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We apply perturbation theory to the hydrogen atom in a magnetic field by means of a recurrence rela-
tion for properly chosen rnornents of the wave function. The method is suitable for both numerical and
symbolic computation and allows the treatment of classes of states with common symmetry properties.
We derive analytic expressions in terms of the principal quantum number for the perturbation correc-
tions to the energy of the unperturbed states with quantum numbers n —1 =

~
m

~

= 1, n —2=
~
m

~

=1—1,
n —2= [m

~

=1, n —3=[m
~

=1—1, and (n —3= ~m
~

=l, n —3= ~m
~

=1—2) some of which have not been
reported before. Disagreements with some previous results are pointed out.

PACS number(s}: 32.60.+ i, 03.65.6e

I. INTRODUCTION

Perturbation theory is one of the most widely used ap-
proximate methods in quantum mechanics. However, its
application to nonseparable systems is commonly
difficult, especially if one is interested in corrections of
order greater than the second for degenerate states. Al-
though the problem is nicely treated in most textbooks on
quantum mechanics [1] the application of the perturba-
tion formulas even to a system as simple as the Zeeman
effect in hydrogen is far from trivial. This problem in
particular has received considerable attention with regard
to the study of large-order perturbation series and has for
this reason become a benchmark for new perturbation
techniques.

To apply perturbation theory one has to face at least
two problems: the calculation of suScient perturbation
coefficients and the summation of the series that is typi-
cally divergent. Here we are concerned with the calcula-
tion of exact energy-perturbation coefficients. Such a cal-
culation is only possible for simple systems such as the
hydrogen atom with a multipole perturbation which is a
tractable model for many physical phenomena. The
Stark effect in hydrogen is separable in parabolic coordi-
nates and for this reason the calculation of perturbation
corrections is trivial [2]. The next simplest nonseparable
problem of physical interest is the Zeeman effect in hy-
drogen. Roughly speaking there are two types of pertur-
bation calculations on this system: low-order ones for
many states and large-order ones for particular states.
Typically, the former are directed to physical applica-
tions whereas the latter have mathematical goals. Since
the standard perturbation formulas [1] are difficult to ap-
ply, many authors have proposed alternative techniques.
Among the low-order calculations which are relevant to
the present paper we mention straightforward integration
of the perturbation differential equations in spherical
coordinates [3] and the use of matrix methods for the
Hamiltonian in spherical [4,5] or parabolic coordinates
[6,7]. The most successful techniques for large-order cal-
culations appear to be the Lie algebraic methods [8—14],

the logarithmic-perturbation method [15—18], appropri-
ate power-series expansion of the wave function [19,20],
and the moment method [21—26].

The purpose of the present paper is threefold. First,
we show that the moment method is a powerful tool for
the exact calculation of perturbation correction to the en-

ergy of both nondegenerate and degenerate states. As an
illustrative example we consider the Zeeman effect in hy-
drogen and point out some appealing features of the
method unnoticed in previous applications [21—26].
Second, we show results that have not been reported be-
fore to our knowledge and that may be useful for physical
applications of the model. Third, we compare the mutual-
ly disagreeing results of Galindo and Pascual [3], Chen

[6], Grozdanov and Taylor [7], and Turbiner [16,17] with
ours.

In Sec. II we outline the method and classify the states
according to the master recurrence relation which we use
to calculate the perturbation corrections. However, for
the sake of clarity we also label the states with the hydro-
genic quantum numbers n, I, and m which are adequate
in the low-field regime. In Secs. III and IV we consider
the states with n —1= ~m~ =1 and n —2= ~m~ =1 —1, re-
spectively, which have no radial nodes when the field
vanishes. The former have been treated before by means
of the moment method [24,25] but we include them here
for the sake of completeness showing more exact energy
coefficients. In Secs. V and VI we apply the method to
the states with n —2= ~m~ =1 and n —3= ~m~ =1 —1, re-
spectively, each one with one radial node when there is
no perturbation. The states we have mentioned so far
can be treated by means of perturbation theory for non-
degenerate states because the matrix elements of the per-
turbation between each one of them and any other state
with the same energy vanish. In Sec. VII we consider the
splitting of the pairs of states with n —3= ~m~ =1—2 and
n —3= ~m~ =1. For all these cases we obtain the energy
coefficients in terms of the principal quantum number n.
In Sec. VIII we compare our results with those reported
by other authors and in Sec. IX we discuss the advan-
tages and limitations of the present approach as well as
alternative ways of applying it.
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II. THE METHOD

Only the part of the Hamiltonian operator for a hydro-
gen atom in a magnetic field that takes into account the
diamagnetic effects is relevant to the present perturbation
treatment. In atomic units it reads

H=HO+AH', Ho= —
—,'6 ——,H'=x +y =r sin 0,1

r'

where A, =B /8, B being the strength of the field which is
directed along the z axis. The main difficulty to over-
come when treating this problem is that the unperturbed
and perturbed parts of the Hamiltonian operator have
different symmetries (spherical and cylindrical, respec-
tively) and two degrees of freedom cannot be separated.
The projection of the angular momentum onto the field

F; „(r., 8,$)=sin'8 cosj8r "e ~"e' (2)

where P is a positive constant to be determined and,
i,j,n =0, 1, . .. . Straightforward application of H to (2)
leads to

direction is a constant of the motion related to the mag-
netic quantum number m =0,+1,... and the dependence
of the wave function on the angle P, which describes the
motion of the system on the plane perpendicular to that
direction, can be exactly factored out.

The moment method is based on the relation
((H E)—F~%) =0 in which 4 is an eigenfunction of H
with eigenvalue E and F is an element of a set of func-
tions chosen so that HF can be written as a finite linear
combination of functions of that set [24]. For the present
problem we choose the functions

HF, „= ,'P F, —„—+[P(.n +1)—l]F; „& + —,'[(i+j)(i+j+1) n(—n+1)]F j „z
m —i+ i —2 j,n —2, m 2J(J ) i j—2, n —z, m+~ i+2 jn+2, m

To simplify the moment recurrence relation we chose j to be either 0 or 1 and p= 1/N, N = 1,2, . . . , so that j (j—1)=0
and P(n +1)—1=0when n =N —l. Under such conditions we obtain the recurrence relation

I, „, KEI, „+—,
—'[(i+j)(i+j+1) n(n —+1)]I;„z+—,'(m —i )I; z „2+XI;+2„+z=0, (4)

for the moments I;„=(F;j„~%) in which we have
defined bE =E+1/(2N ). As far as the recurrence rela-
tion (4) is concerned j and N are constants of the motion,
the former being related to the parity of the state %' and
the latter being the hydrogenic principal quantum num-
ber. We find it convenient to classify the states with the
values of

~
m ~, j, and N although N is not a constant of the

motion in the strict quantum-mechanical sense.
The parity of the functions (2) with respect to 8,

F, „(r, 8,$)=(—1)'—F,j„(r,8,$),
F; „(r,8+m, P)=( —1.)'+jF,.j„(r,8,$),

enables us to separate the states into four disjoint classes
when (i, i+j) is (even, even), (even, odd), (odd, even), or
(odd, odd). As a result it is possible to treat the four un-
perturbed states with n =2 by means of nondegenerate
perturbation theory because they belong to different
classes. To label the Zeeman states by means of hydro-
genic quantum numbers, notice that due to the parity of
the spherical harmonics with respect to 0 the unper-
turbed moments vanish unless 1 —

~
m

~

=2k +j,
I@ =0, 1,.. . .

In order to apply perturbation theory we need an ap-
propriate expression for hE in terms of the moments.
We obtain it for the particular cases discussed in the fol-
lowing sections.

III. STATES WITH j=0 AND
~
m

~

=N —1

These states arise from hydrogenic ones with
N —1=i=~m~=0, 1, .. . and were treated before by
means of the moment method [24,25]. When
i =n =N —1 the recurrence relation (4) reduces to
AEI~ ) ~ )=A,I~+, ~+,. Therefore, if we normalize
the eigenfunction 4' so that Iz, N &=1, we obtain an
expression for AE in terms of one of the moments:
AE =A,I~+, ~+, . We can then use the recurrence rela-
tion (4) to express I~+, ~+, solely in terms of I~
and other moments which, as they are multiplied by ei-
ther hE or A, , contribute perturbation coefficients of
lesser order. It follows from this fact that the moment re-
currence relation, the normalization condition, and the
expression for AE derived above are sufficient to obtain
all the energy coefficients. Furthermore, since only one
equation relating AE and the moments is sufficient to
solve the problem we conclude that these states can be
treated as nondegenerate.

The equations just discussed also appear in the stan-
dard Rayleigh-Schrodinger perturbation theory. If 4' ' is
an eigenfunction of Ho with eigenvalue E' '= —1/(2N )

then b,E(%' '~%) =A, (%' '~IIH'~%). Therefore the nor-
rnalization condition and the expression for the energy
given above are equivalent to (4' '~%) =1 and
bE=A(4i' ~H'~4), respectively. Because in the present
case one can write 4' ' as a linear combination of the
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TABLE I. Energy coefficients for the states with j=0 and I rn
I

=N —1 (N —1 =
I
m I

= I).

E, =N (N+1)

E~=N (N+1)( —7/3 —9N/2 —2N )

E3 =N" (N+1)(88/3+850N/9+1024N /9+121N /2+12N )

E =N' (N+1)( —858—35091N/10 —362473N /60 —607279N /108 —322507N /108 —6861N /8 —104N )

Eq =N' (N+1)(134368/3+1 899460N/9+296949 121N /675+215 854418N /405

+370883 113N /900+22537787N /108+10957667N /162+102603N /8+1088N )

E6 =N (N + 1)(—164 270048/45 —89 448 855 628N/4725 —210 531 466 564N /4725

—17 884 076 055 179N /283 500—33 910358 631 211N /567 000

—2 420042 788 493N'/60 750—4 601 249 807 129N /243 000—3 087 690 077N /486

—2801202365N /1944 —3 190369N /16 —12768N' )

A, , =—
I —,

' [(N —1+t)(N + t)

(N —3+2s)—(N —2+ 2s) ]A. .
+—,'[(N —3+2s) —(N —1) ]A.

+bEAs (+(XAs+), (+3] ~ (6)

and the expression for the normalization condition and
energy become A, = 1 and hE =A, A z 3, respectively.

We now apply perturbation theory by expanding 4E
and the moments in A,-power series

aE= y E(P)X~,
p=l p=0

(7)

It follows from the recurrence relation (6) that the pertur-
bation coefficients E' ' and A' ' are related by

A P =——[(N —1+t)(N+t)( ) N 1
s, f

functions (2} we can express both equations in terms of
the moments of %.

To obtain general equations for all the states in the
above mentioned class it is convenient to write
i =N —3+2s and n =N —2+ t where s, t = 1,2, . . . , and
define A, , =I; „. In terms of these new moments the re-
currence relation (4) reads

the normalization condition A
&

' =5o and the perturba-
tion corrections to the energy are given by E'P'= A j''3 ".
According to the recurrence relation (8), to obtain
E A p 3 we have to calculate A,', ', q =0, 1, . . . ,p,
s =1,2, . . . ,p —q+2, t =to, to+1, . . . , 3(p —q)+3, where
t p

=2 if s = 1 and to =2s —2 otherwise.
By means of these equations we obtained the energy

coefficients given in Table I as functions of N. These re-
sults enlarge those reported previously by Fernandez,
Ogilvie, and Tipping [24] by one more perturbation
correction.

IV. STATES WITH I m I
=N —2 AND j = 1

This class of states can also be labeled with the hydro-
genic quantum numbers N —2=lml =l —1=0,1, . . . and
has not been treated before by means of the moment
method [21—26]. Since the unperturbed states have no
radial nodes and they can be treated as nondegenerate,
the calculation procedure is similar to that in the preced-
ing section. For this reason we show here only the final
equations. In terms of the moments A, , =I,. „, in which
i =N —4+2s and n =N —2+ t, s, t = 1,2, . . . , we have

—(N —3+2s)(N —2+2s) ]A,'P',

+—'[(N —3+2s} —(N —1) ]A,'P'. .
P

E (j)A (P —j) A (P —))
s, t+1 s+1,t+3

j=l
The starting point of this recurrence relation comes from

A, , =—
[ —,

' [(N —1+t)(N + t)

—(N —3+2s)(N —2+ 2s) ] A, ,

+—,'[(N —4+2s) —(N —2) ]A,

+AEA, , +)—A, A, +),+3], (9)
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TABLE II. Energy coefficients for the states with j= 1 and 1m1=N —2 (1 =1m1+ 1).

E) ——N~(N~ —1)

E2 = N—(N 1—)(2N +3)

E3 =N "(N 1)(—20/3+ 124N /3+ 42N + 12N )

E4=N' (N 1)(——2182/15 —19027N/30 49—583N /36 —24539N /18 2457—N /4 104N—)

E5 =N' (N 1)(8—3 204/15+6 225 571N/225+ 16 569 383N /270+ 6 157 622N /75

+1232717N /18+926080N /27+9408N +1088N )

E6 =N (N 1)(——113 120 368/315 —9 112611 974N/4725 1117—16048 321N /23 625

—1 987 894 938 829N /283 500 —189 811488 589N /27 000—50 083 887 413N /10 125

—783044309N /324 —252641845N /324 119—2443N /8 127—68N )

together with the normalization condition A& &
=1 and

the energy expression hE =A, A2 3. From them one can
easily derive a recurrence relation for the perturbation
corrections A,', ' and a formula for the energy coefficients
which are almost identical to those in the preceding sec-
tion.

Table II shows analytic expressions for the energy
coefficients in terms of N.

V STATES WITH 1m I
=N 2 AND J =0

This case corresponds to the hydrogenic quantum
numbers N —2=1m1=1=0, 1, . .. . Only the 2s state has
been treated before by means of the moment method
[21,22,24,25]. To apply it to all the states in this class at
the same time we define A, , =I; „, where i =N —4+2s
and n =N —3+ t, s, t = 1,2, .... As a result the re-
currence relation (4) becomes

A, , =,' [(N 2+ t)(N ——1+t) (N 4+2—s)(N ——3+2s)]A, , )+

GAEA,

g+ )

+ —,'[(N 4+2s) (N —2—) ]A, ),—)
—

A, A, +),+3 . (10)

Notice that in this case we cannot make three terms van-
ish at the same time as we did in the two previous exam-
ples. The reason is that in the zero-field limit these states
have one radial node. When (s, t) is replaced by (1,1) and
(1,0) we have, respectively,

from (10) with s = 1 and t =2,

A t q
—N [(2N —1)A ) ) +b EA ) 3 A A2 5 ] (15)

and

(N —1)A, p+kEA, 2
—

A, A24=0, Substitution of this last equation into (13) gives us the
starting point we are looking for,

A& pN(AAp3 SEA] &) (12) A, , =N (1 NhEA, 3+DNA—~ 5), (16)

Ai q N(N —1)Ai i
=I—,

so that

(13)

We eliminate A, 0 from these two equations and obtain
an expression for the energy: b,E [ A

& 2 N(N—
—1)A»]=A,[A24 N(N —1)Az3]. To —simplify it we
choose the normalization condition

which enables one to express A '&,' in terms of A ', 3, j & q,
and A 2 5

"obtained in previous steps.
On expanding hE and every A, , in A,-power series we

obtain the set of equations

bE =A [ A~ 4 N(N —1)A2 3] . — (14}

Equation (13) is insufficient to initiate the recursive pro-
cess and we supplement it with another derived directly

5 Ng E'1'A p3
'+—NA2 5

"
j=1

(17a}
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A, ~ = —[(N —2+t)(N —1+t)() N 1

t —1 2

(—N 4—+2s)(N —3+2s)] A,'~'

+ —,'[(N —4+2s) —(N —2) ]A,'~'. .

E'I'=A'I' " N—(N —1)A2~ " . (18c)

By means of these equations we obtained the energy
coefficients in terms of N given in Table IV. This class of
states was not treated before by means of the moment
method.

p
+ g E A, , i+&

—As+t, i+3(j) (p —j) (p —1)

j=1
(17b) STATES WITH j=0 AND

~
m

~

= lV —3

E' '= A ~f4
" N(N——1)A 2~3 ", (17c)

VI. STATES WITH j= 1 AND
~
m

~

=N —3

In the zero-field limit these states become hydrogenic
ones with N —3 =

~
m =1—1 which have one radial node.

Since the treatment of such states parallels that in the
preceding section we only show here the final results.
The energy coefficients and perturbation corrections to
the moments A, , =I; „, i =N —5+2s, n =N —4+t,
s, t = 1,2, . . . , are given by

p
A~(~=N 5 o Ng E' '—AI ~ '+NA~6 "

j=l
(18a)

which allows the calculation of all the perturbation
corrections. For every perturbation order one first uses
(17a), then (17b) and finally (17c). Iri order to calculate
E' +" we need A,'~' with q =0, 1, . . . ,p, s = 1,2, . . . ,p—

q +2, and t = to, to+1, . . . , 3(p —q)+4.
With the expressions above we have calculated the en-

ergy coefficients in terms of N given in Table III.

These states can be obtained by perturbation of the
hydrogenic ones with N —3 = m

~

=1 and
N —3 =

~
m

~

= I —2 which mix when the field is turned on.
This case illustrates the application of the moment
method to perturbation theory for degenerate states.
Such a calculation was not tried before although the ap-
plicability of the method to degenerate states was pointed
out [21].Strictly speaking all the unperturbed energy lev-
els are degenerate when N ) 1. However, we treated the
previous examples as nondegenerate states because we
could separate them according to their symmetry. In the
present case, on the other hand, the off-diagonal matrix
elements of the perturbation between the states in each
pair considered are nonzero and when using standard
perturbation theory one is forced to obtain two linear
combinations that make such matrix elements vanish. As
shown below the moment method does not require the
calculation of matrix elements and yields the energy split-
ting quite simply.

As before we shift the subscripts i =N —5+2s,
n =N —4+ t, and set A, , =I, „. To facilitate the discus-
sion below we also define the quantities

—[(N 3+ t)(N —2+t)—N 1

t —2 2

(N —4+2s)—(N —3+2s) ]A,'~'

+—'[(N —5+2s) —(N —3) ]A,'~'),

a, , = —,
' [(N —5+2)( n —4+ 2s)

(n 4—+ t)( n ——3+ t) ],
b, =

—,'[(n —3) —(n —5+2s) ],
p

+ Q E A, , +, —A, +i'd+3,(j) (p -j) (p —&)

j=1
(18b) in terms of which the recurrence relation for the mo-

ments reads

TABLE III. Energy coefficients for the states with j=0 and
~
m

~

=N —2 (I =
~
m( ).

El =N (N 1)(N+5)

E2 =N (N —1)(—56+19N/3 —25N —2N')

E3 =N' (N —1)(1232—1652N/3+14596N /9+104N /9+260N +12N')

E4 =N' (N —1)(—33 760+365 698N/15 —1 615001N /18+26611N /20

—4849351N /108 —339725N /108 —13 345N /4 —104N )

E,=N' ( N —1 )( 1 034 816—4 482 308N/5+ 1 113064 099N /225+ 774 928 777N /1350

+20437 328 903N /4050+ 594075 014N /675+ 1 190428N + 17489 737N /162

+94667N /2+1088N )
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TABLE IV. Energy coefficients for the states with j=1 and ~m~ =N —3 (I = ~m~+ I).

E, =N (N —2)(5+N)

E2=N (N —2)( —91+31N/2 —47N /2 —2N )

E3 =N' (N —2)(3476—6356N/3+2062N —1835N /6+483N /2+ 12N )

E4=N' (N —2)( —166344+2603 299N/15 —1076293N /6+3 630613N /45

—586627N /12+253 859N /72 —24743N /8 —104N )

E5 =N' (N —2)(8 919664—65 902 884N/5+3 473 510 852N /225 —7 379 400637N /675

+531353 126N /75 —2652120491N /1350+20414057N /18 —5088821N /216

+351 329N /8+1088N )

+b, A, ), 2+A, A, +),+2=0 . (20)

a, 3A ) )
—AEA ) 3+A, A2 5=0,

A] 0 GAEA& ]+AA2 3=02

(21)

(22)

We substitute (1,3), (1,1), (2,3), and (1,2) for (s, t) and ob-
tain

turbed states with two radial nodes and one angular node,
respectively. For 1V =3 they are the states 3s and 3do, re-
spectively, which have been treated by other methods
[6,11,12]. Grozdanov and Taylor [7] obtained the first
two energy coefficients for arbitrary values of 1V.

Equations (25) and (27) are linearly independent and
we can obtain alternative pairs of equations by linear
combination. The most convenient are those that lead to
simpler expressions for the normalization condition and
energy. As the former is arbitrary we simply select

—EEAQ3+b2AJ ]+XA35 0,
A ) ) +a ) 2 A ) o hE A ) 2 + "jt A 2 4

=0
1

(23)

(24}

a& 3A23 b2A] 3 1,
which leads to

bE =A(a& 3A3, 5 b2A3, 5) .

(28)

(29)
respectively. Notice that except in the last case the
choice of (s, t) was aimed to make two terms of (20) van-
ish. On eliminating A

& o between (22} and (24) we have

b,E(NA, 2+ —,'N a, 2 A, , )

If we substitute this last equation into (26}we obtain

(aj 3A3 5 b2AQ 5)(Na~ A3~, +2—'N'
ia, 2ia, A3, , +A, 3)

A, (NA 2 4+ ,'N—a, 2 A 3 3)+ —A( ) =0 . (25)
—Na& 3A24 ——'N a& 2a& 3A23 A25 0 ~

2 (30)

We obtain an appropriate expression for the energy by
elimination of A &, between (21) and (25):

b,E (Na, 3 A, ,+ 'N a, ,a, , A, , +—A, , )

—
A,(Na, 3A24+ 'N a, za, 3A2—3+A25)=0. (26)

The recurrence relation (20) and this last equation are
insufficient to solve the problem as one can easily verify.
Furthermore, if we eliminate A, , between (21) and (23)
we obtain another appropriate expression for the energy

AE(a& 3Az 3 b2A& 3)——A(a, 3A3 5 b2A35)=0 .

(27)

The occurrence of two such equations is a direct conse-
quence of twofold degeneracy. Inspection of the moment
subscripts reveals that (25) and (27) correspond to unper-

Because the coefficient of A, 2 vanishes for all s, the mo-
ment recurrence relation (20) does not allow the calcula-
tion of the perturbation corrections A P2' in terms of oth-
ers of lesser order. However, by means of the equations
above we can write the perturbation corrections to all the
other moments in terms of A 'Pz'. To see this more clearly
notice that we can start the calculation of the moment
coefficients A,'~f' from t =2s —2 when s & l because
a, 2, , =0. We calculate the unknown perturbation
coefficients A'Pz, p =0, 1,... from the coefficients of the
perturbation expansion of (30) which is quadratic in A P2'

and linear in A '$2' for all p &0. For p =0 we obtain two
real roots that lead to the splitting of the energy levels.
The derivation of the main equations is straightforward.
We expand hE and the moments in A,-power series and
obtain a recurrence relation for the coefficients from (20).



324 FRANCISCO M. FERNANDEZ AND JORGE A. MORALES

It gives us all the perturbation corrections in terms of
A Ii'2) except A2'~3) which one obtains from (28). From Eq.
(30) we derive an equation for A 'P2) in terms of
coefficients of lesser order. Finally, we obtain the energy
coefficients from (29). We do not show the final expres-
sions because they are similar to those used before. It is
worth mentioning that if we had set the coefficient of hE
in Eq. (26) equal to unity the unknown coefficient would
have resulted to be A z z.

We have mentioned above that one can obtain an ex-
pression for AI z in terms of coefficients of lesser order
from Eq. (30). That expression tubs out to be rather
complicated and its derivation requires a good deal of

careful algebraic manipulation. To avoid mistakes origi-
nating in this process we have opted for an alternative
strategy. For every value of p we express all the pertur-
bation coefficients in terms of A(i z and then solve the
equation resulting from (3) by means of a symbolic pro-
cessor. Table V shows some energy coefficients in terms
of X.

VIII. COMPARISON WITH OTHER RESULTS

The noticeable disagreement between results obtained
previously by other authors makes necessary a careful
comparison with present calculations. To this end we

TABLE V. Energy coefficients for the states with j=0 and
~
m

~

=N —3 (1 =
~
m

~
and 1 =

~
m

~
+2).

R =+(41—48N+16N )'

E& =N ( 7+3N+N +R)

D2 = 82 —260N +306N —160N'+ 32N

E, =N6[9758 —39 099N +66 589N' —64 736N'+ 40 699N4 17031N'+—4188N —304N' —64N'

+( —1578+5315N 7212N'+—5383N' —2660N +912N' —160N )R]/D,

D3 =695 137206—6 849 644 664N+ 31 331 210 916N —88 237 209 624N'+ 171 042 107 766N

—241 563 402 528N +256 486 982 112N —208 113850 368N + 129 748 442 112N —61 886 742 528N

+22 242 902 016N' —5 844 762 624N" + 1 062 076 416N' —119537 664N" +6 291 456N'

E3 =N' [ —2 538 641076312+27981284483 332N —146 344 955 934 658N'+483 754 819 729 749N'

—1 135433 716783 933N +2014 654031 158 495N —2 807 950 808 664 624N

+ 3 151 998 895 124 191N —2 897 784 879 899 977N'+ 2 206 491 846 463 521N

—1 401 621 269 720 632N' +745 694 106 669 136N" —332 428 301 729 664N'

+ 123 634 100038 144N' —37 890996957 184N' +9 327 338 692 608N" —1 756261 777 408N'

+229 672 026 112N' —16 271 278 080N" —66060 288N' +75 497 472N

+ (391 392434 376—4088 418 968 620N+ 20 213 301 273 002N —63 007 896 329 383N

+ 139 103 353 940024N —231 472 293 993 270N +301 421 107 721 846N

—314 547 924 622 791N +267 086 360 991 880N —186 318726 785 496N

+ 107423 331 067 648N' —51 366 904 787 456N" +20 391 291 473 152N'

—6 697 608 839 168N' + 1 797 313720 32QN' —382 236 164096N'

+ 60 559 392 768N ' —6 325 534 720N ' + 324 009 984N '8 )R ]/D,

D4 =70 111538 597 160—995 241 840 574 320N +6 708 644 050 408 920N

—28 560955 217 289 120N +86 155 354446 799 320N —195 800908 361 151 600N

+347 956 398 768 640680N —495 263 266 529 489 280N +573 592 052 157 367 680N

—546 017 813429 575 680N +429 667 775 175 444 480N' —280 063 956 791 623 680N"
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write E~ (N, 1, im i ) to indicate the pth energy coeScient in
terms of the hydrogenic quantum numbers N, I, and m.
Our results agree with independent calculations for the
states N = 1 and 2 [3,10,14,20] and with previous numeri-
cal and analytic applications of the moment method
[21—25], one of which includes some states with N=3
and 4 [25].

Grozdanov and Taylor [7] calculated first- and
second-order energy coefficients in terms of the principal
quantum number N for many states and Turbiner [16,17]
obtained the first three energy coefficients for a class of
states with no radial nodes which corresponds to our
classes (j =0, ~mi=N —1) and (j =1, imi=N —2). We

agree with former authors except for the sign of their
second-order coefficient. It appears that this sign should
be reversed in view of the fact that their equations predict
a positive second-order correction to the ground-state en-
ergy. Turbiner [16,17] points out that his results do not
agree with Galindo and Pascual's [3] when N=2. We
believe that Turbiner's expression does not hold for
N)1. This author has not reported results for states
having radial nodes probably because in such cases the
logarithmic-perturbation equations become complicated
as illustrated by the treatment of separable problems [27].

Chen [6] calculated first- and second-order energy
coefficients for the states with N =1, 2, 3, and 4. Our re-

TABLE V. (Continued).

+ 150985 043 808 583 680N' —66 974 338 677 473 280N' +24 212 140 319047 680N'

—7025 713 584 537 600N' + 1 598446~~~ 216 320N' —274 883 275 653 120N'

+33 623 554 129 920N' —2 609 192 632 320N' +96636 764 160N

E~ =N'4[7 273 090 567 914989 760—115612 391 989 027 816656N+ 886 326 500 722 523 977 426N~

—4 363 646 801 622 556655 099N + 15 498 112338 949 885 068 454N

—42 288 735 860 993 152 863 775N +92 199583 256 211 448 575 173N

—164960482 628 758460 105 668N +246927218 642426 854716987N
—313 824254644782 741 376482N +342 611 513 201057 326625 145N'

—324 374 802 415 794 942 395 325N" +268 409 874 780 399 717902 895N'

—195 303 227 335 635 663 078 915N' + 125 498 732 802 509 183 845 440N'

—71 374604 575 588 545 969 360N' +35 925 116997120376211712N'

—15 966480 668 647 985 962 752N' +6 238 826 531 803 683 790 848N'

—2 130 119760 575 590 699008N' +630291 555 203 104440 320N

—159794 027 617615 151 104Nz)+ 34 116720049 032003 584N —5 963 598 337 242 300 416N

+812 650 512 951 279 616N —78 622 902 336 880 640Nzs+4 283 191032 545 280N

—7 428 951 244 SOON —10050 223 472 640N

+( —1 143 759 859 158 588 480+ 17 503 591 071 388 588 224N —128 971 450686 128 970 778N

+609 180898 850 145 956 459N —2 071 739 328 168 767 153410N

+5 401 937 671 025 627 485 375N —11 230 359489 094 326 021 212N

+ 19 118286423 272 566 227 259N —27 173405 800695 041 575 242N

+32 730 756 954 254 345 208 465N —33 812 643 322 702 804 768 110N'

+30 253 071 558 796 922 243 850N" —23 629 562 874 700 296 870 960N'

+ 16206000408 799 367 954400N' —9 793 171017 629 093 406 720N'

+ 5 218 15Q 158 177 142 863 360N' —2 446 835 501 043 342 809 088N '

+ 1 005 436 886 701 371 580416N' —359 958 924092 651 225 088N'

+ 111517 718 743 911628 8QQN' —29 657205 381 398 528000N

+6695 132027636678 656N ' —1259 142241 385 971 712N +19Q6Q7352645287936N
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suits disagree with Chen's [6] for E2(4, 3, 3), E2(3, 1, 1),
E&(4,2, 2), E2(4, 2, 2), E2(3,2, 1), and E2(4, 3, 2). More-
over, our results for the splitting of the states with j =0
and ),m ) =N —3 are in complete agreement with the
large-order numerical calculation of Silverstone and
Moats [12] for N =3 but share no resemblance at all with
the energy coefficients reported by Chen [6].

IX. FURTHER COMMENTS AND CONCLUSIONS

We have shown that the moment method greatly facili-
tates the application of perturbation theory to simple
nonseparable quantum-mechanical systems. It allows the
treatment of both nondegenerate and degenerate states
and is suitable for numerical as well as analytic calcula-
tion using computer algebra. The method bypasses the
calculation of matrix elements and integrals required by
other approaches and its efficiency can be seen in that we
have carried out our calculations on a 640-kbyte personal
computer and have obtained analytic and exact rational
energy coefficients (not shown here) of much larger order
than those reported by other authors. Only the results in
Table V required the use of a more powerful computer.
Many of the energy coefficients shown in Tables I—V
were not reported before and they may be useful in physi-
cal applications. Here we have used them to decide
which of the mutually disagreeing results reported by
other authors require modification.

Another practical advantage of the moment method is
that when the perturbation series is divergent, as in the
present case, one can easily introduce an adjustable pa-
rameter into the recurrence relation to obtain renormal-
ized series with improved convergence properties [26] (al-

ternative approaches are discussed in Ref. [25]). In our
opinion the moment method is much simpler than other
implementations of perturbation theory such as the Lie
algebraic method [8—14] or the logarithmic-perturbation
method [15—17]. However, the latter two procedures are
preferable when one is interested in the calculation of
physical properties other than the energy which require
explicit use of the eigenfunction. In particular the power-
ful Lie algebraic method is suitable for the calculation of
matrix elements of operators that can be written in terms
of the generators of the algebra [8,14]. However, in any
case the moment method may be useful to verify the re-
sults obtained by means of those other techniques.

We have pointed out that the general equations for the
degenerate states treated above are complicated. This
fact may be traceable to the coordinate system that is be-
ing used. It must be kept in mind that one can apply the
moment method with any convenient coordinate system
and that the equations may be much simpler in one sys-
tem than in another. For instance, in the case of the Zee-
man effect in hydrogen one can as well use cylindrical or
parabolic coordinates. We are presently investigating
such alternatives and the application of the moment
method to other physical systems.
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