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We analyze the irreversible behavior of a quantum harmonic oscillator immersed in an arbitrary
thermal reservoir. For the fully coupled (FC) model, i.e., the coupling between subsystems linear in
the coordinate of the oscillator, we construct a generalized master equation for the reduced density
operator of the oscillator. We apply the rotating-wave approximation (RWA) and investigate its
connection with the FC master equation. By means of the Wigner distribution, we obtain the
corresponding Fokker-Planck equations in the semiclassical representation. We find that, when the
RWA is not imposed, the correct classical limit is obtained (Kramers equation). Then, we establish
the conditions for the equivalence between the FC Fokker-Planck equation and that obtained in the
RWA. Quantum maps for a kicked oscillator immersed in a heat bath are obtained in both cases.
These maps are studied in the classical and semiclassical limits, and it is shown that they coincide
for low kicking frequency compared to the damping rate.

PACS number(s): 05.40.+j 03.65.Sq 05.70.Ln

I. INTRODUCTION

The macroscopic dynamics of quantal many-body sys-
tems presents a variety of realizations where a small set of
collective coordinates and momenta are stochastic vari-
ables. These situations typically appear in quantum op-
tics [1-4] and condensed-matter physics, [5, 6] and most
usually, the source of external noise on the random vari-
able is the dissipative coupling to the remaining micro-
scopic degrees of freedom.

The formalism of quantal master equations, operating
on a basic configuration consisting of a harmonic mode
immersed in a heat reservoir, has proven to be a valuable
tool in setting a framework for the dissipative-diffusive
dynamics. In this context, most advances in the field
have been provided by laser physics, bringing, as a con-
sequence, the fact that the most accepted model for the
heat bath consists of a gas of harmonic oscillators (3,
7-12]. More recently, applications to nuclear physics have
been put forward [13-16] that make room for the incorpo-
ration of fermionic heat baths into the picture. An inves-
tigation of the spectral properties of the master equation
in the presence of additive bosonic plus fermionic reser-
voirs has also been carried [17].

In view of the many important advances in the theory
and applications of classical stochastic processes [18,19],
the use of semiclassical representations of quantal mo-
tion may offer several advantages, in particular, that of
examining the transition to the classical regime. More
recently, the Wigner transformation of the density op-
erator and of the master equation has provided a ba-
sis for the construction of a quantum map [20], in the
case where the macroscopic system is subjected to a pe-
riodic sequence of kicks in addition to the dissipative and
stochastic coupling. Such a quantum map gives rise to
a line of research inserted in the field of quantum chaos
[20,21] and, in particular, the relation to the Hénon map

46

[20] and the properties of the Lyapunov exponents [21]
have been examined.

The previous work quoted here concerns a specific type
of linear coupling, namely, the rotating-wave approxima-
tion (RWA), which contains only elastic vertices when the
heat bath is an oscillator gas. This structure contrasts
with the “fully coupled (FC) oscillator model” [9], where
only the harmonic coordinate and not the momentum is
affected by the interaction with the microscopic degrees
of freedom. One may, however, notice that the Kramers
equation of motion for the probability density in oscilla-
tor phase space {(Q, P)} [18, 19] appears as the classical
limit of the FC master equation. It is then of interest
to analyze with some care the differences and similari-
ties between the RWA and the FC models in the quantal
master equations, the semiclassical representations, and
the quantum maps for the kicked system.

For this reason, in Sec. II we present the derivation of
the generalized master equation (GME) for the FC model
and, from this equation, we obtain that corresponding
to the RWA. In Sec. III, the corresponding semiclassical
representations are examined and it is shown that the
evolution of the FC Wigner distribution becomes asymp-
totically identical to the evolution of the RWA one. Fol-
lowing the procedure outlined by Graham and Tél for
the RWA case, the FC quantum map is derived in Sec.
IV, and in Sec. V, it is shown that depending on the
frequency of the perturbation, the RWA description may
not appear as the asymptotic limit of the FC one. The
summary is presented in Sec. VL.

II. THE ASYMPTOTIC LIMIT OF THE GME

We consider a subsystem S coupled to a heat bath B
with total Hamiltonian

H = Hs + Hg + Hsp (1)
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for the combined system. We will assume
Hgsg = ASB (2)

where ) scales the interaction strength and S, B are Her-
mitic operators on Hilbert spaces of S and B, respectively.
The properties of the interacting subsystems S and B can
be computed from the knowledge of either reduced den-
sity,

ps = Trpp,
pPB = TI'SP, (3)
]

where p is the total density operator and Trq indicates
tracing with respect to the quantum numbers of sub-
system Q. The well-known projection techniques [22-24]
yield the generalized master equation for ps (3, 7, 25]. If
we assume that no correlation between system and heat
reservoir exists at ¢ = 0, and that the reservoir is initially
in thermal equilibrium, i.e.,

eq e—PHs
PB = PB = Ty pHs) (4)

where £ is the inverse temperature, the master equation
for the coupling (2) takes the form [26]

ps(t) = —<[Hs, ps(t)] - § / dr[S, e HT/R(S, pg(t — 7)]e*Hs7/F|Re{®p(T)}

h

2 / dr[S,e /RS, ps(t — 7))+ T/ M Im{@p()} ©

In Eq. (5) the symbols [,] and [, ]+ respectively, denote
the commutator and anticommutator, while ¢g(¢) is the
correlation function of the heat bath operators,

¢8(t) = Tra{B(t)Bog'} , (6)

where B(t) is computed in the noninteracting scheme for
the bath.

As stated in the Introduction, in the present study we
will restrict ourselves to a set of specifications that allows
us to work the details out in this general frame. First, the
system S is chosen as a harmonic operator with frequency
wo and Hamiltonian

P2 muw?
Hs=—+—2@Q?% .
=tz @ Q
Second, we assume that the coupling Hamiltonian
takes the form

HED =2QB ®)

where the operator B contains infinite summations of
functions of all particles in the environment. In contrast
to the original FC model [9] where the oscillator is cou-
pled to an independent-oscillator reservoir, in this work
no reference to an explicit model for the heat bath is
made.

Finally, we will carry out our calculations in the
Markovian limit [27]. In such a case, Eq. (5) admits a
form amenable to time integration, actually,

Bs(®) + 7 Hs, ps )]

A2 [
X / dr[S, [S(~7), ps(t)]]Re{®5(7)}

’L 2
> / dr[S, [S(=7), ps(t)]+ Im{@a(r)} , (9)

where S(—1) = e~ iHsT/hGgiHsT/h
With this prescription, we obtain the GME

—

. . 2
s (t) = 5 Hs, ps ()] + 7 7= [Q,[@, ps(D)]]
2 1Q, 1P, ps (9] — 231Q, (@, s (O]
-l B s | (10)

where we introduced the quantities v, w,, C, and 6 by
the definitions

y 2 / dr sin(wor)Im{®5(r)} , (11)
3_ / dr cos(wor)Im{®g(r)} , (12)
=) / dr cos(wor)Re{@5(r)} (13)
b= / dr sin(wor)Re{®s(r)} . (14)

We obtain an interpretation of these coefficients if
we consider the evolution equations of the mean values
for the first and second moments. Using that (A); =
Trs{Aps(t)} for an operator A belonging to the oscilla-
tor space, from Eq. (10) we get

(@), = %(Ph , (15)
(P), = —mQ*(@Q)e — —(P): , (16)
and
(@, = Z({QP) (a7
(P2), = —2mQX{QP}); — %’:(Pz)c +2C (18)
(@Pp, =L _maxg?), - LiggPy. s, (19)

where Q2 = wg - w?.

Equations (15)—(19) are analogous to those obtained
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in the classical case for a damped oscillator of frequency
Q, except for the presence of § in the evolution equation
for the mean value of the symmetrized product of Q and
P. Therefore we can identify w, as a shift of the natural
frequency wp (8], while C and v are the diffusion and
friction coefficients, respectively. These two are related
by the quantum fluctuation-dissipation relation

_ hwo ,Bhwo
C= 3 coth ( 3 ) v, (20)
from which
C+ E;gu = hwov[n(wo) + 1],
5 (21)
C- —;ﬂl/ = hwovn(wo),
J
pa) =i (
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n(wp) being the average occupation number for oscillator
quanta with frequency wp at temperature T' = $~1. With
the aid of Eq. (21), one may write the GME (10) in terms
of the creation and annihilation operators,

mwo 1
r 2h Q+ 2mhwo
(22)
rto /Mo, ¢
2k Q 2mhwg

In this case, we get

2
uZ()) T, ps] - Q—I:ﬁn(wo)(l’ﬂps — 2Tt pgT" + psI'TT) — Q—I/T;[n(wo) +1)(TTps — 20psT + psTIT)

+5=n(wo) (IT, psIT = T[T, ps]) + 5= [n(wo) + 1T, ps]IT — T[T, ps))

i

The RWA consists in ignoring those terms containing
two boson operators of the same kind, i.e., the four last
terms of (23). In this case, writing the result in the form
of Eq. (10), one gets [28]

) (T[T, ps) + LT, ps)TT) — _h (

: 2

ps(t) = _% (1 - %:g) [Hs, ps(t)]
1

—ﬁ

:;/_{[Q [P, ps(®)]4] — [P (@, ps(t)]4]}

2h2{[Q (@ ps(D]] + ) —5 [P [P es®]}
(29)

Equation (24) thus appears as the long-time limit of
(10) whenever the off-diagonal matrix elements of the

density operator (in the FT, I representation) decay at a
faster rate than the populations p, = (n | ps | n). This
behavior can be expected in the weak-coupling limit [29]
and is consistent with the adopted Markovian approxi-
mation. Consequently, hereafter we will regard the RWA
master equation (24) as the asymptotic regime of the FC
one (10), the latter describing the true evolution for short
times, compared with the overall relaxation scale.

III. PHASE SPACE REPRESENTATION
OF THE GME

In order to map the master equations for the harmonic
oscillator in both the FC and RWA, we select the Wigner
representation [30]. Introducing the Wigner transform of
the density operator [31],

(23)

-1

(25)

and employing the well-known rule of operator products
(31],

(AB)w (Q, P)

)wﬁ,m+m%m-

dq —qu/h, <Q+ Ps

2nh¢

= Aw(Q, P)exp

h 58 088
3P3Q  8QOP
xBw(Q, P) , (26)

some straightforward algebra easily leads to the semiclas-
sical equations of motion,

15] (FC) o P 0 2
=P (@, Pt)—{ 20w+ 5P ( mQO2Q + P)
62
aQaP +CaP2}p$C)(Q,P,t) ;
(27)
and
O (rwA) _ [ 9 w? E_L]
_8__ w.
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These equations are exact representations of the FC
and RWA master equations (10) and (24) in {(Q, P)}
phase space. It is worthwhile noticing that, in the clas-
sical limit, § approach zero while

ﬁhlim OC’ =vT . (29)
wo —

In such a case, Eq. (27) is precisely Kramers’s equation
[19] describing the motion of the probability density of a
classical oscillator of frequency Q2 undergoing Brownian
motion. We are then led to the conclusion that it is the
FC, rather than the RWA, that is the quantal source of
the appropriate classical limit. On the other hand, some
other important differences between Eqs. (27) and (28)
may be visualized from the examination of the respective
equilibrium solutions. In either case, one easily finds the
equilibrium distribution looking for a general form,

2 2
& P—) , (30)

€q
o5 ocexp | —
w < 20%q 20%p

which, after replacement, gives rise to equilibrium dis-
persions, in the FC

2 C—-vb
000 = ——5
QR muvQ2 (31)
2 C
Opp = m;—,
]

8 8 (C
5P pFO(H, ¢,t)—-{——aﬁ (}5'2 H sin? $+ =L

o 2
as [ () o

32

3¢3H(C sin 2¢-————c0 2¢>
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and, in the RWA

1 C
Q= oy
(32)
o
Opp = m;

The semiclassical representation of the RWA master
equation has been investigated in Ref. [32], where it has
been shown by explicit calculations that in actionlike
variables (H, ¢) , Eq. (28) takes the form

0 (rRwa) _1 0 (vy C
Eriad (H’t)‘{aH g
2
+-2 fl} (RWA) (H,¢) (33)

in the current notation. It corresponds to the asymptotic
regime described by the diagonal part of the FC master
equation (see the discussion at the end of the previous
section), where only occupation probabilities of oscillator
eigenstates evolve in time. By contrast, the action-angle
version of the FC semiclassical motion (27) reads

wp H sin 2¢)

C
(1 VH> sin 2¢+2H cos2¢]
2
6B¢2( CHc02¢+ Hcos2¢)

a(j; (2CHsm ¢)} FO)(H, ¢,1). (34)

A comparison between Eqs. (34) and (33) brings into
evidence that (33) appears as the angular average of

(34), provided that p(FC) does not depend on the an-
gle ¢ = tan‘l(P/mon) in other words, if the Wigner
distribution only represents a probability density on the
energy variable. This consideration leads us again to the
asymptotic regime of FC; however, the apparent incon-
sistent results for the dispersions displayed in Eqgs. (31)
and (32) remain unexplained.

To advance one more step in the resolution of this dis-
crepancy while shedding light upon the conditions that
specify the asymptotic regime of the FC, we shall employ
a method similar to the one introduced by Stratonovich
[33] to investigate a nonlinear oscillator with additive
noise in the low friction limit. The idea is to exploit
the presence of two well-separated time scales, on the
basis that if the damping rate is low, the average energy

I

envelope undergoes small variations over one period of
the average displacement. The method is analogous to
adiabatic elimination of fast variables [34] in a scheme
where energy is a slow variable while position and mo-
mentum are fast ones; in terms of the density operator,
this philosophy corresponds to considering a situation
where only diagonal matrix elements in the Hamiltonian
basis | n) evolve, since the off-diagonal ones of the type
Pn,n+1 Needed to set the average position and momentum
have vanished in a shorter time scale.

The procedure is as follows. We consider Eq. (27) and
switch variables (Q, P) to (Q, H). Now, we assume that
pw(Q, H,t) can be written as a probability density for
conditional events,

pw(Q, H, t) = W(H’ t)W/(Qyt/H) ’ (35)
where W (H,t) is the probability density for the oscilla-
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tor to have energy H at time t, and W(Q,t/H) is the
conditional probability density for the coordinate to be
Q if the energy is H at the given time.

It is then natural to assume that the transition prob-
ability W(Q,t/H) is proportional to the time that the
oscillator spends at the position @ while having energy

H; in other words, while having velocity P(Q,H) =

V2mH — m2w2Q?. We then write (35) as

mw,
~P(Q, H) H)

where the normalization factor has been chosen to guar-
antee that W (H,t) is the marginal distribution,

Pw<Q,H,t) W(H t) (36)

W(H, ) = /R dQ pw(Q, H, 1) (37)

over the region Ry = {Q/3mwiQ? < H}. It should
be noted that (36) is exact at ¢ — oo. Carryng out the
change of variables in Eq. (27) and replacing in (37), one
finds, after suppressing vanishing integrals,

a
—a—tW(H» t)

_wo ) 9
B W{BH/RHdQ

/ dQ P(Q H)}W(H ).

(rem-mgm)

6H2

(38)

Since the value of the action over one orbit H = const
is

S(H) = /R dQP = wloﬂ, (39)

one readily finds that Eq. (38) is identical to (33).

The conclusion of this calculation is that the semiclas-
sical representation of the RWA master equation is the
long-time limit of the corresponding FC description in

]
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the low friction limit. The latter condition is in turn
related to the weak-coupling regime, where one is able
to prove the equivalent relationship between the quantal
RWA and FC evolutions. In such a case, both the coef-
ficient 6 and the frequency shift are negligible; thus the
FC and RWA dispersions in Egs. (32) and (31) can be
regarded as essentially identical. It then becomes clear
that asymptotic harmonic quantal Brownian motion can
be mapped onto phase space without reaching any incon-
sistency, while the classical Kramers equation appears as
the semiclassical version of the FC and governs the evo-
lution of the probability over the whole time axis.

IV. THE QUANTAL MAP
FOR A KICKED SYSTEM

We will now apply the concepts discussed in the previ-
ous sections to a periodically forced oscillator immersed
in a heat reservoir. Such a system can be modeled by the
Hamiltonian,

H'=H- ) 6(t-nm)g(QP), (40)

n=—0oo

where H is given by (1) and ¢g(@Q, P) gives the strength of
the kicks whose period is 7. For simplicity we will con-
sider this intensity to be only a function of the position

Graham and Tél [20] have derived a quantum map for
the kicked oscillator when the coupling mechanism corre-
sponds to the RWA. The procedure can be summarized
as follows. As indicated by severals authors [35, 36] the
dynamics of the pulsating system undergoes two regimes:
(i) between kicks, where the motion of the density ma-
trix is decribed by the master equation, and (ii) around
the kicks (¢t ~ nr), where the periodic term in (40) dom-
inates overall propagation. The change in the density
matrix due to the nth kick can be expressed as

plar®) = exp (13(@)) snr) exp (~30(@) . (4D

From the definition (25) of the Wigner function, it fol-
lows that

pw(Q,P,nT+)=/;i—qhexr> (—%Pq)exp{ [ (Q+ )—9<Q—g)]}<Q+%JP(HT‘)|Q—%> (42)

which, using the inverse transformation, can be set as

o (@ Pinrt) = [ [ UL ey (—2pg)exp {1 [s (@ + ) 9 (2~ §)] ow@Pinr) (43)

In phase space, the evolution of the oscillator between kicks is given by Eq. (28). An exact solution for the latter

can be written in terms of the generating function,

HEWA) (4 1 1) = / / dQdP exp{i(¥Q + 1P)}oly ™ (Q, P,t). (44)

If one performs the transformation (44) on Eq. (2

8), a first-order partial derivative equation for ¢(%,7,t) is encoun-
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FIG. 4. Plot of the decay rate 1/7 of the transient diffraction
from the grating of the excited dyes attached to a polystyrene
(MW of 1.3X10° vs the squared wave vector g® in three
different systems: (i) unbounded solution (O), (ii) silica gel
R972-M (@), and (iii) silica gel R972 (A). Proportionality exists
in both the unbounded solution and the R972-M gel, a relation
indicating Brownian motion, whereas an obvious curvature is
observed in the R972 gel. The slope of 1/7 vs g2 defines the
diffusion coefficient for systems (i) and (ii). The quotient 1/7 di-
vided by ¢? at ¢>=4.74X 10’ cm~? is used as the apparent
diffusion coefficient D, to describe the porous medium R972.

angle measurement at g>=4.74X 10’ cm ™2 (correspond-
ing to a prism spacing of 25 cm), where D, =1/(1q?).
Polymer diffusion within a silica gel or a silica suspen-
sion is hindered relative to that in the unbounded solu-
tion. The ratio of the diffusion coefficient inside the
porous medium R972-M to that in the unbounded solu-
tion D /D, (a ratio often referred to as the hindrance fac-
tor) is plotted in Fig. 5 as a function of silica volume frac-
tion ®. The general trend is that the value of D /D, de-
creases with increasing ®, thus indicating a stronger hin-

| O T T
R972-M
A MW=4.8x10*
O MW=1.13x10°
o0 0.9}
Q
AN
Q
0.8F
A
m]
O. 7 L 1
] 10 15

5
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FIG. 5. Hindrance factor D /D, vs silica volume fraction ¢
for two polystyrene samples (MW of 4.8 X 10* and 1.13 X 10°) in
R972-M solutions and gels. The gelation threshold is approxi-
mately ®=6%. The weak hindrance is attributed to geometric
obstruction. The solid curve represents the theory of Neale and
Nader [27] [Eq. (3)] for diffusion in a homogeneous, isotropic
swarm of spheres. The dashed curve corresponds to the bound
predicted by Prager [28] [Eq. (4)] for a homogeneous, isotropic
suspension of solid particles of arbitrary shape.
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drance. In the low silica concentration (® <6%) regime,
the silica suspension will not gel, and the diffusion
coefficient was measured before the separation of the di-
lute silica suspension into two layers (as a result of pre-
cipitation). In the higher silica concentration (® > 6%)
regime, the diffusion coefficients were measured after the
gels had formed.

Two labeled polystyrene samples with different molec-
ular weights (MW of 4.8 X 10* and 1.13 X 10°) were used
in this study. We note that there is little difference
(within experimental error) between the hindrance values
for these two polymer sizes. This observation implies
that the polymer molecules are still much smaller than
the pore dimensions. In other words, the polystyrene
molecules of both sizes can still be approximated as point
particles. The use of even higher-molecular-weight poly-
mers, although desirable, is limited by our ability to label
larger molecules.

Labeled polystyrene molecules diffuse much faster in
the porous medium R972-M than in the R972 porous
medium (see Fig. 6), where adsorption severely reduced
the freedom of the polymer. The weak hindrance in
R972-M is relatively more dependent on @ than is the
diffusion behavior in R972 (see Fig. 6). These facts sug-
gest that the effect of adsorption is negligible in R972-M,
and that the hindrance can be attributed, for the most
part, to geometric obstruction and hydrodynamic in-
teraction with the silica surfaces. There exist many
theories that take these two factors into account and that
predict the relation between the hindrance factor D /D,
and the porosity for different porous systems. Our exper-
imental results are compared with the hydrodynamic
theory developed by Neale and Nader [27] for a much
simpler model system—that of a homogeneous swarm of
spherical particles of arbitrary size distribution. Based
on the nonrigorous assumption that each particle experi-
ences the remainder as a uniform fluid, this model pre-
dicts that

T T T T
0.9+ i
R972
- MW=1.13x10% —
0.6+ .
(@]
Q - B
~
Q’ o a
0.3F a o -
O 1 1 | 1
(¢] | 2 3 4 5
o (%)

FIG. 6. Hindrance factor D, /D, vs silica volume fraction ®
for polystyrene (MW of 1.13X 10°) in R972 solutions and gels.
The gelatin threshold is approximately ®=2.2%. The polymer
diffusion is strongly hindered even at low ®. This hindrance is
only slightly dependent on ®.
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D _2(1—9)

D, 2+@ 3

(Note that in Neale and Nader’s original notation, ® was
used to denote porosity, which we denote as 1—®.)
Equation (3), independent of the size distribution of the
spheres, is in satisfactory agreement with the experimen-
tal data for diffusion in a wide range of porous media
throughout the whole porosity range. The solid line in
Fig. 5 represents Eq. (3). Our results in the low-® regime
are reasonably consistent (within experimental error)
with the Neale-Nader theory [Eq. (3)]. This correlation
can be explained by the fact that the silica suspensions
can be regarded approximately as a collection of basic
spherical units, even though these units had aggregated
into ramified clusters. At low solid-volume fraction ¢ (or
high porosity), the trend of hindered diffusion in a fumed
silica gel is similar to that in an unconsolidated homo-
geneous swarm of spherical particles.

In the gelled systems, the formation of three-
dimensional networks further deviates from the assump-
tion of the Neale-Nader model that requires different par-
ticles in the suspension to be independent of one another
in the sense that their regions of hydrodynamic influence
must not overlap. This deviation is greater at higher sili-
ca concentration. We observe that at higher ® (or lower
porosity), the hindered diffusion tends to be slower than
that predicted by the Neale-Nader theory. We emphasize
here that the Neale-Nader model does not totally parallel
our experimental system. Therefore, this comparison (as
well as another comparison to follow) is thus intended
only to put this work in a more general context of studies
of hindered transport in random porous media.

Our results are also compared with a theory developed
by Prager [28] for a homogeneous and isotropic suspen-
sion of solid particles of arbitrary shape. In this treat-
ment, the main assumptions in the Neale-Nader model
were relaxed, and the principle of minimum entropy pro-
duction was applied to obtain bounds of the hindered
diffusion rate:

D
—<(1—9®
D, ( )

o

4
3 @)

(Again, @ is the silica volume fraction rather than porosi-
ty, as denoted by Prager.) The dashed curve in Fig. §
corresponds to Prager’s theory [Eq. (4)]. Our experimen-
tal results obviously satisfy the inequality relation pre-
dicted by Prager.

The ratio of diffusion coefficient D, /D, for labeled po-
lystyrene (MW of 1.13 X 10°) in the porous media of sili-
ca R972 is plotted against silica volume fraction ® in Fig.
6, where D, is as defined in Sec. II. All data in this figure
were taken after the diffusion coefficient had stabilized; as
will be demonstrated, the diffusion rate decreases soon
after mixing the silica suspension. We found that the
value of D, /D, is only slightly dependent on the silica
fraction ®. This observation is explained by the fact that
adsorption plays a dominant role in slowing down poly-
mer diffusion and that even at low concentration the sili-
ca surface area is greater than that which would be
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covered by the adsorbed polymer molecules. Yet the mea-
sured diffusion coefficient in the R972 gel still decreases
by a small amount as ® increases. There are three possi-
bilities to account for this small decrease: (i) the in-
creased ratio of surface-to-pore volume results in a higher
probability of adsorption; (ii) geometric obstruction, such
as tortuosity, is increased; and (iii) more silica particles
cause more static scattering and stray light, which pro-
duce a poorer signal-to-noise ratio and a higher baseline
value, thus introducing greater error into the data
analysis. We also found that, at the two lower silica con-
centrations, the silica suspension will not gel and the hin-
drance in these two suspensions is similar to that in the
gels.

Although the labeling ratio or the density of the dye
segments does not affect the diffusion rate in the R972-M
porous medium, it does have an effect on the diffusion
coefficient for the dye-labeled polystyrene in the R972
porous medium. For polymer samples with the same
molecular weight, a higher labeling ratio usually results
in slower diffusion. Thus, comparison between different
polymer sizes is not made, as there is no quantitative con-
trol over the labeling ratio in the labeling reactions. As
an approximate generalization of this observation, for
most molecular weights and labeling ratios studied, the
value of D, /D, is between 0.2 and 0.4 in a ¢ range of
about 1-5 %.

The silica gels in this work can be viewed as physical
gels that are reversible in nature, because there is no
chemical bonding involved in gelation. We monitored
the development of hindrance during the formation of sil-
ica gels. Initially, the mixture of silica and the polymer
solution was vigorously shaken on a model Vortex-Genie
test tube mixer to destroy the interconnection of the silica
particles. FRS measurements were then conducted to ob-
tain the diffusion coefficient at different times during the
gelation process. We observed little difference (within ex-
perimental error) between a “fresh” gel and a gel re-
formed from a “‘destroyed” one.

The diffusion coefficient for polystyrene (MW of
1.13X 10°) inside a R972-M gel ($=7.1%) as a function
of gelation time is shown in Fig. 7. There is a slight

T T T T T
R972-M
— ®=7.1%
n l.e r MW=1.13x105 ]
[72)
~N
[m]
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~ O 0 g no o O
o
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Q
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t (h)

FIG. 7. Diffusion coefficient D vs time during the gelation
process for an R972-M gel (#=7.1%). The time for stabiliza-
tion of the diffusion coefficient (approximately 5 h) is compara-
ble to that needed for the silica suspension to gel.



46 ASYMPTOTIC REGIME OF QUANTAL STOCHASTIC AND . ..

3241

This expression has been derived by Graham and Tél, who call the attention upon the fact that the only effect of

the kick appears in the classical Langevin map (Q(RWA)

(RWA)) displayed in Egs. (54), i.e., the impulses just provoke

classical noise. The same concept applies to the classical limit of the FC quantum map; mdeed if one integrates Eq.

(60), one finds

K&SII:SS)(Q7 P’ Qn-—l, Pn—])

" 27mo(T)

with

0%(r) = a3q(1)okp(r) — chp(r). (66)

The classical Langevin map (Q,&FC), Pf(,m)) of Egs. (61)
now corresponds to harmonic Brownian motion. Several
points may be stressed in light of expressions (64) and
(65). First, one notices that in the absence of any peri-
odic perturbation, replacing the maps (st'), ,Sa)) in the
arguments of the Gaussian functions by the continuous
functions (50) or (56) leads to the kernels of the Wigner
functions p(a) (Q, P) under the free propagator indicated
by (27) and (28), respectively. Since the asymptotic dis-
persions 0q(t), 0pp(t) and o p(t) are the equilibrium
values aéq, 0%p, and 0, it is clear that (64) is the long-
time version of (65), as expected according to the discus-
sion in Sec. III. A similar relationship between both maps
may be encountered when £- > 1 (E — 1). In such a

K®VAYQ  P,Qun-1,Pn-1) = V2

Xp (— 20;(7) (@ = QFD)202 o (r) + (P — PFO)203,0 (1) — 20%p(r)(Q — QFO)(P - P’EFC))])

(65)

[

case, the FC and RWA kernels coincide with the disper-
sions set at their asymptotic values. This is a situation
characterized by a low kicking frequency, as compared to
the damping rate; consequently, the propagator between
kicks takes long enough time to reach its free asymptotic
regime before receiving any impulsion. In the opposite
limit, ¥- « 1 (E — 0), the damping strength is negligi-

ble and p(RWA)(Q, P) is unable to freely drift or diffuse;
the perturbation thus freezes this Wigner distribution at

the starting one, pg}WA)(Q%RWA), P,(;RWA)). The FC ker-
nel, however, remains finite and displays a nonvanishing
Q-P correlation. Throughout the full range of interme-
diate ratios 3=, the RWA and FC do not coincide.

It is not possible to advance this comparison beyond
the classical limit, due to the complication introduced
by the phase functlon G gwen in (63). The lowest-order
correction proportional to k2 has been displayed in Ref.
[20] for the RWA case. In the current notation, it reads

VAR | 9Q) [Poga(l—E)/2 o

(Q—QXM)2 16 0% ,(1 — E)?
P ( 205,01 -E) ) 7P (57‘?%’(@)—2)

403p(1-E) (RWA) 205p(1 — E)? 2
—2N T P - (RWA) PP
X eXp{ h2 "'(Q) (P P )}Al Pn, + h2g,,/(Q) [n2g,,,(Q)]1/3 ’
(67)
where Ai stands for the Airy functions [37].
If one computes the FC kernel under the same approximation, one finds
2 (Q-QF9)?
K®9(Q,P,Qn-1,Pu-1) = V2 exp
e Valh®g"(Q) V3o qq(r) 205q(7)
16 o'5(r)  40’(1) o4p(T)
X € —_— P — P(FC) _ Q (FC)
Xp [3h4 gIII(Q)2 h2g’"(Q) n ( )(Q Q )
adp(T) (7—) 2
xAi{ | P— PFO . 2P _C (FOy 4 68
{ ( - O G ) ey
f
with Once again, the major differences may be ascribed to
the appearance of the correlation 02 p(7) and nonequilib-
b p() rium dispersions 634(7), 0% p (7). These modified prop-
o' (1) =0kp(r) — 5 . (69)  agators can be seen to coincide in the same situations
fola) () encountered in the classical limit, as expected.
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VI. SUMMARY

In this work, we have examined the relationships be-
tween two descriptions of a quantal harmonic oscillator
coupled to a random dissipative reservoir, namely, the FC
and RWA| in three different frames and without making
any specific assumption on the nature of the heat bath.

First, we have reviewed the approach based on quantal
master equations, recalling the fact that the RWA ver-
sion appears as a long-time limit of the FC one, provided
that the coupling is weak — an assumption that, on the
other hand, enables one to restrict oneself to the Marko-
vian regime. Second, we have established the semiclassi-
cal representation of either master equation in terms of
the corresponding Wigner quasidistribution. In this case,
by resorting to an adiabatic elimination procedure, it is
also possible to demonstrate that the weak-coupling plus
long-time regime of the FC semiclassical dynamics is the
semiclassical mapping of the RWA quantal motion. This
procedure makes evident the kind of information that is
lost as one approaches the asymptotic evolution of the
stochastic, damped variables, namely, the one associated
with coordinate and momentum — a fact that, from a
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different viewpoint, can be visualized as one recognizes
the existence of separated quantum scales for the decay of
diagonal and nondiagonal matrix elements of the density
operator.

Finally, we have looked for the quantum maps in the
spirit of Refs. [36, 20], arising as one adds a periodic se-
quence of kicks to the already existing coupling. The ker-
nels of the FC and RWA Wigner functions can be seen
to coincide for the asymptotic regime in the semiclassical
limit, where the periodic impulsion becomes the source of
extra noise, as put foward by Graham and Tél. However,
the asymptotic equivalence may be destroyed if the kick-
ing frequency is sufficiently high; in such a case, a clear
distinction between the coupling mechanisms described
in the RWA and the FC can be pointed out.
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