium atoms interact via an effective two-body
potential @(r) which is based on pseudopotential theory.
Its Fourier transform (FT) 4(q) is given by L[100]

L[110]
T, [110]
T2 [110]

1.04
1.19
0.21
0.68

1.080
1.080
0.267
0.708

1.01
1.04
0.22
0.57

0.90
1.07
0.22
0.58

TABLE I. Longitudinal (L) and transverse (T) phonon fre-
quencies for cesium at the Brillouin-zone boundary, calculated
from the "generalized pseudopotential theory" (GPT) [29], from
this model potential and as obtained from two diH'erent experi-
ments [30,31] (all values in ps ').

Direction GPT [29] This potential Expt. [30] Expt. [31]
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FIG. 1. Pair distribution function g(r) and reduced dimen-

sionless interatomic potential 4 (r)=PC(r) for the system in-

vestigated as functions of r.

ary conditions; the equations of motion are integrated by
means of a fourth-order predictor-corrector Gear algo-
rithm [32]. Keeping the mass density n fixed to the ex-
perimental value of 1832.1 kgm [1,25], we used four
different system sizes, characterized by the particle num-
bers N =256, 500, 1372, and 2048. This was done in or-
der to study size effects both on the dynamic CF's, and on
the thermodynamic and elastic properties (cf. Secs. III
and IV).

As we shall see in Sec. III, the positions r;(t) and the
velocities v;(t), i =1, . . . , N provided by the MD for

every particle are the only ingredients necessary to con-
struct the different dynamic CF's, which, in turn, allow
us to extract thermodynamic and elastic data.

All MD runs were performed over 100000 time steps,
using a time increment ht of 8X10 ' s. In all cases en-

ergy conservation for the whole MD run was less than
0.01%%uo, due to the value of At, the grid size of the tabulat-
ed potential (see below) and the sophisticated integration
method. Both static and dynamic CF's are obtained by
averaging over time, invoking the ergodic hypothesis of
the equality of time averaging and ensemble averaging.
Temperature and energy were recorded during the whole
run, since their time dependence may provide us further
information on the system.

The potential was calculated in tabular form on a grid
with a mesh size of 0.04 A. Except for the smallest sys-
tem, it was truncated at a distance r,„,=18.12 A, i.e.,
after the sixth node, just before the fourth maximum; for
the smallest system r,„, was chosen to be 12.8 A, since
the sixth node would have been outside the simulation
box. r,„, corresponds from 42.6% (N =500) to 28.9%
(N =2048) of the side length Lz of the simulation box.
This distance seems to us to be sufficient to include all
important contributions of the potential: at the position
of the fourth maximum (the first extremum beyond r,„,),
the potential 4(r) has dropped to 0.374% of its value at
its first minimum (cf. Fig. 1).

Associated with every dynamic CF is a wave vector q,
which in the experiment may be chosen deliberately.

TABLE II. Recurrence time t„, (assuming the experimental value for the velocity of sound of 965
ms ') as defined in the text; wave numbers q (in A ) both for the different system sizes used in the MD
simulation and chosen in experiment [1].

256
t, =3.25 ps

Nq

500
t„,=4.06 ps

q Nq

1372
t„,=5.69 ps

q Nq

2048

t„,=6.50 ps

q Nq

Expt. [1]

0.40058
0.633 77
0.895 73
1.31340
2.002 92
2.403 50
2.775 32
3.204 66
3.582 92
4.005 83

3
12
12
12
15
15
4
3

12
15

0.16023
0.226 60
0.392 49
0.506 70
0.640 93
0.698 44
0.751 56
0.90642
1.01340
1.11013
1.281 87
1.396 88
1.503 12
1.602 33
1.812 83

3
6

12
12
3

12
12
6

12
4
3

12
12
15
6

0.11445
0.161 86
0.19824
0.228 91
0.39647
0.498 89
0.59471
0.647 44
0.750 51
0.915 62
1.023 69
1.121 40
1 ~ 18942
1.294 88
1.392 37
1.501 03
1.585 90
1.743 29
1.873 66
1.995 54
2.147 32
2.242 80
2.378 85
2.78474

3
6
4
3
4

12
16
6

12
3

12
12
16
6

12
12
4

12
12
12
12
12
16
12

0.100 15
0.141 63
0.17346
0.223 93
0.400 58
0.656 70
1.040 75
1.13302
1.278 58
1.387 66
1.525 37

3
6
4

12
3

12
16
6

12
4

12

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.15
1.2
1.25
1.3
14
1.5
1.6
1.7
1.8
1.9
2.0
2.2
2.4
2.55
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TABLE III. CPU time per integration step (in s).

Time

256
500

1372
2048

0.025
0.091
0.57
1.07

However, as the MD algorithm is restricted to periodic
boundary conditions, the wave vectors q have to satisfy
the condition q=(2'/Lz)(n„n2, n3), where the n; are
integers. Since our system is isotropic, the CF s are func-
tions of q =

~q~ only. Given a value of q, N vectors q ex-
ist with the same modulus. Since —due to statistics —the
results obtained from MD are not completely direction
independent (differences up to several percent are ob-
served), the final result of a CF is an average over all N
directions (as will be explained in Sec. III). Among those
q's, which are compatible with the periodic boundary
condition, our choice was according to the following cri-
teria: (i) in order to enable comparison with experiment,
they should be near those q values chosen in the experi-
mental study [1]; (ii) to study size effects, several of them
were chosen to satisfy q)v-q&, NAN' (within an accura-
cy of 1 or 2%); (iii) due to technical reasons, those q's

with N larger than 16 were discarded. All q's used in

this study for the four different system sizes are compiled
together with the corresponding X 's and the experimen-
tal q values in Table II. The respective first values
represent —except for X =256—the smallest q's compa-
tible with periodic boundary conditions.

All calculations were performed on a VP50-EX vector
processor. The CPU times necessary for one integration
step for the different system sizes are presented in Table
III.

III. THE CORRELATION FUNCTIONS

From the MD run we obtain the positions r;(t) and ve-

locities v, (t) at times t =j t).t, j =1, . . . , 100000. This in-

formation is sufficient to construct all the quantities we
need: we define the FT of the density operator and
current operator,

pz(t)= g exp[ —iq r, (t)],

j„(t)= g v, (t) exp[ —iq. r, (t)],
(4)

where q is a vector chosen according to the criteria of
Sec. II.

In the following we will introduce four different dy-
namic CF's. In the theoretical study these functions are
obtained as functions of time, while in experiment they
are determined as functions of frequency ~; in order to
enable a direct comparison with experiment we have to
perform a FT. However, a closer analysis of our results
leaves us no hope to perform these transformations
directly, i.e., without further analysis: neither the experi-
mental nor the theoretical CF's may be determined over a

sufficiently large range in co or t space (i.e., until they
have decayed to guarantee a sufficient numerical accura-
cy). Therefore procedures to fit these functions in t

and/or co space to analytical expressions have become
handsome tools to perform these transformations either
analytically or numerically with a deliberate degree of ac-
curacy. These expressions are based on different ap-
proaches; in this contribution we shall restrict ourselves
to the hydrodynamic fit (HF), valid in the low-q —low-co

region and the memory-function (MF) ansatz. In both
cases these expressions contain generalized q-dependent
thermodynamic and elastic parameters, their true physi-
cal values are obtained in the limit q ~0; they therefore
might give us a possibility to extract such data from our
results and to compare the corresponding theoretical and
experimental values. However, we shall see that an extra-
polation towards q =0 is not always possible due to nu-
merical reasons.

A. Static correlation functions

The pair distribution function (PDF) g (r) is obtained
by sampling every 40 time steps. Its FT, obtained via

S(q) = I+p f [g (r) —1]e '~'dr, (&)

is the static structure factor. p=n /M is the number den-
sity and M is the mass of the atoms. The respective posi-
tions of the main peaks of these functions will be denoted
by a [g(r)] and q~[S(q)].

B. Self-correlation-functions

The self-intermediate-scattering-function F, ( q, t ) is

defined as

(6)

This definition contains two averages: (i) one is the aver-

age over all N possible vectors q with ~q~ =q, i.e.,
F, (q, t)=(1/N~)g&F, (q, t); (ii) the symbols ( ) denote
averaging along the trajectories of the particles (accord-
ing to Levesque and Ashurst [33]), by shifting origins by
hto = 1250ht and averaging over particles, i.e.,

1
N~

Iq [r,, (t +Jato) —r,. ( Jato)]F, q, t)= — e
N,.

If we denote the time span over which the CF is
recorded by t, and the number of t, 's over which we aver-

age by N~ then we have used the following values:

Nr =80, t, =1250ht. The FT of Eq. (6) is the self-

dynamic-structure-factor

S, (q, co) = J e'"'F, (q, t)dt .
277

For a given q, the frequency moments (sum rules) are
defined as

~,"(q)=I" co"S,(q, co)de=( —1)"~ F,'"'(q, t)~, ()

(only the even moments are nonzero). Being static CF's,
these moments may be expressed in terms of the PDF
and higher-order distribution functions: g(r) may easily



46 DYNAMIC PROPERTIES OF LIQUID CESIUM NEAR THE. . . 3259

be extracted from the MD run. The distribution function
of the next order, i.e., g' '(r, r), may, in principle also be
obtained from simulations: however, this procedure is
extremely time-consuming [34,35] and therefore not real-
istic. And although several attempts have been made to
get g' '(r, r'} from numerical approaches for the whole
(r, r'} space (as required for the integrations) [36), they
are too time-consuming for practical use. Besides that,
the higher moments involve correlations between increas-
ing numbers of particles and rapidly become very tedious
to evaluate [21]. We therefore restrict ourselves (and this
will also be the case for all the other dynamic CF's which
we shall discuss in the following) only to those moments
which may be calculated by means of the PDF, i.e., for
the case of F, (q, t) up to the fourth moment:

- t/~,
n, (q, t)=e

n, (q, t)I, 0=1,
and we obtain, for

S,(q, co }=—Re[F, (q, co)],1

1 &, O2( 2~O2+Q2O)
S,(q, co) =—

2(3 2+Q2 2)2+( 2 ~2)2

where the limit

(16}

(17)

For N, we make the following simple (exponential) an-
satz:

N, (q, co) = (2coo+ Qo)n, (q, co),

co, =1, co, =(qua)—:coo, (9)

8 Q
co, =3(qua) +co() fdrg(r) =—3(qu()) +co()Q() .

(}Z2

2
V0

lim~, (q) =
DQ0

is consistent with the hydrodynamic limit (11).
The normalized VACF is defined as

(18)

(10)

F, (q, t)+—f M, (q, t t')F, (q, t')dt'=—0 .
0

(12)

The above equations may be considered as definitions
of coo and the Einstein frequency Qo', uo=1/PM is the
thermal speed.

We now present two different expressions which enable
us to fit our data and to perform then the FT (8) analyti-
cally and/or numerically (within sufficient numerical ac-
curacy): (i) the HF expression is valid in the hydro-
dynamic region, i.e., for small q's and small m's,

—D ~f 1 D
F, (q, t)=e ~ ', S,(q, co)=—

~ (Dq ) +co

where D is the diffusion constant.
(ii) In the MF formalism the CF's [here F, (q, t)] and its

MF [M, (q, t)] fulfill the following relation:

( v, (t).v)(0) )
(19)

%(co)= f e' '%(t)dt,

co„=f co 0 (co)dco, co„=1, co„—Qo

The first-order MF ansatz for t(co)

(20)

(21)

(p(co) =
ico+M, (—co)

(22)

with M„(co)=co„m„(co), m„(t)I, 0=1, and m„(t)= exp( t!r„)yields—

where averaging ( ) is done in the same way as in (7)
with the same parameters ht0, NT, and t, . We define the
Fourier spectrum (p(co) and the moments co„"

The value M, (q, t)I, 0 is fixed by the condition

M, (q, t)I, 0= F, (q, t)I, 0/F, (q,—t)I, o=co, /co, . (13)

NU 1
q'(co) =—

(~2 ~2)2+~2/P (23)

Continuing this scheme we can make a MF ansatz for
M, (q, t)[its MF is N, (q, t)],N, (q, t)I, 0 being fixed by

—
2 (t/~, )
1

1
e ' " cos(Q, t)+ sin(Q, t), Qor, & —,

'

20iv,

N, (q, t)I, -()

M, (q, t) I, =, F,"'(q, t) I, =0 F,(q, t}I, =o

M, (q, t)I, o F~(q, t)I o F,(q, t)I, =O

4'(t) =
QP Gg+ f

[co+e —co e + ], Qor„( —,
'

(24)

(25}

~4
S

COS

S

COS

(14}

F,(q, co) =
CO S

—ico+N, (q, co)

(15)

Truncating this procedure (which guarantees the sum
rules up to fourth order) we obtain for the Fourier-
Laplace-transform F,(q, co)[=J 0" exp(icot)F, (q, t)dt] of
the self-intermediate-scattering-function

where Q) =Qo— 1

4,
From the equation [9,21)

D=U0 %' t dt

co+ = [ I + (I —4Qor„)' ).
1

iv

(26)

we obtain a relation between D and ~„namely=
u() /(DQ()).
F, (q, t) may be written in the following form (cumulant

expansion [9)):
—

q p)(t)+q p~(t) —. . -

F, q, t=e
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The p„(t) are time-dependent functions which can be
calculated from the spatial moments. Neglecting all
terms beyond the first one in the exponent of (27) we ob-
tain the so-called Gaussian approximation. Within this
approximation a relation between F, (q, t) and 0'(t) is
given as

The sum rules co()(cot" (,)) up to fourth (second) order are

co() S(q), co( (()
—

co() (34)

p(qv()) 0 D
cot =3(qvp) + f dr g (r)[1—cos(qz)]

M aZ2

F, (q, t) = exp[ —
q p, (t) ], 0'(t) =

z P, (t) .
1

V0
(28)

4 2

[—', G„(q)+I(:„(q)],
pM

(35)

F(q, t)= —(p~(t)p q(0)),1

2

C t3(q, t) = (j (t)j ~ (0) }

(29}

aqp qaqp
C((q, t) + 5 t)

— C, (q, t)
q q

(30)

where ( } does not include averaging over particles [i.e.,
the inner average of (7} only]. The current CF's are split
up into longitudinal (I) and transverse (t) components (the
greek indices denote Cartesian coordinates). We choose
the following parameters: At0=4ht, At, =1024ht, and
NT=25000, so that the averaging events overlap in con-
trast to F, (q, t) and %(t).

The respective FT's and moments are defined as

S(q, co) = f e'"'F(q, t)dt,

(31)
lNE

C( (, ) ( q, co ) = e' 'C((, )(q, t)dt,2'
cop(q) = f co"S(q,co)dco,

co((,)(q)= f co"C((,)(q, co)dco .

The following important relations hold:

C, (q, co) =co S(q, co), co()=cot"

(32)

(33)

The dynamic structure factor S(q, co) and the self-
dynamic-structure-factor S,(q, co) (8) may be compared
directly to the experimental results of coherent and in-
coherent neutron-scattering experiments, as shall be done
in Sec. IV.

C. Dynamic structure factor, current correlation functions

The intermediate scattering function F(q, t) and the
current CF's C t3(q, t) are defined as

p(qup)'
co, =(qup) + fdr g (r)[1—cos(qz)]

4V2

G„(q) .
pM

(36)

1 . 1 2
S (q, co) = lim — exp(i cot)pq(t)dt

2m% T-~ T 0
(37)

which is equivalent to (31). In order to eliminate the
noise caused by the finite trajectories, the result obtained
was convoluted with a Gaussian resolution function

f (co, cof). The parameter cof, the full width of these func-
tions, was chosen to guarantee consistency for cop (the
consistency of cop is maintained by definition). cof typical-
ly ranges from 0.2 to 1 ps ', (ii) the second possibility for
a numerical FT is to fit F(q, t) to different analytical mod-
els [HF, MF, as done for S,(q, co) and %(co)] and to trans-
form these expressions analytically or numerically: for
these integrations we can now extend the integrand much
further than the original data from the MD run.

In the HF model we find

Here, G „(q) is the wave-number-dependent high-
frequency shear modulus, and I(: „(q) the wave-number-
dependent high-frequency bulk modulus.

Due to the factor co in (33), Ct(q, co) shows —in con-
trast to S(q, co)—a well-defined peak at a position which
shall be denoted as co& (q) (co) 0, for any q); co& (q) is the
dispersion relation, the quantity c( =co( (q)/q is the phase
velocity of the propagating collective modes. In a similar
manner we shall denote —if this peak may be resolved-
the position of the (co) 0) peak in S(q, co) by cos(q) and
the corresponding velocity by cs =cot((q)/q. co, (q)
defines the position of the (co )0) peak of C, (q, co), i.e., the
dispersion relation of the transverse modes. A phase ve-
locity c, analogous to cI will be defined in Sec. IV B.

The FT(31) has been performed in two different ways:
(i) first we calculate S(q, co) via [37]

F(q, t) y —1 DTqt-+—e '[ cos(c,qt)+b(q) sin(c, qt)],
F(q, 0) y y

C, (q, t) =co,e

(38)

(39}

2
S(q, co) 1 y —1

co +(DTq )

Ct)& q 2&
0

C, (q, co) =
(qz )2+

(co+c,q) +(I q ) (co —c,q) +(I q )

co+c,q &—c,q+b (q)
(co+c,q) +(I q ) (co —c,q) +(I q )

(40)

(41)
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1 Il
I =—Dr(y —1)+

2 pM
(42)

F(q, t} and C, (q, t) are obtained directly from MD and
have been fitted in the hydrodynamic region (q (0.4 A)
to the above expressions, using a standard least-square fit

procedure, where the parameters e„y, I, D~, and v are
now functions of q. The real physical values are

I

For a derivation of (38) and (39) see Boon and Yip [9],
Hansen and McDonald [21],and Schoen, Vogelsang, and
Hoheisel [8]. The FT's with respect to t may be calculat-
ed analytically.

The quantities used in the above expressions are the
following: c, is the adiabatic velocity of sound,

y =C /C„ is the ratio of the specific heats, I is the sound
attenuation coeScient (which multiplied by q is inverse-

ly proportional to the lifetime of the acoustic modes), and
Dz. is the thermal diffusivity; b (q) =(q/c, )[I
+(y —1)Dr] and the kinetic shear viscosity v is related
to the shear viscosity g via pMv=g. I, Dz and the lon-
gitudinal viscosity ri&

=
—,ri+ris (ritt is the bulk viscosity}

are related via [21]

2
CO(

Ci(q, co) = ico+—MI (q, co)
(43)

with MI(q, t)~, o=coi/co1. The hydrodynamic limit (40)
for S(q, co) and relation (33) suggest the following expres-
sion for M&(q, t) (a phenomenological derivation is given
in Boon and Yip [9],p. 298):

recovered by extrapolating them towards q =0 (cf. Sec.
IV C).

Although (38) and (39) are valid only in the hydro-
dynamic region, we have used (38) to fit F(q, t) for larger
q's, since the functional form of this expression seems to
be well suited for fitting our MD data. In these cases the
obtained parameters lose their physical relevance (they
differ too much from their physical values): we simply
use this function as a suitable tool to perform a numeri-
cally accurate FT (in fact, we have stopped this pro-
cedure when for the first time one of the parameters lost
physical significance by becoming negative).

We have used for the first-order MF ansatz for CI(q, co)

the following, which guarantees consistency of the sum
rules co~ up to the second moment:

2 2

MI(q, t)= +D(q, t), D(q, t) = (y —1)e +
N CO1 0—y mI(q, t)S q

(44)

and mI(q, t)~, 0=1. Inserting (44) into (43) we obtain

CI(q, co) =coo
co D'(q, co)

[co cooIS(q)+co—D "(q,co)] + [D'(q, co)co]

(45)

where D' and D" are the real and imaginary part of
D (q, co). The corresponding S (q, co) satisfies the sum
rules coo up to fourth order [21]. Assuming

m, (q, t)=exp( t lr, ), —

mt (q, t) = [1—a, (q) ]exp[ t Ir„(q)]-
+a, (q)exp[ tlr2, (q—)] .

(49)

The correct hydrodynamic behavior (41) is guaranteed

m,
' and m,

" are the real and imaginary part of m, (q, co).
We use two different models for m, (q, t):

mI(q, t) =exp( —t /rt ) (46)

we have three q-dependent parameters Dz-, y, and ~1

(MF-3); furthermore a one-parameter model (MF-1; pa-
rameter: rI) is easily obtained from (46) and (44) by fixing

y to unity.
The correct hydrodynamic behavior is guaranteed if

ri= G„(0)r,(0),
rt=G„(0)[[(1—a, (0)]r„(0)+a,(0)rz, (0)] .

O. Miscellaneous

(50)

n(0)= Il

—', G„(0)+E„(0)—y, ' (47)

1 Cgr P7l

C, (q, co)=-
Ger

m,"(q,co ) —co
CO r

,'(q, co )

CO2

+ m,'(q, co)
COr

2

(48)

where y, = (P/py )S(0) is the adiabatic compressibility.
A MF ansatz for C, ( q, co ) similar to (43) with

M, (q, t)=(co, /cot)m, (q, t)=[q G (q)/pM]m, (q, co) and
m, (q, t)I 0=1 yields (I'& —

& &)'
&T&'

3%k~1—
3N 2C,

(51)

The diffusion constant D is also accessible via the mean-
square displacement:

D = lim —( ~r(t) —r(0)~ ) .1

r- 6t
(52)

The static structure factor S(q) has been determined
both from the pair distribution function g(r) via (5) as
well as from the sum rule (34).

From the temperature fluctuations recorded during the
run we can determine the specific heat C„via
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IV. RESULTS

A. Static structure

Figure 1 shows —together with the potential C&(r)—
the PDF g(r) as obtained from the MD run. The curves
for g (r) for different system sizes all coincide within line
thickness. Figure 2 shows the static structure factor S(q)
as obtained from different theoretical methods [(i) by FT
or g(r), (ii) using the sum rule (34)] and in comparison
with experimental data [1]; in both cases agreement is
very satisfactory. g (r) has furthermore been used to cal-
culate the different moments [cf. (10), (34), (35), (36)].
These integrals have been truncated at the respective
r,„,'s (cf. Sec. II B). The moments are depicted in Fig. 3.
co&(q) shows the well-known de Gennes narrowing [38] at
the position of the main peak of S(q) (q —1.4 A '); the
size dependence of the moments is negligible.

B. Dynamic correlation functions

11 q-vectors in the N =2048 case. The decay of this
function with time is—especially for the smallest q's-
very slow, which makes a direct evaluation of S,(q, to) via
(8) impossible. We have therefore fitted the computer
data both to the HF model (11) and the MF model (17);
the latter gives a better quality of fitting than the former.
The q-dependence of the respective parameters D(q) and
r, (q) is depicted in Fig. 5. While fitting to the HF model
is straightforward, the use of the MF expression of
F, (q, t) is a much more delicate task, especially for the
smallest q-vectors, where F, (q, t) is nearly a constant with
respect to t; consequently S,(q, co) is a very sharp function
of to. The numerical FT of the analytic S,(q, ro) (17) into t

space [say F, "(q, t; ), evaluated at discrete times t, ) has
been performed using a variable grid size in co space with

S(q)

l. Self corre-lation func-tions

Both the self-dynamic-structure-factor S, (q, co) and the
VACF %(t) have been calculated over a titne range of
1250 At=10 ps for the N=2048 ensemble. Although
the time range exceeds the so-called recurrence time (~„„)
for this system size of 6.5 ps (i.e., the time the sound
needs for passing through the simulation cell; cf. Table
II), this does not seem to affect the CF's. Neither did we
find in any paper evidence of effects which might unique-

ly be related to evaluating CF's beyond the recurrence
time. We have made closer investigations on this as-
sumption by calculating %(t) for the smaller systems over
the same time range. We find that even if we calculate,
e.g. , 4 (t) beyond r„6, that this function agrees (within
numerical accuracy) with 4' (t) in the t range
[H„,q'„,.]; this comparison was done for all four system
sizes. Since no effects were visible, we may conclude that
calculation of CF's beyond ~„, does not have any
influence on these functions. The self-intermediate-
scattering-function F, (q, t) is displayed in Fig. 4 for the

(ps-'}

S(q)

s (A-~}

FIG. 2. Static structure factor S(q) for the system investigat-
ed. Full line, S(q) as determined from the MD study
(N = 1372); o, experimental data [1];~, S(q) obtained from the
sum rule (34).

q (L '}

FIG. 3. Wave-number-dependent sum rules for the system in-

vestigated as functions of q. Symbols: full line, results for
N =1372 (interpolated); CI, N =256; 6, N =500; Q, N =2048;
(a) aPO=S(q), (b) co(*=+col/co02, (c) co,*=+co', /coo. coo=quo is
indicated in (b) as a broken line.
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lowing behavior for small q's [39]:

co,
'~ (q}-Dq ( I a—q), S,(q, 0} - (I+bq} .

mD q2
(53)

0.5

I I I I I I I I I

5 t (ps) 10

2' = 16 384 points. The sum of the least squares
(S,=g, s25~[F( q, t;) F, "(q,—t;)] ) is for small q's (up
to -0.6 A ') typically 0.05; it increases for the largest q
va1ues encountered up to 0.5.

Based on this model we have then determined the fu11

width at half maximum co,
'~ (q) and the value of S, (q, 0),

for which mode-coupling theory (MC) predicts the fol-

FIG. 4. Self-dynamic-intermediate-scattering-function
F,(q, t) for the system investigated (N =2048 ensemble). The

y
values range from q =0.10015 A (top) to q =1.52537 A
(bottom). The values of the other q's may be seen from the
respective column of Table II.

a and b are constants containing the diffusion constant D
and the kinetic shear viscosity v. Both relations are nice-
ly reproduced in our results but will be discussed else-
where [40], together with a comprehensive discussion of
MC effects found in our results. Due to the fact that for
Cs the cross section for incoherent neutron scattering
amounts to only 10% of the coherent one, we do not have
experimental results for S,(q, co). Both D(q) and w, (q)
are rather smooth curves for small q's, so that the limit

q ~0 may be performed in a numerically safe way; the
corresponding values for D will be compared with other
values obtained by different methods in Sec. IVC and
Table VII.

The VACF %(t) and its Fourier spectrum 4(co) are
displayed in Fig. 6; the latter one could be calculated-
due to its rapid decay in time —directly from the simula-
tion data via (20). 4(t) has been fitted to the first-order
MF model (24), (25) with a rather poor agreement; it
therefore is not surprising that we obtain for the diffusion
constant D calculated via the fitting parameter v„a value
which deviates by -50% from the experimental result
(cf. discussion in Sec. IVC and Table VI). But also a
different choice for „r ( usin gthe same MF model) —i.e.,

D (ms-')-

t (ps)

2.0~10 9 '

30

0.1

I
I
I

I
I
I

\

1

t
t
t
t
\

t

'7Q

0.05

(u (ps ') 10

FIG. 5. Generalized diffusion constant D(q) (11) and relaxa-
tion time ~,*(q)=~, /ht (17) as obtained from a HF (D), and a
MF (w, )

fit

of�,

(q, co); ht=8X10 ' s.

FIG. 6. VACF %(t) (top) and its Fourier spectrum +(co)
(bottom)-of the system investigated (N =2048) (full line). The
dotted line is the MF fit to %(t) (24), the broken line depicts the
MF model, using a ~, =vo/DAO where D is obtained via (26).
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(40) or (iii) MF fitting (45), (33)]; the results of the
different methods are compared in Fig. 10 for several q
values; except for the MF-1 results, the procedures can be
regarded as equivalent. ego (defined in a similar way as 4,
above) reaches —in rare cases —up to 0.1; in general it is

less than 0.05. For the sake of completeness we have also
depicted the MF-1 curve, which gives for small q's very
bad agreement with the other methods, but is of reason-
able accuracy for q —1.2 A ' and larger. This reflects
the inadequacy of a one-relaxation time MF model for

0.5
0.3

4.00583

i (psj

FIG. 9. Normalized intermediate scattering function I' N(q, t) as defined in Fig. 8 for the whole q range investigated. Note the
different scales in the q direction; the respective q values are indicated. A11 results are from the 1372-particle system, except for the
four largest q's, which stem from the 256-particle system.
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small q's. Balucani and Vallauri [15] also found in the
above-mentioned study that a two-time relaxation ansatz
is absolutely necessary to describe the decay mechanism
in an adequate way. Their model is based on a more so-
phisticated ansatz (namely, on a MC theory [44]) than
our simple phenomenologically derived expression (44).
However, they have to make several simplifications in or-

der to practically use their complex expression. In the
end, we think that the two models do not differ too much
and we both end up with the conclusion that two relaxa-
tion times are in fact necessary for the MF of S(q, co).

xpression (40) turns out to be very suitable to fit the
computer data over a large q range; we have therefore
used this model well beyond the hydrodynamic regime, as

~~(v. ~)
(ps)

0.5

0.5-

10

FIG. 10. Comparison of the different methods of FT's of F(,t) to S co f rq, o (q, ) o several q-vectors (from top to bottom: 1.743 29

, and 0. 161 86 A ): full line, (37); broken line MF-3
satz; and dotted line, HF (40).

en ine, F-3 ansatz (43)—(46), (33); dashed-dotted line, MF-1 an-
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~o
~0

0o

0 0
0

0 ~0
O

e y ~

long as the obtained parameters have physical
significance; comparison with other FT's(Fig. 10}justifies
this. In fact, we used this expression up to q —1s3 A
where the velocity of sound becomes negative. Boden-
steiner et al. [1]haveused the same model to fit their ex-
perimental data: in Fig. 11 we have depicted both
theoretical and experimental values for the fuli width at
half maximum of the inelastic peak hcoo (the theoretical
values are taken from the HF parameters); agreement up
to —1 A ' is very good, the large scattering of the exper-
imental values beyond this q is due to difficulties in

FIG. 11. Full width at half maximum b,coo(q) of the inelastic

peak in S(q, cu): 0, theoretical results (obtained from the HF
parameters); 0, experimental results [1]; at half-filled circles
theoretical and experimental results coincide.

resolving the inelastic peak of the experimental data [45].
The HF-and MF-fitting parameters y(q), I(q), DT(q), c,
and r'(q) are depicted in Figs. 12 and 13. The influence

of the system size is in general not too large. In Sec. IV C
we will discuss possibilities of how to recover the true
physical quantities(y, I, DT, and c,}.

S~(q, co) =S(q,co)/S(q) has been compared to the ex-

perimental results of Bodensteiner et al. [1] over a large

q range. This comparison is presented in Fig. 14: agree-
ment with experiment is for intermediate and large q's

not only qualitatively but also quantitatively very good.
Only for q values smaller than —1 A ' discrepancies in
value(not in shape) occur for smaller's which may partly
be due to small differences in S(q): this quantity, being
rather small in this region, is affected with a rather large
error and might therefore cause large differences due to
the normalization prescription, however, the qualitative
agreement is still maintained. The sound mode, which

may be traced up to —1s2 A ', is reproduced with aston-
ishingly high accuracy. The dispersion relation co) (q) is
shown both for the theoretical and experimental results
in Fig. 15: agreement with experiment is very good. In
the same figure we present the phase velocity c~(q} of the
propagating sound modes and finally, in the bottom panel
several velocities: the symbols represent ci(q) and ce(q)
(defined above), the curves depict co(q)=uo~y/S(q)
(assuming an experimental value of 1.1 for y) and
the high-frequency sound speed c„(q)
=Q(i/pM)[ —4G„(q)+E„(q)]. As in experiinent [1]we

find for co'(q) an anomalous positive dispersion, i.e., an

DT

1.8

0.006-

0.004-

0.002

0.04

0.010

0.005
0.02

0 ~ I I I I I I I I I I I I I I

0 0.5 qQ')
0 ~

0.5

FIG. 12. q dependence of the HF parameters for S(q, co) [cf. (40)]. Symbols as in Fig. 3. The following reduced units are used:
r*=rq At, DT =DTq b, t, v*=c,qht;At=8X10 ' s.
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7
I

40

the theoretical one is directly evaluated from g(r) and
4(r) via (35). In order to quantify the positivity of the
dispersion relation we use an expression provided by MC
theory, which predicts the following small-q behavior of
co~(q) [47] (and was substantiated for liquid Ar [48]):

co~(q)-c,q+a, q +O(q" ) . (54)

20

1.4

DT

0.005

0
0 3 q(A ')

FIG. 13. q dependence of the three MF-fitting parameters of
S(q, co} [cf. (43)—(46)]. Symbols as in Fig. 12. The following re-
duced units are used: ~&* =~, /ht, DT =Drq'At: At = 8 X 10
s.

enhancement over the linear dispersion. This is nicely
seen especially from the second panel where we find a de-
viation of ci(q) from a horizontal line (which would cor-
respond to a linear dispersion). the bottom panel sub-
stantiates what Bodensteiner et al. [1] assume to be the
reason for the positive dispersion: if shear modes are
present —and this is obviously the case both in theory
and experiment —then the dispersion skips over from
coP(q) c,(q)q to col -(q)-c„(q)q. And in fact c„(q)
turns out to be an upper limit to our dispersion curve, as
shown in Fig. 15. The theoretical and experimental value
for c„(0) differ quite strongly: 1356.2 ms ' (theor. )

versus 1109 ms ' (expt. ); a direct comparison is, howev-
er, not legal, since the experimental value is calculated
via a simple model [46] [assuming a model g (r)], whereas

This expression allows us to determine the theoretical
value of c, ;a, is a direct measure of the degree of positivi-
ty of co~(q). For these calculations we used S (q, co) deter-
mined by two different methods [FT via (37) and via the
MF model (45)]; results for c, and a, are compiled in
Table IV.

Experimentalists have assumed [1] that there is evi-
dence for propagating sound modes for q's beyond q ', we
regret to say that computer experiments cannot give a
definite answer (only a slight shoulder for 1.6
A ' ~q ~ 1.9 A ' is visible in our results). From our
data, no evidence could be found for such a mode: nei-
ther from studying S(q, co) obtained via (37) on a very fine
co grid nor from the analytic expression for the MF-3
model (45). A final decision, however, if theoretical
methods are able to predict or to reproduce propagating
modes beyond q can only be given via MC theory (and
will be presented elsewhere): such modes have already
been found for liquid Ar [49], even though a distinct peak
was not "visible" from the S(q, cu) curves ["the absence of
distinct peaks in S(q, co) does not imply the absence of
sound modes"].

Although the transverse current CF C, (q, t) is not ac-
cessible from experiment, MD results allow their deter-
mination via (30); sampling was done in the same way as
for F(q, t) C, (q, t) has .been interpreted in terms of a HF
(39) and two MF models [a one-parameter and a three-
parameter expression (49)]. The first model gives very
poor results (not displayed); this is not surprising, since
(39) is an exponentially decaying function in t, whereas
computer data oscillate in time. The HF parameter v as
a function of q is depicted in Fig. 16. The quality of the
MF models depends strongly on the value of q. For small
q's (up to -0.6 A ') the MF-3 is superior to the MF-1;
however, as we increase q, (i) the mixing parameter a,
tends to 0 (in fact a, ( 10 for q ) 1 A '), (ii) the smaller
relaxation time (e.g. , r&, ) tends to the MF-1 parameter r„
and (iii) although r2, reaches extremely high values, the
second decay mechanism loses its significance due to the
vanishing prefactor. The MF parameters ~, (q) [r„(q),
r2, (q), and a, ] are shown in Fig. 17 and depict nicely how
the MF-3 model merges into the MF-1 expression at

0q-0. 6—1 A . We want to point out that the onset of
this fact is different from our previous communication [2]
where we claimed it to be at the onset of the main peak of
S (q) ( —1.2 A ). This difference originates from the
fact that we have used an improved procedure [as de-
scribed above for F, (q, t)] to fit the raw computer data.
Our findings are in agreement with those of Balucani and
co-workers for liquid Rb [15] and in contrast to the data
for LJ systems (Levesque, Verlet, and Kurkijarvi [5]),
where the authors claim that a two-parameter relaxation
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range and depth (cf. Table V) we find an astonish-
ingly good agreement for q, (q, a cws =0.224 versus

q, ttws =0.224). PerhaPs this excellent agreement is for-
tuitous; only an extensive investigation on the dynamical
structure of the liquid alkali metals near the melting
point might give a more definite answer. However, in
any case this finding may indicate that obviously the
shape of the potential (which is for both cases similar) is
more important for dynamic properties than the position
and the range of the attractive part of the interaction;
this would also substantiate the conjecture about the
different behavior of liquid metals and LJ: LJ potentials
have a strongly anharmonic attractive potential.
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FIG. 15. (a) Dispersion relation of the collective modes

co& (q): theoretical values () in comparison with experimental
data [1] (0); (b) phase velocity of the propagating modes

c~(q)=col (q)/q [symbols as in (a)]; (c) different velocities as
functions of q: ci(q), 0; cz(q), 6 (both defined in the text);
c „(q) (fu11 line); and co(q) (broken line).

C. Elastic and thermodynamic properties

The parameters of the different HF and MF models for
the dynamic CF's are generalized, q-dependent elastic
and thermodynamic constants. In principle, the physical
values are obtained by extrapolating towards q =0.
However, it turns out that from the numerical point of
view this task is a rather tricky one and by no means so
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q, ) in the vicinity of q, we ob-
tain (from a linear least-square fit up to q =0.6 A )

0

from our results the following values: c, =644ms ' and

q, =0.0732 A
We would like to take this occasion to compare our re-

sults with data obtained for liquid Rb near the melting
point and in the supercooled state by Mountain [51].
Since we know that for the liquid alkali metals near the
melting point the static structure scales with -p ' we

introduce as a natural length scale the Wigner-Seitz ra-
dius aws=(3/4rrp)' . Although the potential used by
Mountain [52] is different from ours, both concerning
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FIG. 17. q dependence of the MF-1 (r, ) and the MF-3 MF-
fitting parameter(s) (r&*„r&„a,) of C, (q, t) (48) and (49) for
N =1372. The different r,*'s are in units of ht=8X10 ' s.
Symbols: full line, r, ; broken line, r&, ', dotted line, r&, ', and
dashed-dotted line, a, .
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q, the values obtained for q =0 (i.e., the true physical
values) depend rather on the number of points involved
and/or on the assumed shape of the interpolating and ex-
trapolating function. In the beginning we have used both
interpolating functions (polynomial and rational interpo-
lants [53]) and least-square fits (linear and quadratic func-
tion shapes). The interpolating functions had to be dis-
carded due to the fact that an increasing number of
points involved increases the number of wiggles of these
functions and therefore make the value at q =0 rather
uncertain. So we are left with the least-square fits. In or-
der to make transparent to the reader in which way our
results were obtained we use the following notation: L-n
stands for a linear least-square fit and Q nfor-a quadratic
least-square fit, where n is the number of points involved.
We found that in general 4 points for the linear fit and 6
points for the quadratic fit are a reasonable number of
points.

Table VI contains (i) all those elastic and thermo-
dynamic quantities which may in principle be extracted
from the models used here, (ii) the respective experimen-
tal value, (iii) from what expression they may be deter-
mined, and (iv) if they indeed may be extracted from the
raw computer data in a proper way.

The dift'usion constant D may be determined in several
ways: Table VII contains these difFerent values for D in
comparison with the experimental value [1,25]. The
theoretical data are —except for method (f)—in reason-
ably good agreement with experiment. The poor value
obtained from the MF fit to %(t) has already been dis-
cussed. For Dr we obtain (all values in 10 m s ') the
following: HF (11):2.77 (L-4), 3.01 (Q-6); MF-3 (44), (45):
3.04 (L-4), 3.27 (Q-6); although comparison with the ex-
perimental value of 3.0 [25] seems to be very satisfying,
we have to admit that this agreement is probably due to a
fortuitous cancellation of contributions, as will be dis-
cussed later. Concerning y, the ratio of the specific
heats, we obtain the following values: HF (40): 1.15 (L-4),
0.95 (Q-6); MF-3 (44), (45): 1.12 (L-4), 1.18 (Q-6), which
compare favorably well with the experimental value of
1.1. As already stated above, agreement for I (q) using
both for the theoretical and experimental results a HF
model is very good over a large q range. Consequently
we find for I =I (0) a relatively good agreement [theor. :
1.01 (L-4), 1.10 (Q-6); expt. : 0.83; values in 10 m s '].
Results for the adiabatic velocity of sound c, have al-
ready been discussed and are compiled in Table IV. The
specific heat C, has been determined via the temperature

TABLE VI. Thermodynamic and elastic properties which may be extracted from the di6'erent mod-
els of CF's applied to the computer data (HF = hydrodynamic fit, MF-n =memory-function ansatz
with n parameters, and MC=mode-coupling theory) along with their experimental values. "Yes" or
"no" in the last column indicates if the limit q towards 0 may be performed in a numerically proper and
safe way.

Quantity

D

Experimental value

2.35X10 m's ' [25]

Model

HF to F, (q, t)
MF-1 to F, (q, t)
MF to P(t)
time integral of O(t)
Gaussian model for F, (q, t)
mean-square displacement
MC

Equation

(11)
(17), (18)
(24), (25)

(26)
(28)
(52)
(53)

yes
yes
yes
yes
yes
yes
yes

DT 3.0 X 10 ' m' s ' [25] HF to F(q, t)
MF-3 to F(q, t)

(38), (40)
(44), (45)

yes
yes

1.102 [25] HF to F(q, t)
MF-3 to F (q, t)

(38), (40)
(44), (45)

yes
yes

c

8.3X10 m s ' [25]

965 ms ' [25]

HF to F(q, t)

HF to F(q t)
MC to co& (q)

(38), (40)

(38), (40)
(54)

yes

yes
yes

0.214 JRK ' [25]

0.7X10 ' Pas [26]

temperature variation

HF to C, (q, t)
MF-1 to C, (q, t)
MF-3 to C, (q, t)
MC to S,(q, co)

(51)

(41)
(49), (50)
(49), (50)

(53)

yes

yes
yes
yes
yes

2.973X10 Pas [26] Mf-3 to F(q, t)
HF to S(q, co)

(44), (45), (47)
(42)

no
no



46 DYNAMIC PROPERTIES OF LIQUID CESIUM NEAR THE. . . 3273

TABLE VII. Diffusion constant D as obtained from different methods (all values in 10 m's '): (a)
experimental value [1,25]; (b) from MF fit to S,lq, co) (17), (18), (Q-10); (c) from the HF to S,lq, co) (11)
(Q-10); (d) the long-time behavior of the Gaussian function p, (tl (cf. text); (e) from time integration of
%(t) (26); (f) from MF fit to %(t) (24); (g) from the mean-square displacement (52); (h) from MC to

(q) and S,(q, 0) (53) (averaged).

(a)

2.35

(b)

2.825

(c)

2.204

(d)

2.109+0.177

(e)

1.8965 3.045 31

(g)

1.974+0.0021

(h)

2.41+0.015

TABLE VIII. Shear viscosity g as obtained from different
methods (all values in 10 Pa s): (a) experimental value [26]; (b)
from HF fit to C, (q, t) (41); (c) from MF-1 fit to C, (q, t) (49), (50);
(d) from MF-3 fit to C, (q, t) (49), (50); (e) from MC to m,

' (q)
and S,(q, co) (53) (averaged).

(a) (b) (c) (d) (e)

0.7 0.781 (L-4) 0.752 (L-4) 0.714 (L-4) 0.44+0.124 (L-8)
0.816 (Q-6) 0.777 (Q-6) 0.903 (Q-6)

variation during the MD run (51). We find a value of
0.223 JgK ' versus the experimental result of 0.214
J g K '. The data for ri (and hence for v) are compiled in
Table VIII. Similar to D the agreement with the experi-
mental value is satisfactory except for method (e). The
longitudinal viscosity pl= —', g+gz has been determined
via two different routes: using the MF-3 values for
S(q, cu) via (47) we obtain 5. 36 X 10 Pa s, which is near-
ly one order of magnitude smaller than the experimental
value of 2.973X10 Pas; the results obtained from the
HF fit to S(q, co) via (42) are at least in the right order of
magnitude [3.625X10 Pas (L-4) and 4.06X10 Pas
(Q-6)]; they still differ quite strongly from the experimen-
tal value. First of all (though to a smaller extent) this
disagreement may be attributed to numerical reasons: (i)
in the MF case the value of gI depends in a very sensitive
way on S(0) [cf. (47)], (ii) in the HF case r)i is calculated
from three extrapolated quantities [cf. (42)], where each is
affected by statistical errors. However, the main source
of the error stems from the fact that we have neglected
the contributions from the electronic degrees of freedom;
this holds not only for g& but also for DT. To include
theories of how to treat the electronic contributions prop-
erly would clearly pass beyond the frame of this paper.
We would only like to point out that this problem is dis-
cussed widely by Shimoji [54]: he demonstrates on
several examples that for these quantities the electronic
contributions are substantial.

For those elastic properties where agreement of experi-
mental and theoretical data (obtained by extrapolating
generalized q-dependent parameters towards q =0) is not
satisfactory, there exists a further possibility for their
determination: via different Green-Dubo relations (com-
piled, e.g., in Table 8.1 of Hansen and McDonald [21]),
several of these quantities may be expressed as time in-
tegrals over different CF's [e.g. , (26) is such a relation be-
tween D and %(t)]; these CF's are in general more com-
plicated than the CF's presented here. Nevertheless their

evaluation in a MD run follows the same principles as
outlined here; several applications with satisfactory re-
sults exist [7,50,55].

V. CONCLUSIONS

In this paper we have reported on a direct comparison
between theoretical and experimental results of the dy-
namic properties of liquid cesium just above the melting
point; while the experimental data were obtained by
neutron-scattering, our experiment was done on a comput-
er in a MD study. Agreement between theory and experi-
ment, both for the dynamic structure factor and the
dispersion relation, is very good; the latter shows also in
the computer experiment a positive dispersion, i.e., an
enhancement over the linear dispersion (adiabatic sound
speed). As in the experimental results we find that the
high-frequency sound speed c„ turns out to be an upper
limit of the dispersion, which means that shear waves are
probably responsible for this anomaly. SuScient evi-
dence for propagating sound modes for q's beyond the
main peak of the static structure factor could not be
found. However, further analysis of our results in terms
of MC theory might reveal their existence. For the
damping of the inelastic peak in S(q, co) we find very
good agreement with experiment. We have also deter-
mined other CF s which are not accessible via experi-
ment, either due to the small incoherent neutron-
scattering cross section of Cs or due to principal reasons,
i.e., the single-particle CF's and the transverse current
CF's. Concerning S,(q, co) the small-q behavior for the
(co=0) value and the full width at half maximum repro-
duce very accurately the expressions predicted by MC
theory. The VACF 4(t) shows a strongly oscillating be-
havior, i.e., the cage effect is dominant, where the parti-
cles are enclosed in small cages of the liquid where they
collide frequently and thus lose memory of their initial
velocity very quickly. The memory of the transverse
current CF turns out to be built up for small q's from two
principal processes, a "binary" fast one and a "collec-
tive" slow one (the relaxation time of the latter being by
one or two orders of magnitude larger); however, from
-0.6- 1 A ' onwards, the collective contribution is
completely extinguished, i.e., we are left with a one-
relaxation time model.

All CF's have been fitted to several HF and MF mod-
els, involving generalized, q-dependent thermodynamic
and elastic quantities as parameters. Ef statistics allows a
safe extrapolation of these quantities towards q =0, the
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true physical values could be recovered. Then, agree-
ment with the experimental values was in general very sa-
tisfactory (i.e., differences of 10—15 % are observed).
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