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We study analytically and numerically modulational instabilities in discrete nonlinear chains, taking
the discrete Klein-Gordon model as an example. We show that discreteness can drastically change the
conditions for modulational instability; e.g., at small wave numbers a nonlinear carrier wave is unstable
to all possible modulations of its amplitude if the wave amplitude exceeds a certain threshold value. Nu-
merical simulations show the validity of the analytical approach for the initial stage of the time evolu-
tion, provided that the harmonics generated by the nonlinear terms are considered. The long-term evo-

lution exhibits chaoticlike states.

PACS number(s): 05.45.+b, 03.40.Kf

I. INTRODUCTION

Many nonlinear physical systems exhibit an instability
that leads to a self-induced modulation of the steady state
as a result of an interplay between the nonlinear and
dispersive effects. This phenomenon, referred to as
modulational instability, has been studied in such diverse
fields as fluid dynamics [1,2], nonlinear optics, [3-5] and
plasma physics [6,7]. For instance, in optical fibers,
modulational instability requires an anomalous group-
velocity dispersion and manifests itself as a breakup of a
continuous wave into a train of ultrashort pulses, which
has been recently observed experimentally [8,9]. In the
above-mentioned contexts, modulational instability ap-
pears in continuum models, but it has been recently sug-
gested that it could be responsible for energy-localization
mechanisms leading to the formation of large-amplitude
nonlinear excitations in hydrogen-bonded crystals or
deoxyribonucleic acid (DNA) molecules [10]. These sys-
tems are intrinsically discrete and a correct microscopic
description involves a set of coupled ordinary differential
equations instead of a partial-differential equation. In the
strong-coupling limit, discreteness effects are neglected
and the phenomenon of nonlinear wave modulation is de-
scribed by the nonlinear Schrodinger (NLS) equation for
the wave envelope, obtained with the assumption that
both the carrier wave and the envelope can be treated in
the continuum approximation [11,12]. An extension of
this approach to cover lattice models is the so-called sem-
idiscrete approximation [13-16] in which the discrete-
ness of the carrier wave is treated explicitly while the en-
velope is still described in the continuum approximation.

However, in some systems, it is important to treat
discreteness completely, i.e., to consider the case where
both the carrier wave and the envelope cannot be de-
scribed in terms of long-wavelength components. This is,
for instance, the case for the ‘“breathing modes” of DNA
which extend over only one or two base pairs [17]. In
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nonlinear lattices, discreteness effects can give rise to in-
trinsic localized vibrational states [18-20] that would
not exist in a continuum system and may be considered a
discrete version of soliton excitations in nonintegrable
models [21,22]. Modulational instability is a possible
mechanism for the generation of such localized states,
and, indeed, in this case, discreteness effects must not be
ignored in analyzing this phenomenon. In the present pa-
per, we discuss modulational instability in lattice models,
taking the Klein-Gordon chain as an example. We derive
a discrete NLS equation for the amplitude of the carrier
wave and analyze the stability condition of the carrier
wave in the lattice. In particular, we show that, above a
certain threshold in the wave amplitude, a carrier wave at
small wave numbers is unstable to all possible modula-
tions. The validity of this analysis is then checked by nu-
merical simulations that reveal some additional features
of modulational instability in discrete systems.

II. ANALYTICAL RESULTS

We consider the dynamics of a one-dimensional chain
made of atoms with unit mass, harmonically coupled to
their nearest neighbors and subjected to a nonlinear sym-
metric on-site potential. Denoting by u,(¢) the displace-
ment of atom n, its equation of motion is

i, =K(u, 4 +u,_,—2u,)—wju, +Pu; , (1

where K is the coupling constant, o, the frequency of
small-amplitude on-site vibrations in the substrate poten-
tial, and B the anharmonicity parameter of the potential.
Linear oscillations of the chain of frequency w and wave
number g are described by the dispersion relation

0*=w3+4K sin’(q /2) , )

where the lattice spacing has been taken as equal to uni-
ty. As shown by Eq. (2), the linear spectrum has a gap o,
and is limited by the cutoff frequency 2, =wg+4K due
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to discreteness.

Looking for the slow modulation of a carrier wave that
has its frequency in the linear frequency band, we substi-
tute into Eq. (1) the trial solution

Uy ()=¢, (e "' +gz(0e ", 3)
where ¢,(t) is assumed to vary slowly in time with
respect to the main oscillation at frequency w,, i.e.,
é, <<wyd,. Using the so-called “rotating-wave” approx-
imation, i.e., keeping only the terms proportional to
exp(tiwgt), we obtain a discrete NLS equation for the
complex function ¢, (1),

Zinan +K(¢n+l+¢n—l_2¢n)+3B|¢n|2¢n=O . )

The assumption of the slow variation of ¢, as well as the
neglect of higher-order harmonics to derive Eq. (4) as-
sume that the gap frequency w, is large with respect to
the other frequencies in the system, i.e., w3>>4K and
w3 >>P3, b, being the wave amplitude. The first condi-
tion is valid in a weakly dispersive system where w,,, is
close to g, while the second means that the nonlinearity
is weak. These are the usual conditions to get the NLS
equation, but in the lattice the condition @3>>4K also
means that discreteness effects will be strong, pointing
out the interest of the discrete instead of continuous ver-
sion of the NLS equation.

Using Eq. (4), derived in the single-frequency approxi-
mation, modulational instability in the lattice can be easi-
ly analyzed. Equation (4) has a plane-wave exact solution

6, ()=doe’ " with 6, =qn—Aawt , (5)

where the frequency Aw obeys the nonlinear dispersion
relation

20,A0=4K sin*(q /2)—3B¢3 . (6)

The linear stability of the solution (5) and (6) can be in-
vestigated by looking for a solution of the form
i, +iy,

¢, (t)=(¢y+b,)e , N

where b, =b,(t) and ¢, =1,(¢) are assumed to be small
in comparison with the parameters of the carrier wave.
Substituting Eq. (7) into (4), we obtain the two linear
equations

20b, +K[(b, +;—b,_,)sing
+ oYy 41t ¥, -1 — 24, )cosq]=0, (8)
—2wopoth, +K[(b, 41 +b, _;—2b,)cosq
—¢o(¥y +1— ¥, -y )sing 1+ 68436, =0, (9)
which yield the dispersion law
(0,0 —K sinQ sing )?
=K sin¥(Q /2)cosq[4K sin*(Q /2)cosq —68¢3]
(10

for the wave number Q and frequency Q of the linear
modulation waves. In the long-wavelength limit, when

Q0 <<1 and ¢ <<1, Eq. (10) reduces to the usual expres-
sion for the continuous NLS equation,

(0o —KqQ)*=1KQUKQ*—6B4}) . (11

Equation (10) determines the condition for the stability
of a plane wave with wave number g in the lattice. Con-
trary to what would be found in the continuum limit [Eq.
(11)], the stability depends on ¢g. An instability region ap-
pears only if Bcosqg >0. For a given g, e.g., ¢ <7/2, a
plane wave will be unstable to any modulation provided
that

¢8> 5 =2K /3B . (12)

The result (12) is a direct consequence of the fact that, in
a lattice, the wave number is bounded by 7. Figures 1
and 2 show the regions of modulational instability in the
case 3> 0.

One of the main effects of modulational instability is
the creation of localized pulses [4]. This is in agreement
with the results presented above, which show that, for
B> 0, the small-g region is unstable. Consequently, non-
linearity can induce the formation of localized modes in
the gap of the linear spectrum (w” < ®3). Such a localized
mode can be obtained from the discrete NLS equation (4)
following the method of Refs. [18], [19], and [22]. In the
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FIG. 1. Variation vs Q of Q?=(w,Q —K sinQ sing)? for the
modulation waves, for ¢ =0 and 8> 0 as the amplitude of the
wave crosses the critical value ¢g.: (a) #3<¢j. and (b)
656> $5,cr-
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weak-coupling limit K <<3 4 2, such an excitation
b, ()= Ae' (.. .,0,6,,1,6,,0,...),

where the values in the parentheses are the amplitudes at
successive sites, and

q—_ 38
2wy

A%, &= K <«<1
3847

is indeed highly localized. For [3>0, these nonlinear
modes in the chain (1) cannot exist for
*> 02, =w3+4K, because a wave at these frequencies
is stable.

It is interesting to compare the results obtained for
model (4) with those of the exactly intergrable discrete
Ablowitz-Ladik equations [23],

id;n +K'(¢n+l+¢n*1_2¢n )+}"|¢n |2(¢n+1+¢n*1):0 .
(13)

Models (4) and (13) (with K'=K /2w,) have the same
linear properties and lead to the same NLS equation in
the continuum limit provided that A=3f3/w, however,
their nonlinear properties are very different. For model
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FIG. 2. Regions of modulational instability in the (q,Q)
plane for 3> 0, for (a) ¢3 < @3 .. and (b) ¢§> ¢5 ... The points la-
beled by a number correspond to numerical simulations dis-
cussed in the text, and the dashed lines separate the regions of
stability (large Q) and the regions of instability (small Q) as they
would be determined by a formal application of the continuous
NLS equation [Eq. (11)].

(13), the dispersion relation for the modulation waves is
[Q—2(K'+Ad3)sinQ sing |
=16(K’+Ad3)sin’(Q /2)cos’q
X [(K'+Ad2)sin2(Q /2) — Ad3] (14)

instead of (10). Therefore, for this model, the modula-
tional instability does not depend on g, as for the continu-
um NLS equation. For Q<Q* determined by
sin2(Q* /2)=A¢3/(K'+Ad3), all the carrier waves are
unstable, while for Q > Q* they are stable.

As a consequence, for positive A, the Ablowitz-Ladik
model (13) can have localized modes either above or
below the linear spectrum band (see, e.g., Refs. [24] and
[25])). The comparison of the two models (4) and (13)
shows thus that the type of discreteness has a major
influence on nonlinear wave instability [26].

At last, we would like to mention that model (4) and
the corresponding dispersion relation (10) can be con-
sidered a generalization of the results obtained from (1)
by the semidiscrete approximation, well known in the
theory of nonlinear discrete chains [13-16]. In this ap-
proach, the carrier wave is treated as discrete, but a con-
tinuum approximation is used for the envelope. Within
such an approach, only long-wavelength modulation of
the carrier can be investigated. Looking for solutions of
Eq. (1) under the form

u, (N=€[Fy(n,ne " +c.c.]+0(e) (15)

where ©, =gn —ot, » and g being related by the linear
dispersion relation (2), and expanding F,(n,t) versus the
continuum variable x around site n, one gets the NLS
equation

oF, 9’F, R
i—+P— +G|F,|*F,=0 (16)
oT dy

in terms of the slow variables y=e(x—V,?) and
t=€’t. Here, V, is the group velocity of the
wave, V,=(K/w)sing, and P=(K cosq — V;)/(Zw),
G =3B/Qw).

The stability of the plane-wave solution of Eq. (16) is
determined by the following dispersion relation for the
modulation waves:

(0eQd— KQ sing )2=%KQ2cosq(KQ2cosq—6ﬁ¢(2)) , (17)

which gives the stability condition PG <0. The disper-
sion relation (17) can be derived from Eq. (10) in the limit
of small Q, i.e., in the long-wavelength limit for the
modulation wave, which is assumed in the semidiscrete
approximation.

III. NUMERICAL RESULTS

According to the analytical calculations presented
above, the stability of a plane wave with wave number g
modulated by a small-amplitude wave of wave number Q
is determined by the dispersion relation (10). When the
right-hand side of Eq. (10) is negative, we expect an ex-
ponential growth of the modulation. However, this
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linear-stability analysis has been obtained through Eq.
(4), which is only an approximate description of the ini-
tial equation (1). Moreover, the linear-stability analysis
can only detect the onset of instability, but it does not tell
us anything about the behavior of the system when the
instability grows. In order to check the validity of our
analytical approach and to determine the evolution of the
system beyond the instability point, we have performed
numerical simulations of the equations of motion (1).
They have been integrated with a fourth-order Runge-
Kutta scheme with a time step chosen to preserve the to-
tal energy of the system to an accuracy better than 10~ *
over a complete run. The parameters of the model have
been chosen to be K =1, B==*1, and w(2,= 100, so that the
condition w3 >>4K is satisfied. The initial condition is a
modulated plane wave,

u,(t)=(A+acosQ)cos(gn —wt) .

Its amplitude A is related to the parameter ¢, of the
preceding section by 4 =2¢,, and the modulation ampli-
tude is such that a <<¢, (@=0.05 for ¢,=0.5 or 1.0).
The simulations have been performed with a chain of
N =256 units, with periodic boundary conditions so that
the wave numbers g (Q) defined modulo 27 in a lattice,
have to be chosen of the form ¢ =2pw/N (Q=2Pw/N),
where p (P) is an integer. The frequencies w are deduced
from the lattice dispersion relation (2).

As a first case, let us consider the case ¢,=0.5,
qg=1.7181 (p=70), and a long-wavelength modulation
Q0 =0.3682 (P=15) that corresponds to the point labeled
by 1 in Fig. 2(a) displaying the stability regions in the
(q,Q) plane for ¢,=0.5. According to Fig. 2, we expect
the modulated wave to be stable. The time evolution of
the spatial Fourier components at wave numbers g and
q*Q, which are present in the initial condition, is plotted
in Fig. 3(a), which shows that the modulated wave is
stable over the entire time range investigated (500 units of
time, i.e., about 800 periods of a carrier at frequency
@y=10). As expected from the modulation-wave disper-
sion relation (10), the amplitude of the modulation oscil-
lates in time. Figure 3(b) shows the time evolution of the
complete spatial discrete Fourier transform of the dis-
placements of the atoms in the chain,

s,(1)= zu Je /N with 0Sp<N/2. (18)

In addition to the three main components contained in
the initial condition shown in Fig. 3(a), Fig. 3(b) shows
additional components at other wave numbers. They
correspond to combination modes not included in the
analysis, particularly the mode at wave number 3q that
was neglected to derive Eq. (4) in the ‘“‘rotating-wave” ap-
proximation, as well as combination waves at wave num-
bers ¢£+2Q. The time evolution of the amplitude of the
wave number 3q is shown in Fig. 3(a). It oscillates in
time, in agreement with the dispersion relation (10) ap-
plied to a wave of wave number ¢ modulated by a small-
amplitude wave of wave number 3q. The corresponding
point is the point labeled 1’ in Fig. 2. It is in a stability
region, since, for ¢ > 7 /2, Eq. (10) indicates that the wave

is stable to any perturbation. This prediction of stability
does not, however, guarantee that the wave will be per-
manently stable in the chain, because it neglects three-
wave interactions. If the numerical simulation is carried
on for about 4000 periods of the carrier wave, an instabil-
ity finally shows up as the number of combination modes
and their amplitudes increase. It should be noticed that
the wave number Q of the initial modulation lies in a
domain that would correspond to an unstable wave for
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FIG. 3. (a) Time evolution of the Fourier components at
wave number g (solid line), ¢+ Q (dotted and dashed lines), and
3g (dashed-dotted line) for a wave with amplitude ¢,=0.5 and
wave number ¢=1.7181 modulated at wave number
Q0 =0.3682. Notice that the scale for the amplitude of the
Fourier components is logarithmic. (b) Time evolution of the
complete spatial Fourier spectrum of the wave.
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the continuous NLS equation [Eq. (11)]. It is not surpris-
ing to find such a discrepancy because the wave of wave
number ¢ =1.7181 is indeed not correctly described by a
continuum approximation.

Owing to the length of some of the simulations, it is
important to check that the results are not affected by nu-
merical accuracy. All the calculations have been per-
formed with double-precision accuracy and, besides the
check of energy conservation, we have verified the stabili-
ty of the results with respect to a doubling of the time
step. They are not modified by the change during the
whole time evolution that precedes the chaotic regime, if
it exists. When the chaotic regime is fully developed, the
dynamics includes high-frequency modes, and the instan-
taneous positions and velocities of the particle observed
at a given time are modified if the time step is doubled. It
must be stressed, however, that the conclusion with
respect to stability or instability is not affected by the
change in time step because it is drawn from the results
obtained before the chaotic regime shows up.

The numerical simulation discussed above simultane-
ously shows the strength and weakness of our analysis of
the modulational instability in a discrete chain. On one
hand, it gives a correct conclusion about stability, at least
for a limited time, in a case where the conventional
analysis based on the continuous NLS equation fails, but,
on the other hand, since it ignores the combination
modes generated by the nonlinear coupling, it is prone to
errors. In order to analze correctly the stability of a
given wave, the simulation shows that we must not only
consider the applied modulation Q, but also the 3¢ modu-
lation arising from the nonlinear term. This method can
be viewed as a first-order correction to the ‘“‘rotating-
wave” approximation used to derive Eq. (4). Its ability to
detect a possible instability is illustrated by the following
example. Let us consider a wave with ¢ =0.3682 (p =15)
modulated at wave number Q =2.2089 (P=180). The
corresponding point in the (g, Q) plane in Fig. 2 (point la-
beled 2) lies in the stability region, whereas the point cor-
responding to g-3q (point 2’) is in the instability domain.
Therefore, although the Q modulation is stable, we ob-
serve a spontaneous modulation arising from the 3¢ com-
ponent that grows exponentially as shown in Fig. 4(a).
The modulational instability is accompanied by a sharp
increase of the maximum amplitude along the chain,
from its initial value of 1.05 (2¢,+a) to about 2.5, as
shown in Fig. 4(b). Since the total energy of the system is
conserved, this sharp rise in amplitude is associated with
a localization of energy. The energy distribution, which
was uniform in the initial wave, now exhibits large peaks
at some sites.

This example shows that the analytical results leading
to Eq. (10) give a correct estimation of the stability of a
wave, provided that the combination modes, especially
the mode of wave number 3q, are taken into account.
However, one must keep in mind that this analysis is only
valid for a finite time because the nonlinear mode cou-
pling finally takes over. The number of excited modes in-
creases and the chain reaches a chaoticlike state in which
all wavelengths are present. The transition to this chaot-
iclike state is sharp and associated with the sharp rise of

the maximum amplitude along the chain. Let us illus-
trate it by another case with ¢ =0.3682 (p =15) as be-
fore, but 0 =1.3499 (P=110). This case is interesting
because the g-Q point (point labeled 3 in Fig. 2) lies in the
instability region very close to the border of the stability
domain. Therefore, the behavior of the system tests the
accuracy of our analytical approach. According to the
stability analysis, we expect a weak instability of the Q
modulation and a strong instability of the 3¢ modulation
because the representative point (point 3’ in Fig. 2, identi-
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FIG. 4. (a) Time evolution of the Fourier components at
wave number g (solid line), g£Q (dotted and dashed lines), and
3g (dashed-dotted line) for a wave with amplitude ¢,=0.5 and
wave number ¢=0.3682 modulated at wave number
Q=2.2089. Notice that the scale for the amplitude of the
Fourier components is logarithmic. (b) Time evolution of the
maximum amplitude along the chain.
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cal to 2’ as g is the same as in the previous case) lies well
inside the instability region. This stability analysis is well
confirmed by the numerical simulation as shown in Fig.
5(a), which displays the time evolution of the Fourier
components of the Q and 3¢g modulations. The picture of
the complete Fourier spectrum [Fig. 5(c)] shows the rath-
er abrupt transition to a chaoticlike state, which is associ-
ated with the sharp rise in maximum amplitude along the
chain observed in Fig. 5(b).

As a last example, let us consider the case of a larger
amplitude, ¢;=1. In this case, for K =1 and =1, we
expect that a wave with g < /2 will be unstable against
any modulation [see Fig. 2(b)]. This is illustrated in Fig.

6, obtained for ¢=0.9817 (p=80) and Q=2.6998
(P=220), which corresponds to points 4 (¢-Q) and 4’
(g-3q) in Fig. 2(b). For this higher amplitude the growth
rate of the instability is high and a chaoticlike state is ob-
tained after only 80 periods of the carrier wave. In this
case, a stability analysis based on the continuous NLS
equation [Eq. (11)] would predict stability for both the Q
and 3q modulations, but owing to the large values of Q
and 3gq it is not surprising that an analysis based on a con-
tinuum approximation fails.

Our stability analysis is based on the discrete NLS
equation (4) obtained with the assumption that w3 is large
with respect to 4K and B¢3. It is interesting to check its

0!
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FIG. 5. (a) Time evolution of the Fourier components at wave number g (solid line), g=Q (dotted and dashed lines), and 3¢
(dashed-dotted line) for a wave with amplitude ¢,=0.5 and wave number ¢ =0.3682 modulated at wave number Q =1.3499. Notice
that the scale for the amplitude of the Fourier components is logarithmic. (b) Time evolution of the maximum amplitude along the
chain. (c) Time evolution of the complete spatial Fourier spectrum of the wave.
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FIG. 6. Time evolution of the Fourier components at wave
number g (solid line), ¢+ Q (dotted and dashed lines), and 3¢
(dashed-dotted line) for a wave with amplitude ¢,=1.0 and
wave number ¢=0.9817 modulated at wave number
0 =2.6998. Notice that the scale for the amplitude of the
Fourier components is logarithmic and that the time scale is not
the same as in Figs. 3-5.

validity for smaller values of w,. Figure 7 shows the re-
sults of a numerical simulation performed with the same
parameters as the one presented in Fig. 3, except for 3,
which has been reduced from 100 to 16. The parameters
of the discrete NLS equation (4) are thus the same in both
numerical experiments. Figure 7 shows that the initial
evolution of the system is in agreement with the theoreti-
cal stability analysis. The Q modulation is stable while
the 3¢ modulation is unstable, similar to the larger-w,
case. This shows that the condition of large wy is not cru-
cial for the analysis, but it is, however, important to
determine the time after which the buildup of the com-
bination modes will ruin the conclusions of the two-wave
analysis. For ©3=16, the chaoticlike state mixing all
wavelengths is obtained around ¢ =50 units of time, in-
stead of =200 units of time for wj= 100.

IV. CONCLUSIONS

Our results, using the Klein-Gordon chain as an exam-
ple, point out the crucial role of discreteness on modula-
tional instability. First, the analytical approach based on
a discrete NLS equation shows that the predicted stabili-
ty domains are drastically modified with respect to the
conventional results deduced from a continuum (or even
semidiscrete) approximation. In particular, for a positive
nonlinearity coefficient 3, which is generally the relevant
physical case as the potentials often soften for large am-
plitudes, a carrier wave at small wave numbers is unsta-
ble against all possible modulations when its amplitude
exceeds a threshold.

The numerical simulations have confirmed the validity
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FIG. 7. Time evolution of the Fourier components at wave
number g (solid line), g+Q (dotted and dashed lines), and 3¢q
(dashed-dotted line) for a wave with amplitude ¢,=0.5 and
wave number ¢=1.7181 modulated at wave number
Q0 =0.3682. The parameters are the same as in Fig. 3, except
for w}, which has been reduced from 100 to 16. Note that the
time scale is not the same as in Fig. 3.

of the theoretical analysis, provided that the stability is
not only checked for the externally imposed Q modula-
tion, but also for the 3¢ modulation generated by the non-
linear terms. However, they have also shown that stabili-
ty can only be achieved for a limited time. The progres-
sive build up of combination modes due to nonlinear cou-
pling induces three-wave interactions that are not includ-
ed in our analysis, and eventually all carrier waves evolve
into a chaoticlike state where all possible wavelengths are
present. In this state, the energy is no longer uniformly
distributed along the chain, but, on the contrary, the am-
plitude of the motion of some particles becomes much
larger than the amplitude of the original wave. There-
fore, modulational instability in a discrete system appears
to be a very efficient mechanism to generate large-
amplitude solitonlike excitations. This is, for instance,
the case in the discrete sine-Gordon model in which the
formation of kinks (i.e., excitations with a amplitude of
27) has been observed from the modulational instability
of a plane wave of amplitude 7/3 [27]. Since the small
wave numbers show the largest growth rate, this explains
why pulse or kinklike excitations (g =O0) rather than
wave packets are easily generated by modulational insta-
bility in a discrete system.

The analytical results have also pointed out that the
behavior of a nonlinear lattice depends strongly on the
type of discreteness as shown by the differences found be-
tween our discrete NLS equation and the Ablowitz-Ladik
integrable model. Our results can also be compared with
the results obtained by Fermi, Pasta, and Ulam [28] on a
chain with nonlinear coupling. They found that the
equipartition of energy was extremely slow in the system,
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while, for the Klein-Gordon lattice with on-site non-
linearity but an harmonic coupling, we observe that
chaoticlike states mixing all the modes are easily ob-
tained.
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FIG. 3. (a) Time evolution of the Fourier components at
wave number ¢ (solid line), g +Q (dotted and dashed lines), and
3q (dashed-dotted line) for a wave with amplitude ¢,=0.5 and
wave number g¢=1.7181 modulated at wave number
Q=0.3682. Notice that the scale for the amplitude of the
Fourier components is logarithmic. (b) Time evolution of the
complete spatial Fourier spectrum of the wave.
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FIG. 5. (a) Time evolution of the Fourier components at wave number ¢ (solid line), g +Q (dotted and dashed lines), and 3q
(dashed-dotted line) for a wave with amplitude ¢,=0.5 and wave number ¢ =0.3682 modulated at wave number Q =1.3499. Notice
that the scale for the amplitude of the Fourier components is logarithmic. (b) Time evolution of the maximum amplitude along the
chain. (c) Time evolution of the complete spatial Fourier spectrum of the wave.



