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Surface roughening and the long-wavelength properties of the Kuramoto-Sivashinsky equation
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The long-wavelength properties of the Kuramoto-Sivashinsky equation are studied in 2+1 dimensions
using numerical and analytic techniques. It is shown that this equation is not in the universality class of
the Kardar-Parisi-Zhang model. Its roughening exponents are (up to logarithmic corrections) like those
of the free-field theory, with dimension 2 being the marginal dimension for roughening. Assuming that
the solution has logarithmic corrections, we derive a scaling relation for the exponents of the logarithmic
terms. This solution is consistent order by order with the Dyson-Wyld diagrams. We explain why previ-
ous renormalization-group treatments failed.

PACS number(s): 05.40.+j, 64.60.Cn, 64.60.Ak, 68.35.—p

Two models for surface roughening have enjoyed
tremendous attention due to their apparent simplicity
and very rich nonlinear phenomenology. One is the
Kardar-Parisi-Zhang (KPZ) model [1], which contains a
random forcing

t)h (x, t) 2=voV h ( x, t ) +
~
V h ( x, t )

~
+ ri( x, t ),2

dt

where h(x, t) is the height of a growing interface and
g(x, t) is a white, Gaussian random noise. The second is
the Kuramoto-Sivashinsky (KS) equation [2,3], which is
completely deterministic:

=voV h (x, t) Vh ( x—, t) + i Vh ( x, t )
~

Bt

In Eqs. (1) and (2), vo is a parameter that is positive in (1)
and negative in (2). In both models x is a d-dimensional
space, and we discuss the growth of the interface in d + 1

dimensions. The KPZ equation was derived as a continu-
um limit of models describing random particle additions
to a growing interface [4]. Without the random force
q{x,t) the fate of h {x,t) is to decay to zero and stay there
forever. The KS equation was derived in the context of
intrinsic instabilities like fiame propagation. It is linearly
unstable and nonlinearly chaotic, with bounded solutions
roaming on a strange attractor forever [5]. Apart from
the fact that the nonlinear terms are the same, these two
models seem very different, and it therefore came as a
surprise when claims appeared in the literature [6,7] that

as far as their long-wavelength limit is concerned, these
equations have the same properties at least in 1+1 di-
mensions. Our aim of this paper is to show that these
equations are not in the same universality class; they ex-
hibit very different behavior in 2+1 dimensions. We be-
gin by explaining how a universality class is defined here.

Both Eqs. (1) and (2) give rise to a self-affine solution
[8]. Self-affine surfaces have a clear "directionality, "
without overhangs, and it is natural to focus on the dou-
ble correlator of the height differences S~(x, t)

S2(x, t) = ( [h (xo+x, to+ t) —h (xo, to)] )

-x xqt(tlxx ~) .

Here the angle brackets denote an ensemble average,
which is realized by an average over time to and position
xo. The exponent g is known as the static width ex-

ponent [9], which characterizes the L dependence of the
saturated width W, W = ( [h (xo, to ) —( h ) ] ) 'r -L x

The dynamic scaling properties of self-aftine surfaces are
carried by the exponent P. We refer to two models as be-

ing in the same universality class if they share the same
exponents y and P in all dimensions.

Much work was devoted to the computation of g and P
in the context of KPZ [10]. In 1+ 1 dimensions it is stat-
ed that [1]g= —,

' and /3= —,'. In 2+1 dimensions numeri-

cal evidence [4] indicates that y =0.4 and @=0.25.
There is also an exact scaling relation that characterizes
the KPZ problem, i.e., y+g/P=2. In the context of KS,
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the dynamical renormalization-group analysis of Ref. [6]
culminated in the conclusion that the long-wavelength
limit of Eq. (2) is identical to Eq. (1) in 1+1 dimensions.
Indeed, the numerical work of Ref. [7] corroborated
these claims on the basis of simulations of KS in 1+ 1 di-
mensions. Reference [6] has also concluded that Eq. (2)
does not possess scale-invariant solutions in 2+ 1 dimen-
sions.

It is our contention that the KS equation does have
scale-invariant solutions in 2+1 dimensions. We first
show that the results of extensive numerical simulations
point toward a value of g that is y=0 in 2+1 dimen-
sions. The behavior of the KS equation in 2+1 dimen-
sions is closer to that of the free-field theory

CS
O

0.5

log, o (k)

Bh(x, t) =V' h (x, t)+ q(x, t)
at

than to the behavior of the KPZ model. Why this is so
will be explained after the examination of the numerics.

In Fig. 1(a), we display the Fourier spectrum of the
spatial autocorrelation function in (2+1) D, (hzh &),
obtained from real-space integration of Eq. (2) with
L =512X512. One sees a bump in the range of the
fastest growing linearly unstable modes, and then a long
tail towards small-k components that can be very well fit
by a 1/k behavior except for logarithmic corrections
that are discussed below. Panel (b) shows convincingly
that the width versus L dependence is weaker than a
power, and indeed y=O. Panel 1(c) shows a fit of the
function W-1 [nl (nLIL")], with L' being a typical
length. This fit is suggested by the theory that we de-
scribe next.

To understand these numerical findings, we should
ponder for a moment the properties of the KS equation.
First, we recognize that the range of linearly unstable
modes plays a crucial role in the nonlinear dynamical be-
havior of the equation. Even if we are interested in the
IR properties at very small k, it is not likely that we can
disregard this dynamically dominant range of k vectors,
which are also seen in the prominent bumps in the spec-
tra, cf. Fig. 1. In fact, we shall see that we need to care-
fully respect the nonlocal interactions in k space; they are
responsible to the observed behavior. This remark will be
soon turned into an analytic tool. Second, we realize that
in terms of perturbative analyses of Eq. (2), we are in an
awkward situation. The linear part is unstable, and any
perturbation theory that expands around the bare linear
propagator is bound to have uncontrolled divergences.
This is in fact one of the errors of Ref. 6. On the other
hand, we know that a renormalized propagator must ex-
ist since there are rigorous proofs for the existence and
boundedness of the solutions of the KS equation [5]. Ac-
cordingly, we should develop our perturbative treatment
around the renormalized rather than the bare propagator.
Thus we assume from the start that such a renormalized
propagator exists, and we only need to find a self-
consistent scheme to examine its properties. The natural
scheme to do so is the Wyld diagrammatic technique,
which we turn to now.

Consider, in q=k, co representation, the dressed propa-
gator Gq =Gk „,defined as the response of the nonlinear
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FIG. 1. Numerical results for Eq. (2) in 2+1 dimensions. (a)
The simultaneous correlator in a system of size 512X512. The
dotted line is const/k . (b) The width 8' vs L in a log-log plot
for systems of sizes between 32X32 and 512X512. (c) The
width %vs ln[ln(LIL )] with L being 9.

system to a vanishingly small external perturbation 5fq
..

G~5(q —q')=(5h~/5fq ). A consequence of the ex-
istence [5] of a bounded strange attractor and Lyapunov
exponents for the KS equation is that G exists. It is also
standard knowledge that if fq

is a white, Gaussian
noise obeying (,f f ~ ) =5(q —q')f, then
Gq5(q —q')=(hqfq ) If . In terms of G and the
dressed correlator n 5(q —q')=(h hq ), one derives
[11,12] the Dyson-Wyld equations

1

co —iyk —X(k, co)
(5)

n& = ~G& i [@( , k) toft, ], nz= f nz dtol2m .

(5')

In these equations y& is the bare linear part, which in the
case at hand reads yz=( —vok —k ). The mass opera-
tors X(k, co) and 4(k, to) are the "self-energy" and the
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V(qlq q, ) =k&-k2=
I

+

where vk' has the dimension of co, and (n /k~) has the di-
mension of the simultaneous double correlator nk. As
long as the integrals (6) and (7) converge, the exponents y
and z satisfy a scaling relation. Denoting by t the scaling
exponent of the bare vertex (t =2 in this case), power
counting leads to

2z +y =2t +d . (9)
FIG. 2. The first diagrams in the Wyld expansion for the

mass operator, together with the symbols used for the propaga-
tor, correlator, and vertex.

"intrinsic noise, " respectively, which are written as an
infinite expansion in terms of Gk „and nk „.The first di-
agrams appearing in the expansion of X(k,co) and
4(k, co), which are the same for KPZ and KS, are shown
in Fig. 2. These diagrams are completely standard, and
the techniques to derive Eq. (5) and (5') can be found in
many places [11,12]. Our contribution is in analyzing
these diagrams in light of the comments offered above,
taking the physics of KS into account. The analysis of
Eq. (5') is difFerent for KPZ and KS. In the former case,
fz can be taken as the bare noise correlator 21& In the.
latter case, rt is absent and fz can be put to zero. The
equation generates its own intrinsic noise even in the ab-
sence of external perturbations. We shall show that the
sign of vo distinguishes the solutions of the two cases.

We write now the two integrals that are represented by
the lowest-order diagrams for X(k, co) and 4(k, co):

X'"(k, co) = f V(k„k, ) V(k„k)5(q+q, —q, )

This is a well-known scaling relation for models with
strong quadratic nonlinearities. In the language of y and
p, y =d+2y and z =y/p. Equation (9) translates to
y /p +y=t, which is the relation mentioned above. A
failure of this scaling relation indicates either nonconver-
gence of the integrals, or a free-field theory in which G
remains undressed, or a renormalization of the vertex.

Substituting (8) in the integrals (6) and (7) and thinking
about the resulting integrals in the limit k~0, we find
that apparently there are two very different solutions.
One is obtained if we seek a solution in which the dom-
inant contribution to the integrals (6) and (7) comes from
the range of k„kz that are of the same order of k. We
refer to this solution as "local in k space" and show
below that it is consistent with the universality class of
KPZ. The other solution is obtained when one seeks
solutions in which the dominant contribution to (6) and
(7) comes from k„k2))k. We refer to this solution as
"nonlocal in k space, " and show below that it leads to the
observed KS phenomenology. We shall also show that
only one of these solutions is tenable for KS.

In 2+ 1 dimensions the integrals (6) and (7) read

X Gq nq+q dg1dg~ (6) XI"(k,co)= —f k, (k+k, )(k+k, ) k g
k

1 vk1
C "(k,co)= f V'(k„k2)5(q+q, —q2)tt~ n~ dq, dq, .

(7)

n ~+~~
X dk)dc').Ik+k, I'+' .1k+k I'

As a first step we take into account these diagrams only.
In the context of quantum field theory such an approxi-
mation is known as a "one-loop approximation, " or an
approximation of nonrenormalized interactions. In the
theory of hydrodynamic turbulence this is known as
Kraichnan's direct interaction approximation [12]. In
the context of KPZ it is referred to as the mode-coupling
technique [13,14]. It is important to emphasize that in
our context the approximation [6,7] is not a naive
second-order perturbation theory. The latter would be
obtained if in (6) and (7) one used the bare propagators.
We use the renormalized Green's function and correla-
tion function from the start. This allows us to expect re-
sults that are at least qualitatively correct. Nevertheless,
this is an approximation that has to be checked later for
self-consistency. We shall explain later how the results of
this analysis can be tested to all orders in the diagram-
matic expansion. As this point we shall seek solutions for
Eqs. (5)—(7) using the ansatz

(10)

C"'(k,~)=-,' f [k, (k —k, )]'

n Q)+ C01
x f Qkllk)1

vlk+k, l'+ vlk+k, l'

X' '(k, co)-C1nk k '/v

g)(2)(k ~) C ~ 2k 6 —2J' —z/v (13)

as long as we meet the two simultaneous conditions

4 —y —z ~0, 6—2y —z~0 . (14)

If we assert that the important contributions to (10) and
(11) come from the high end of the k, range, i.e.,

k, —k,„&&k, and of co1 —m „-k',„))co, then we find
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Thus to this order we find that for small k, v satisfies

v= vp+ C]nk,„'/v (15)

Thus we get G = 1/(co —ivk ) and
n =C2nk, „'/v[co +(vk ) ] . Comparing with (8)
we find y =z =2 [and cf. (9)], and we realize that our con-
ditions (14) are obeyed as equalities. [This could be
guessed from the fact that 2+1 dimensions are marginal
for both problems (1) and (2)]. Even though the scaling
relation (9) is obeyed by the powers, the integrals diverge
logarithmically. We are thus forced to assume the ex-
istence of such corrections and to redo the calculation
starting with an appropriate ansatz

1 CO

vk ln (k,„/k) vk ln (k,„/k)
(16)

ng CO

nq=
vk ln (k,„/k) vk ln (k,„/k)

n

k in~(k, „/k)

(17)

It is straightforward to check that the result of integrat-
ing (6) and (7) leads to the prediction

2a+P= 1 . (18)

This is a second scaling relation for the exponents of the
logarithms. Its existence hinges on the fact that the ver-
tices remain unrenormalized in this problem. Since our
problem has Galilean invariance, it is possible to prove
that if the solution [(16),(17)] does exist, then the vertices
are protected to all orders, not only that the scaling index
t remains t =2, but also that there are no logarithmic
corrections to the renormalized vertex. Double logarith-
mic corrections, if they arise in some diagrams, must can-
cel in every order of perturbation theory. As a conse-
quence, both scaling relations (9) and (18) are consistent
to all orders.

Having derived the scaling relation (18), we still cannot
determine a and p separately. We need further con-
siderations. As we know that 6 exists, we can conjec-
ture that a ~0, since then for small k, X' '(It) oversha-
dows y&. Moreover, below we give arguments to show
that a=0. If we accept this, then p= 1, and we can in-
tegrate (17) to find W(L). The leading term in the result
1s

IV-in[in(L /L *)], (19)

where L * is of the order of 1/k, „. In Fig. 1(c) we com-
pare this prediction to the data, and find that Eq. (19)
provides a better fit than either a power or a single loga-
rithm. We stress however that due to this weak depen-
dence of 8' on I, one cannot exclude a small power of
ln(L /L *).

As was stated above, there exists another solution of
the very same equations (13) and (14). This solution can
be sought by asserting that the major contribution to the
integ rais comes from the local interactions, i,e.,
k, —k2 —k. This means that the integrals are assumed to

v„(q I q, Q, ) = ~ "
~ —'

1

FIG. 3. The first diagrams for the vertex renormalization.

converge, and the solution has the form (8) with the scal-
ing relation (9). This is consistent with the KPZ solution.
The calculation of z and y for this solution is beyond the
scope of this paper, and will be discussed elsewhere.

At this point we explain why our solution [(16),(17)]
has to be valid to all orders in perturbation theory. This
can be seen by examining the first corrections to the bare
vertex V, since the nature of these higher-order correc-
tions is the same for vertices and for mass operators. The
first corrections to V are shown in Fig. 3. Consider the
nonlocal UV contribution when q* &&q, q, , q2. The in-

tegrals in the diagrams (b) and (c) may be estimated as

max

(k, k2) J = V(k~k&k2)ln ln(k, „/k) .dk
k ln(k, „/k

(20)

The double logarithmic factor is dangerous. The next
corrections may contain this factor in higher powers,
forming possibly an expansion of [ln(k, „/k)]'. Here s
is an unknown anomalous exponent for the logarithmic
correction of the renormalized vertex: V~1 = V(ln)'.
However such a conclusion is untenable for the KS equa-
tion. It is possible to prove that because of the symmetry
properties of the interaction in Eqs. (1) and (2) (including
Galilean invariance), the double logarithmic terms are
canceled and c, =0. This means that the solution assumed
in (16) and (17) is self-consistent with all orders of pertur-
bation theory.

It is important to note that in 1+1 dimensions the
solution found here does not exist. Beginning in the same
way as in 2+ 1 dimensions, we can analyze the integrals
(10) and (11) using the same assumption that the major
contribution comes from the higher end of the range of
k &. The only difference now is that d k

&
k1dk

&
is re-

placed by dk „and therefore by power counting one sees
that (12) and (13) would be replaced by X' '( k, co )—C&k k, » ' and @' '(k, ~)—C2k, „» ' if the condi-
tions y+z ~3 and 2y+z ~5 are met. In contrast to
2+1 dimensions, these conditions are not obeyed. Com-
paring as before to (8) we find again z =y =2 and there-
fore the assumption that the integral diverges in the UV
is not self-consistent. In fact, formally speaking, the solu-
tion found above is not available in any dimension small-
er than 2+ 1.

We end this paper by explaining why only one of the
solutions discussed above is tenable for KS in 2+ 1 di-
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mensions. Since we assumed that a=0, Eq. (15) is still
valid up to ln[ln(k/k, „)]corrections, v= —vo+C, n /v
or

~ = —~%+C&n .2—
(21)

or

From (21) and (22) together we find

(C, —C2)n =vvo .

Notice now that C& and C2 are uniquely determined by
the nonlinearity

~
Vh ~, and are therefore the same for KS

and KPZ. Also, n is positive definite and v is positive by
the existence of a dressed G . Therefore, if C& & C2, Eq.
(23) is only tenable for the KS equation, in which vo is
negative. If C& )C2, this solution is only possible for the
KPZ model. This dependence on the bare sign of vo
shows that the KS equation and the KPZ model are not in
the same uniuersality class. Although the analytic calcu-
lation of C, and C2 is formidable since it calls for analyz-
ing all the diagrams, our numerics show that C, &C2,
since this solution is selected for the KS equation. This is
in fact a computer-assisted proof that our solution is only
available for the KS equation and not for the KPZ mod-
el. Note that vo appears in Eq. (22) explicitly, meaning
that it does not disappear even in the limit of vanishingly
small k. This stems from the fact that a=O, leaving at

From Eqs. (S'), (l3), and (17), all integrated over fre-
quencies, we get

Cqn 2
n

v k in~(k, „/k) k in~(k, „/k)

most ln ln(k, „/k) corrections in Eq. (22). Remembering
our reasoning for the cancellation of such terms due to
Galilean invariance, we believe that any such corrections
to C, and C2, say, would cancel as well, leaving Eq. (23)
unchanged.

Lastly, we show that there cannot exist solutions for al-
most all positive values of a. If a were positive, then for
small k the nonlinear addition to the damping would
exceed vok by a factor proportional to ln (k,„/k). For
k small enough, vo becomes negligible, and can be put to
zero. Repeating the above calculation once more, we ob-
tain (23) again, but with different values of C„C2 that
depend on a. Since v0=0, n would vanish, and the solu-
tion with a & 0 cannot exist except for an accidental addi-
tional solution for which C, (a) =Cz(a). Since we expect
C, (a) and C~(a) to depend very weakly on a, we think
that such an additional solution does not exist.

In summary, we have provided an analytic solution for
the KS equation in 2+1 dimensions that is valid to all or-
ders in perturbation theory, we have shown that the KS
equation and the KPZ model are in different universality
classes, and we exposed the errors in previous treatments
of this problem. In combination with our numerics, one
concludes that as far as the roughening exponents are
concerned, the KS equation in 2+ 1 dimensions roughens
like the free-field theory. Of course, our explicit calcula-
tions of the logarithmic corrections shows that it is not a
free-field theory.
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