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The spatial-localization properties of general lattice distributions (e.g., charge distribution of one-

particle eigenstates) are studied. We have introduced a localization quantity, the structural entropy

characteristic of the decay form (shape) of the distribution. We have found that there exists a nontrivial
relation between the structural entropy and the well-known delocalization index (participation ratio)
where the latter parameter measures the spatial extension of the distribution. This relation is universal

in the sense that it is independent of the geometrical arrangement of the atomic network, of the lattice
constant, and of the size of the system, and is fully determined by the decay form of the eigenstates and

the dimension d of the lattice. Based on this relation we have developed a classification scheme for the
characterization of the shape and extension of the one-particle states, which makes possible the
identification of various decay forms (Gaussian, exponential, power law, etc.) in numerical calculations
even on finite systems. The implementation of our method in already existing program systems is partic-
ularly easy. Besides presenting the theoretical background we demonstrate its applicability on some nu-

merical calculations.

PACS number(s): 05.50.+q, 31.15.+q, 31.90.+s, 71.50.+t

I. INTRODUCTION

Recently the spatial characterization of one-particle
eigenstates seems to be a common problem in diverse
fields of physics. Besides the spectral properties, the lo-
calization or delocalization features and the functional
decay forms of the eigenstates have also been studied in-
tensively due to their emerging importance, especially in
conductivity calculations.

The localization phenomenon induced by disorder is
still in the center of interest since Anderson's original
work [1]. Extensive study has been performed both
analytically and numerically via a noninteracting tight-
binding Hamiltonian. Several review articles [2—8] and
other research reports [9—14] have already been pub-
lished, from which we may learn that detecting localiza-
tion in numerical calculations suffers from some un-
resolved difficulties. The numerical study of infinite ran-
dom systems is usually performed by cluster calculations;
therefore it is essential to be able to classify the eigen-
states of finite systems and separate localized states from
extended ones. The detailed shape analysis of the wave
functions is fairly difficult. The concept of the "en-
velope" is mathematically ill-defined; thus the application
of unique shape descriptive indices would be preferred.
The aim of this work is to propose a technique that pro-
vides a fast and efficient characterization of the wave
functions.

Similar questions have arisen in the study of various
models; e.g. , the hierarchical tight-binding model [15],
the localization on fractals [16—18], quasiperiodic lat-
tices [17,19,20], the quantum chaos of the kicked rotor
and the eigenstates of band random matrices [21], and
even the classical waves in a random medium [22], all of
which urge a classification scheme where general one-

particle eigenstates may be characterized according to
their spatial extension and localization properties. In
other results [23], the existence of extended states in the
presence of disorder is still questioned [2—8]. The prob-
lem of two-dimensional disordered systems in magnetic
fields [24,25] also shows the significance of the spatial
structure of the wave functions. In this case the distin-
guishing of exponential and Gaussian localization may
lead to significant physical consequences.

In this paper we present a method for the description
of the decay form of general (charge, probability, etc. )

distributions. Although the above-mentioned problems
are mainly of solid-state-physics origin, the applicability
of this shape analysis extends over a broad range of phys-
ical problems.

The organization of this paper is as follows. In the
main text we have focused our attention on the basic
physical considerations, whereas mathematical details are
shown in various Appendixes. Section II contains the
general formulation of the theory for discrete lattices,
while Sec. III treats the connection between the decay
form of the wave functions and the localization indices.
Extreme delocalization and localization are discussed in
Secs. IV and V, respectively. Numerical applications
(random wave function, one-dimensional quasiperiodic
system, planar molecules, two-dimensional disorder) will
be presented in Sec. VI. The summary of the results can
be found in Sec. VII.

II. DISCRETE LATTICE MODEL

We consider a general lattice of X sites in arbitrary
spatial dimensions. We assume the existence of M nor-
malized one-particle states (occupied or unoccupied),
where M is not necessarily equal to X. Latin letters are

3148 1992 The American Physical Society



46 UNIVERSAL CLASSIFICATION SCHEME FOR THE SPATIAL-. . . 3149

0(g/', i=1, . . . , N, p=l, . . . , M,
N

g Q/'=1, p=1, . . . , M .

(2.1a)

(2.1b)

If Q/' means the charge distribution of wave function
~p), Eq. (2.1b) is simply the normalization condition of
Ip).

We introduce the so-called participation ratio [27,28]
or delocalization measure [29]

N

g (Q/')' (2.2)

This quantity has been extensively used for the character-
ization of eigenstates [2,10—15,19,27]. Recently exact
derivations of this parameter have been given [28,29].
The participation ratio gives approximately the number
of sites to which the state

~ p ) extends. Hereafter, given
an eigenstate, we will drop the index p where it does not
create any confusion. We may normalize D to the num-
ber of sites present in the system in order to get a size-
independent parameter, the spatial filling factor of the
wave function

D
(2.3)

used to denote site indices and greek letters for one-
particle states.

Since we would like to characterize the overall behav-
ior of the "envelope" of the one-particle functions, it
seems to be obvious to consider, instead of the wave func-
tion itself, the contribution Q/' of a given site i to the
state ~p ). In the simplest case of an orthonormal site ex-
pansion j ~i ),i = 1, . . . , N j, Q/' are the square moduli of
the expansion coefficients ~c/'~ M. ore generally these
quantities can be defined as the so-called Bader charge
[26] of the one-particle wave function on site i T.he idea
behind the latter definition is a unique subdivision of the
embedding space into "atomic'* regions and integrating
the square modulus of the wave function over this area.
For the sake of simplicity we will call Q/' the "charge ac-
cumulated on site i due to orbital ~p)" but we wish to
emphasize that it can actually be any normalized lattice
distribution that satisfies the following restrictions:

For infinite systems (N~ 00 ) q is always in the (0,1] in-
terval, i.e.,

0(q &1 . (2.6c)

Besides D we will use the Shannon entropy or the in-
formation entropy as the basic quantity for the localiza-
tion description of the one-particle state

~ p ),
N

S=—g Q;lng; . (2.7)

S,„,=lnD . (2.8)

We will define the extension entropy for arbitrary states
using Eqs. (2.8) and (2.2). The secondary level of com-
plexity of a given state can be identified as a deviation
from the steplike functions defined above, which corre-
sponds to the "shape" of the charge distribution [Q; ].
Therefore the information entropy (2.7) can be given as a
sum of two physically difFerent terms [32,33]: the exten-
sion entropy S,„, (2.8), and the deviation from this value
characterizing the shape of the charge distribution, what
we may call the structural entropy

This quantity has already been introduced in the charac-
terization of eigenstates [21,30,31]. The single property
of S exploited in these studies was that it scales as lnN for
extended states and saturates to a constant for localized
states as N~ oo .

As is well known, the Shannon entropy measures the
complexity of the distribution [ Q; I, i.e., the deviation of
the actual I Q; ] from the uniform distribution

[Q; = 1/N, i = 1, . . . , N J . The fragmentation of the
wave function is a consequence of two physically different
internal structures. The primary level of complexity is
simply due to the extension of the wave function to D
sites of the lattice. Although in the literature D is com-
monly used as a basic localization quantity, many states
with completely different internal structure can result in
the same extension D. The simplest of them, carrying the
primary level fragmentation, is a steplike function that
possesses extension only with no further structure. This
state extends over D atoms and has equal (Q;=1/D)
charges on these sites and Q; =0 on the other N Dones. —
Hence the entropy (2.7) of such charge distribution is
given as

We have already shown in a previous publication [29]
that restriction (2.1b) implies the relations Sstr S—lnD (2.9)

0&D&N, (2.4)
The well-known properties of the entropy functions

while from (2.1a) and (2.1b} follows
0 S lnN, 0 — ext —lnN (2.10a)

0(g;(1, (2.5a)
are valid; moreover, we have shown that for the structur-
al entropy

N N
D

—I y(g)2&kg (2.5b} Sstr & lnq (2.10b)

1&D&N,

1/N &q &1 .

(2.6a)

(2.6b)

Relation (2.5b) shows a further restriction on quantity D,
which together with relations (2.4) gives

The detailed proof is given in Appendix A. The last rela-
tions will play a basic role in the following considera-
tions.

As S,„„according to Eq. (2.8), is a simple function of
D, we may drop S„,as a localization quantity, using in-
stead q as an index for the characterization of the exten-
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sion of one-particle states normalized to the size of the
system. Furthermore, S„,gives an independent descrip-
tion of the localization shape of the wave function. We
will show in the next section that the structural entropy
restricted by (2.10b) is also normalized properly, in this
way making the comparison of localized wave functions
in systems of different size possible.

We summarize below some important characteristics
of the spatial filling factor q and the structural entropy
S„„defined by (2.2) and (2.3), and (2.7) and (2.9), respec-
tively.

3 0----

2.0

(i) Both q and S„„areindependent of any specific order
of lattice sites, and any reorganization (permutation) of
the distribution [ Q; ) among lattice sites will lead to iden-
tical localization quantities (q, S„„).This fact shows that
the above-defined characterization of localization does
not reAect the adjacency relations among atoms of the
lattice; it depends only on the distribution of magnitudes
of the charges [Q; ). In this sense, describing the locali-
zation properties of a wave function by the values (q, S„,)
shows the topology free stru-cture of the lattice distribu-
tion [Q;).

(ii) Nevertheless, as calculations for real systems show
(Sec. VI), the characterization of wave functions by quan-
tities (q, S„„)gives meaningful results, showing that there
exists a topology-free structure in the charge distribution
of localized orbitals. This structure is less specific, thus
more general, than the usual interpretation of localiza-
tion. Therefore, we will denote the pair of localization
quantities (q, S„„)as generalized localization, which can
be easily calculated on fractals, Penrose sets, or for wave
functions defined on strange topology lattices, as well.

(iii) The above considerations lead to a very important
consequence for charge distributions containing several
identical substructures. If the N lattice sites are
divided into K identical parts, each consisting of L
=X/E sites, the distribution can be written as

[Ql, & j =[ [Q&, l=1, . . . , L ,1k= 1, . . . , K .IStraightfor-
ward calculation shows that, using the proper normaliza-
tion (2. 1b) both for [Qk & I and [Q& I, the generalized lo-
calizations of the total wave function and one of its sub-
structure coincide (q, S„,) =(q, S„,), i.e., multiplied sub-

structures do not affect the classification scheme of wave
functions presented in this paper.

As we will see in numerical applications, most of the in-

formation about the localization properties of a given
physical system is contained rather in the complete set of
the generalized localizations of the eigenstates
[(q",S"„,)I than in one single generalized localization
value. The set [(q",S"„,) ), which may be called the local-
ization map of the system, can be plotted as a set of points
in a localization diagram shown in Fig. 1. Restrictions
(2.6c) and (2.10b) define an allowed domain in the locali-
zation diagram, which we have indicated as a shaded area
in Fig. 1. This region is universal in the sense that, in-
dependently of the system size N, of the dimension of the
lattice and of the one-particle function itself, any general-
ized localization (q, S„,) must lie in the allowed domain

0.0
0.0 0.5 1.0

FIG. 1. Allowed domain of the localization diagram. The
shaded area represents the region where conditions 0(q ~1
and 0 S„,~ —ln(q) are satisfied. The (q",S"„,) values of any
eigenstate

~ p ) should lie in this area.

of the localization diagram. It is possible to prove that
the opposite statement is also true (see Appendix B): the
allowed domain is the most confined area in the localiza-
tion diagram, i.e., to any given preselected point (q, S„,)

from the allowed domain there exists a system size N and
a wave function such that the corresponding generalized
localization (q, S„„)value is arbitrarily close to (q, S„,).

On the other hand, we will see below that different lo-
calization shapes specify characteristic regions in the al-
lowed domain, in this way making the distinction of vari-
ous localization forms possible.

III. THE CONTINUOUS LATTICE MODEL

"Localization" in the classical interpretation means the
ascending behavior of the wave function according to a
given shape as the function of distance r measured from
the "center" of the wave function. This description,
however, contains the ill-defined concept of "center" of
one-particle states and it is hardly applicable to fractal
lattices and highly random systems where closeness and
neighborhood relations lose their original meaning.
Moreover, numerical calculations have shown that wave
functions in disordered systems are very often mul-

tipeaked and noisy, which does not fit in the classical pic-
ture (see, e.g., Sec. VI 8).

We recall here, however, the property of the general-
ized localization (q, S„,) mentioned in the previous sec-
tion. If the wave function is composed of some peaks
with similar internal structure, the (q, S„,) values calcu-
lated for the total wave function will be essentially the
same as for a single peak alone. On the other hand, as
both q and S„,are obtained by summation for all lattice
sites, they can be considered as "integral" quantities,
which causes the noisy behavior of the orbitals to be el-

iminated in calculating (q, S„,).
Thus the overall localization shape of the peaks of a
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complicated noisy wave function can be represented by a
one-peak spherically symmetric smooth decay function,
as far as the (q, S„,) values are concerned. We will show
in this section that a given wave-function shape defines a
strict functional relation between the generalized locali-
zation quantities (q, S„,). Studying this relation for a
given system, conclusions for the localization shape of
the wave functions can be drawn. The one-peak repre-
sentation of the wave functions covers even a broader
class; e.g., surface states, which are essentially half-peak
shaped. A full peak, in fact, can be divided into two iden-
tical half-peaks, so the above argumentation remains in
effect in this case as well.

B. General formulation

Now we transform four important lattice sums into in-

tegrals in the following way:

N R R"
N= y l~N= ng(r)dr=nsy

0 d
(3.4a)

R1= g Q; —+I= f Af(r/A, )nz(r)dr,
i=1 0

(3.4b)

dimension of the atomic network that can be noninteger
for fractals, and s& is the surface of the mathematical d-

dimensional unit sphere (e.g. , s&
= 1, s2 =2m, s3 =4m).

A. Notations, definitions

In order to find an analytic relation between the overall
localization shape and the generalized localization we in-
troduce the continuous lattice model (CLM) assuming
that all characteristic distances (i.e., the localization
length of a given one-electron function and the linear size
of the system) are large compared to the interatomic dis-
tances. We also assume that the charge distribution of
the localized orbital to be studied can be made equivalent
in the above way, with a spherically decaying form func-
tion f, and we place the origin of the system of reference
to its maximum position. The charge of this reference
distribution on site i is described by the ansatz

Q, =Q(r, )= Af(r; IA), (3.1)

where r, is the distance of site i measured from the rnax-
imurn position of the charge distribution, A is the max-
imurn amplitude, and A, is the localization length. Func-
tion f(p) describes the shape of the envelope of the
charge distribution and it will play a central role in the
following considerations. The envelope function f(p) re-
ferred to later on as the decay form function (DFF) obeys
the following relations:

f(0)=1,
0& f(p) &1 for 0&p& ~ .

(3.2a)

(3.2b)

The asymptotic long-distance behavior of f(p) (p~~ )

can be different for various decay forms; this property
will be used in Sec. V to classify different localization
classes.

Within the CLM approach we consider the distribu-
tion (3.1) being embedded in a large but finite atomic sys-
tem of radius R, and assume that the atomic network can
be replaced by a homogeneous medium with uniform
atomic density n (For perf.ect crystals n =m /co, where co

is the volume of the unit cell and m is the number of
atoms in it.) In this way we replace all lattice sums by in-
tegrals of the form

Rg( . . ), ~ ( . . )nq(r}dr, (3.3a)
l

~S= —f Af (r/A )ln[ Af (r IA)]n&(r)dr . (3.4d)
0

Let us introduce the following functionals:

E [f,d, z J:E(z)= f—'p 'd p = (3.5a)
0

F[f,d, z]=F(z)= f f(p)p~ 'dp,

G[f,d, z]—:G(z)= f f (p}p~ 'dp, (3.5c)
0

H [f,d, z ]:H(z) = ——f f(p)lnf (p)p 'dp, (3.5d)
0

where for a given DFF f and dimension d we use the
shorthand notations E(z), F(z), G(z), and H(z). Using
the above definitions, Eq. (3.3b), and the substitution

p =r IA, , we obtain from (3.4)

(3.5b)

N=ns&A, E(z),
1= Ans&A. F(z),
D '= A nsqAG(z), ,

S= Ans&A"[H(z) —ln(, A )F(z)],

(3.6a)

(3.6b)

(3.6c)

(3.6d)

where z =R /A, . Dividing Eqs. (3.6a), (3.6c), and (3.6d) by
Eq. (3.6b) and using definitions (2.3), (2.7), and (2.9), we
arrive at the generalized localizations within the CLM
approach

F (z)
E(z)G(z) '

H(z) G(z)
F(z) F(z)

(3.7a)

(3.7b)

It is clear from Eqs. (3.7) that both q and S„„are ex-
pressed in a parametric form depending only on the DFF
and the dimension d of the system.

It is also possible to show that for any 0(z( ~ the
generalized localization (q(z), S„,(z)) of the CLM lies,
similarly to the discrete case, in the allowed domain of
the localization diagram defined in Sec. II,

2 2'= g (Q;) ~D '= f A f (r/A. )nz(r)dr, (3.4c)
i=1 0

N
S=—g Q;lnQ;

ng(r) =ns~r (3.3b}

is the spherical density of lattice sites, d is the Hausdorff

0 &q(z) &1,
0&$„,(z) & —lnq(z) .

(3.8a)

(3.8b)
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0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

FIG. 2. Structural entropy S„, vs filling factor q reference curves for decay form functions with Gaussian f(r)=exp( r'), ex--

ponential f(r)=exp( r), and—power-law f(r)=(l+r) 2 decay. The curves are labeled by the asymptotic behavior of the corre-
sponding decay form function. The limiting curve of the allowed domain —ln(q ) is also indicated. The parts of the figure show the
universal reference curves for dimensions (a) d = 1, (b) d =2, (c) d =3.

C. Limit of the CLM approximation

The CLM is expected to break down if the localization
length k becomes comparable to the interatomic distance
a (A, -a ); therefore the extension of the orbital D —1, or
according to Eq. (2.3),

1
q ——. (3.9)

The applicability of the CLM according to (3.9) is defined

by a minimum localization length Xo, requiring the fo1-

lowing relationship:

R 1
q

A,o N
(3.10)

The detailed proof can be found in Appendix A.
The set I(q(z), S„„(z));0 (z ( ~ I for a given envelope

function f and dimension d corresponds to a unique
curve in the allowed domain of the localization diagram.
The curve is independent of the system size R (i.e., the
number of lattice sites N, the amplitude A of the charge
distribution, the localization length A. , and the topology
of the lattice and of the atomic density. Explicit formulas
are elaborated in Appendix C for these universal refer-
ence CLM curves in the cases of exponential
f(p)=exp( —p), Gaussian f(p)=exp( —

p ), and power-
law DFF's f(p)=(1+p)™in various dimensionalities.
Figure 2 shows that the calculated lines are well separat-
ed in the allowed domain. This property and the univer-
sality of the CLM curves make the detection of various
localization shapes in real systems possible. The basic
classification idea is plotting the localization map of the
studied system and comparing it with the reference CLM
lines, which gives information about the localization
shape of the one-electron eigenfunctions. Since universal
CLM curves serve as reference lines, adequate precision
polynomial fits are also given in Appendix C in order to
ease further usage.

where function q(z) is given by Eq. (3.7a).
In order to estimate the magnitude of A.o let us consider

a simple d-dimensional cubic lattice with atomic density
n =a . In this case Eq. (3.4a) becomes

r

RN=— (3.11)
a

Assuming exponential-type localization with large
zp =R /kp we can apply the asymptotic form of Eq. (C2)

q(z) =d2 I (d)z (3.12)

where I (d) is the complete gamma function. Introduc-
ing Eqs. (3.11) and (3.12) into condition (3.10), we arrive
at

0.50
=

—,'[sdl (d) j
'i = 0.20

0. 17

if d=1,
if d=2,
if d=3 .

(3.13)

For a Gaussian decay we obtain similarly

0.80
0 0 40

0.40

if d=1,
if d=2,
if d=3 .

(3.14)

IV. EXTREME DELOCALIZATION

We wish to discuss here some further properties of the

q ~S„,relation for extremely delocalized wave functions.
In the discrete lattice model this situation is character-
ized by an arbitrary small perturbation of the uniform
charge distribution

Since A,o in all of the above cases (and especially in higher
dimensions) is small compared to the lattice constant,
and validity of the CLM is expected to cover a broad
range of localization length values.
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Q; = I /N+5;,
where

Normalization (2. lb) requires

N

g 5;=0.

(4. la)

(4.1b)

(4.2)

localization keeps its relevance even in the continuous
lattice model.

According to the general behavior of the envelope
form function f (z) at least three diff'erent classes of local-
ized wave functions can be distinguished. Defining f(z)
in Sec. III we insisted by conditions (3.2) that the DFF
should not "explode" in any direction. This restriction,
however, includes strictly delocalized functions as mell,
since

Keeping first- and second-order terms of 5; only, one
easily gets from definitions (2.2), (2.3), (2.7), and (2.9),

lim f(z)=1 (5.1)

N

q= 1 N+—5;, (4.3a)

(4.3b)

This result shows that for the completely delocalized
charge distribution q=1, S„,=O, while for arbitrary
wave functions close to it, the structural entropy behaves
approximately as

1 —
q

Sstr =
2

(4.4)

In the continuous lattice model an extremely delocal-
ized state of arbitrary shape arises if the localization
length A. becomes large compared to the system size R.
This corresponds to the limit z=R/)i. ~0. We have
shown in Appendix D that for extreme delocalization

lim q(z)=1, lim S„,(z)=0 .
z~O z~O

(4.5)

It is also possible to detect the universal behavior around
the q=1 point. The slope of the q) S„, curve at the
completely delocalized point z =0, q = 1, S„,=0 is

str . str 1a= lim = lim
q~1 dq z~o q' 2

(4.6)

where the prime means the first derivative with respect to
variable z. The proof is given in Appendix D.

The above facts indicate that the behavior of the CLM
curves in the completely delocalized region is identical
for all decay forms, and approximation (4.4) of the
discrete model holds here as well. The physical interpre-
tation of this result is that it is impossible to identify de-
cay forms for almost completely delocalized wave func-
tions.

is characteristic for complex Bloch functions, while those
functions for which (3.2b) holds but limit (5.1) does not
exist are typically oscillatory wave functions, like real
Bloch waves.

The first broad class of localized functions will be
defined as a set of decay form functions, which are not
strictly delocalized, i.e.,

lim f(z) =0 .
g~ 00

(5.2)

This set can be called decay localized and will be denoted
by Ld.

A more restrictive definition of localization requires
that the wave function should not fill out the complete
lattice as the size of the system increases. This condition
leads to the class of filling localized functions Lf, for
which

liin q(z)=0 .
g~ 00

(5.3)

lim D(z) & oo .
g~ 00

(5.4)

For finite systems we always suppose the normalization
of the one-electron functions. We can consider the set of
decay functions norm localized, where the possibility of
normalization is still kept with arbitrarily increasing sys-
tem size R (i.e., they remain normalizable in limit),

Since the filling factor has been defined in (2.3) as the rel-
ative extension of the wave function compared to the sys-
tem size, Lf does not contain finite-sized functions only.
For increasing system radius R, wave functions with con-
tinuously growing extension D can be still jHling localized
if D tends to infinity slower than the number of atoms N
itself.

On the other hand, the class of finite-sized functions L,
is defined by the relation

V. THREE CLASSES OF LOCALIZATION
lim F(z) & ao .

g —+ 00
(5.5)

We will study now the behavior of various decay
shapes in the extremely localized limit when the localiza-
tion length A. becomes negligible compared to the system
size R. Mathematically this case corresponds to
z=R/A, ~ao. Although this happens if R is constant
and A, ~O, the situation is out of the scope of the CLM,
since the basic assumptions of the model described in Sec.
III are not satisfied in this case. On the other hand, if the
localization length A, remains constant, but the radius R
of the system grows to infinity, the question of extreme

L, =L„. (5.6)

On the other hand, classes Ld, Lf, and L„are essentially

The class of norm locahzed functions will be denoted by
L„.

The various relations among different localization
definitions are discussed in Appendix E. We have shown
there that for "nonexploding" envelopes (3.2) the classes
of finite-sized and norm localized wave functions are
equivalent
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different and the following strict containment relations
hold-

~d +~f +~ (5.7)

This result shows that norm localized functions are filling
localized and all filing localized functions are decay local
ized at the same time. In contrast, there exist envelope
form functions (e.g. , with power-law decay) that decay to
zero, but they always fill out a commensurate part of any
lattice and they are not normalizable as well. An in-

teresting result is that there exist wave functions that oc-
cupy a negligible part of the whole lattice only (jilling lo-
calized) but they are still not normalizable in infinite lat-
tices.

VI. APPLICATIONS

A. White-noise distribution

Since the charge distribution of one-electron eigenfunc-
tions obtained in actual calculations for molecules or
disordered systems frequently appears to be quite irregu-
lar at first sight, we will study here a completely random
distribution without any specific structure, in order to be
able to extract information from noisy one-electron wave
functions. For simulating this case we have chosen a
completely delocalized charge distribution superimposed
by a white-noise perturbation on each site with weight w,

1+wg,

(I+wg, )
j=1

(6.1)

The weight factor w varies between 0 and oo and g; are
independent random variables of uniform distribution
over the [0,1) interval. With w =0 we arrive at a com-
pletely delocalized wave function, while w ~ ~ gives a
white-noise charge distribution.

Besides Monte Carlo simulations, it is possible to get
analytical results for arbitrary w in the case of large lat-
tices. We will utilize the fact that according to the
central-limit theorem for large enough N,

N

g (1+wg )=N(1+wg ) =N(l+w/2), (6.2)

where the expectation value of any function g of the ran-
dom variable g is defined as

~.&= J,'.(r}dC (6.3)

It is easy to show that (g, ) =
—,', (g, ) =

—,', and since vari-

ables g, and g are independent on different sites,

In this section we present some examples showing the
wide range of applicability of the method described in the
previous sections. We have included the problem of
noisy charge distributions, the properties of wave func-
tions near the metal-insulator transition in one-
dimensional quasiperiodic systems, some unusual behav-
ior of self-consistent-field (SCF) eigenstates of aromatic
hydrocarbons, and finally the role of dynamical disorder
in two-dimensional disordered tight-binding systems.

Applying approximation (6.2}, the calculation of the
expectation value of (2.2) is straightforward, resulting in
the filling factor

( )
3 (2+w) 1 w

q 4 3+3w+w 4N 3+3w+ w
(6.4)

As the second term is bounded for w E [0, ~ ) it can be
neglected for large N (the relative error is in fact less than
0.1 if N ) 3), which gives

( )
3 (2+w)

q 4 3+3w+w
(6.5}

For the structural entropy we get

(S„,&=(S)—(»D)=(S& —1 (D)
= ( S ) —ln ( q ) —lnN . (6.6)

The approximation used above is based on the fact that D
is a large argument of the slowly varying logarithm func-
tion, as according to (6.5) —,

' ~ (q) 1 and (D) ~N. The
detailed calculation using (2.7) and (6.2) yields

1 3 2+w ln(1+w)
S„„g=——ln —+ln

2 2 1+w w(2+w)

—ln
(2+w )

3+3w+ w
(6.7)

Expressions (6.5) and (6.7) for w ~0 satisfy the general
properties obtained for completely delocalized wave func-
tions previously and, on the other hand, any random dis-
tribution (6.1) is more delocalized than the ideal white-
noise wave function ( w ~ ~ )

lim (q) ~ (q) lim (q) =1,
—+ oo N —~0

(6.8a)

—,
' —ln( —,

'
)= lim (S„,) & ( S„,) ~ lim (S„,) =0 .

w~ oo W~O

(6.8b)

In order to check the validity of the various approxi-
mations used in the derivation of formulas (6.5) and (6.7)
we have carried out numerical Monte Carlo calculations
for random charge distributions (6.1) on a lattice with
N=10000 sites. The results show excellent agreement
with the continuous curve corresponding to the paramet-
ric representation (6.5) and (6.7) of the (q, S„,) relation.
As is seen in Fig. 3, these kinds of "noisy" orbitals are
considered rather delocalized. The localization behavior
is independent of the dimension d of the lattice and imi-
tates a one-dimensional (1D) Gaussian decay. Although
the ((q ), (S„,) ) curve definitely differs from the one
with the exact 1D Gaussian decay, it is still expected that
due to statistical fluctuations the localization map result-

ing from actual calculations of delocalized 1D Gaussian
wave functions will be indistinguishable from a white-
noise distribution. A similar result was found for the
eigenfunctions of random matrices where the individual
vector components asymptotically follow a Gaussian dis-
tribution in the N ~ co case [34].
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FIG. 3. Structural entropy S„, vs filling factor q for white-
noise distribution. The solid line stands for analytic results [see
Eqs. (6.5) and (6.7)] and solid squares show the results of numer-
ical simulations. They are compared to the curve for one-
dimensional Gaussian decay (dashed curve). The curve for
—lnq is also indicated.

B. One-dimensional quasiperiodic system

One-dimensional systems with incommensurate poten-
tial have proved to be good models for the numerical in-
vestigation of the delocalization-localization transition,
i.e., the metal-insulator transition [35]. In this case the
discretized one-dimensional tight-binding Schrodinger
equation within the nearest-neighbor approximation is
written in the recursive form

u„+,+u„ t
—( V„E)u„=0—, (6.9)

where u„ is the amplitude of the eigenstate on the nth lat-
tice site, V„ is the on-site (diagonal) quasiperiodic poten-
tial, and E is the eigenenergy. The nearest-neighbor
transfer integral is assumed to be the unit of the energy
scale.

In our study, based on the work of Das Sharma, He,
and Xie [36], we have chosen a slowly varying potential
of the form

FIG. 4. Structural entropy S„„vs filling factor q of states
around E, on a linear-logarithmic scale. Curve labeled a is for
power-law decay (1+v) in one dimension, b for exponential
decay. The curve for —lnq is also indicated. Solid symbols
represent the results of numerical calculation A, = 1.0 (E, = 1.0),
a=4.0, v=0. 1, and N=10'. Squares and triangles correspond
to states with E & E, and E & E„respectively, while a solid cir-
cle stands for the state at the mobility edge E=E,. The energy
range of the states plotted is 0.9 & E & 1.1.

for a fixed energy E around the metal-insulator transition
gives a very similar picture [37].

As further evidence of this conclusion we have plotted
the charge distribution, i.e., the square modulus of the
coefficients (Q„=~u„~ ) of the wave function (without
normalization) at the mobility edge in Fig 5. Fo. r com-
parison, the shape of the potential [cf. Eq. (6.10)] is also
shown. One can clearly see that there are significant
peaks at the position of the minima of the potential. A
detailed analysis of this result is published elsewhere [37].

1.0

0.0-

V„=A, cos(man "), (6.10)

which produces a gapless spectrum containing mobility
edges at the critical energy E, =+~2—A,

~
if 0(v(1, im-

plying a metal-insulator transition at A,, =2—
~E~ for a

given energy E. We have investigated the localization
properties of the states in the vicinity of the mobility
edge.

In Fig. 4 we have plotted the S„, versus q values for
the eigenstates in the vicinity of the mobility edge for
A, =1, E, =1 using v=0. 1, and +=4.0, and systems of
the size %=10 . The states marked with solid squares
and triangles are the ones with E &E, and E )E„re-
spectively. The solid circle indicates the state at E =E,.
The states towards the band center (E (E, ) are clearly
on the curve that is characteristic of a power-law decay
f(p)=(1+p) ', while most of the states towards the
band edge seem to be exponentially localized. Running A,

-1.0-
10 '=-

10

10 '~

10 'Ie

10 I

t

500000
n

1000000

FIG. 5. Quasiperiodic potential V„and the resultant charge
distribution Q„of the wave function at the mobility edge over a
chain of length N=10. The parameters are A, =1.0, E=1.0,
a=4.0, and v=0. 1. The wave function has not been norrnal-
ized. Note that the peaks in Q„are at the same place as the
minima in the potential V„.
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We have to emphasize that, in spite of the multipeaked
structure of the wave function, the localization diagram
clearly shows a power-law behavior.

C. Planar molecules

U;+-,'P 1';;+ X (Pkt —Zl )1'k
k (Wi)

P, ,'Py, , if i—W—j
(6.11)

The i and j site indices run over the carbon atoms of the
molecules, U; are atomic parameters, and Z, denotes the
screened nuclear charge of atom i The .values of P,i are
parameters of the theory and describe the bond strength
between atoms i and j. The effective electron-electron in-
teraction part of the Hamiltonian corresponds to those
terms in (6.11) that contain the one-electron density ma-
trix elements

Delocalized m-electron systems of planar alternating
and aromatic hydrocarbon molecules are expected to be
excellent targets for modeling metallic conduction in one
and two dimensions. The finite size of molecules, on the
other hand, may lead to the appearance of surface states,
as well as charge fluctuations on the skeleton carbon
atoms. It has been shown [38], however, that charge in-
homogeneities imply electron localization.

For tracing charge rearrangements an iterative solu-
tion of the one-particle effective Schrodinger equation is
necessary. The most simple SCF Hartree-Fock descrip-
tion of m-electron systems can be accomplished by using
the so-called Pariser-Parr-Pople (PPP) method [39],
which separates ~ electrons from the a-bond skeleton of
the molecules. The PPP Hamiltonian reads as

FIG. 6. Molecular graphs of (a) chrysene and (b)
benz[a]anthracene. Only the carbon skeleton is shown. In the
case of benz[a]anthracene, dashed lines indicate the position of
nodal surfaces in the CDW state.

will discuss here only some typical aspects of the results
by comparing two similar molecules, chrysene and
benz[a]anthracene, which are shown in Fig. 6. Each of
the molecular graphs can be transformed into the other
by the transposition of one hexagonal cell of the network.
The localization map [(q",S"„,)] for all (occupied and
virtual) PPP eigenfunctions ~p ) of both molecules is plot-
ted in Fig. 7. As a consequence of the well-known pair-
ing theorem for alternate hydrocarbons the structural en-
tropy and filling factor of the related occupied and virtual
orbital pairs coincide.

As is seen, the wave functions are far from being com-
pletely delocalized, but still can be considered moderately
extended (0.5 & q &0.8). The shape characteristics of the
orbitals are in the intermediate range between 1D Gauss-
ian and 1D exponential (or 2D Gaussian). The only re-
markable difference found between the two molecules is
the appearance of an eigenstate with a low S„, value at
q=0. 55 in benz[a]anthracene. S„,=O indicates a step-
like behavior of the wave function, and a further analysis
of the coefFicients c, shows that this curious orbital has
nodal surfaces along the dashed lines in Fig. 6(b), whereas

P; = 2 g ct'cg .
P

(6.12)

0.4
The summation runs over the occupied one-electron or-
bitals ~p), with expansion coefficient ct' on site i. A spin
factor of 2 is applied for accounting for double occupan-
cy. The Coulomb interaction of two electrons placed on
sites i and j is y;, which are approximated by the
Mataga-Nishimoto formula

See

0.2—

-r
e -r

e

e

R, +a,.
2e

with a,j
( + )Yll 7 JJ

(6.13)

where e is the electron charge and R, - is the distance be-
tween the sites i and j. In the usual parametrization of
the method for carbon atoms U, = —11.22 eV,

y, ,
= —10.53 eV, P, = —2.4 eV for nearest neighbors,

and P, =0 otherwise [40].
The eigenvalue problem of the Hamiltonian (6.11) is

solved iteratively by the SCF technique. The PPP pro-
cedure is closely related to the Hiickel or tight-binding
method, which is widely used in solid-state physics for
electron-structure calculations.

We have carried out calculations for a series of alter-
nating and aromatic hydrocarbon molecules and ana-
lyzed the localization characteristics of the wave func-
tion. A detailed study is published elsewhere [32], and we

0..0 I I I 1 / I I I I

0.0 0.5 1.0 0.0 0.5 1.0

FIG. 7. Localization maps of (a) chrysene and (b)
benz[a]anthracene. The reference CLM curves are labeled by
the asymptotic behavior of the corresponding decay form func-

tion. The limiting curve of the allowed domain —Inq is also in-

dicated. In the chrysene no CDW states can be identified, while
in the localization map of benz[a)anthracene a state close to the
horizontal axis appears indicating CD%-like behavior, The
schematic illustration of the corresponding wave function is
shown in Fig. 6(b).
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the charges of other atoms are almost equal. Similar
wave functions were found and identified as bond-
centered charge-density waves (CDW's) in SCF studies
on one-dimensional metals [41]. Our result shows that
bond-centered CDW's also appear in two-dimensional
molecules, but the existence of these states seems to be
strongly dependent on the topological structure of the
system. As the detailed study on a larger set of molecules
[32] has proved, the above conclusions generally hold for
all aromatic hydrocarbon systems under consideration.

D. Localization in 2D

where ~i & and
~j & denote one-electron orbitals centered

on sites i and j, and co is the site excitation energy.
V„=V(r, )is the transf"er integral chosen in the modified

exponential form

V(r) = —Vo(1+r /a )exp( r /a ), — (6.15)

where r," is the distance between sites i and j, and a is the
effective interaction length. The parameter Vo is set so
that V&=V(r~i=a)= —1 is obtained. The transfer in-

tegral is assumed to have a finite cutoff range r, . Hence
the second summation in Eq. (6.14) runs over all sites i Aj
and 0 & r;. & r, . Therefore the number of neighbors Z; of
a given site i can be defined as the number of sites within
the cutoff range.

The underlying structure is a regular square lattice
with random distortions. Periodic boundary conditions
are imposed. Starting from a 2D square lattice with lat-
tice constant a, each site was shifted to the arch of a cir-
cle of its original position as the imitation of its thermal
motion. We have chosen the same radius 5r for all sites
and random angle 9 with uniform distribution over the
interval 0&8~2~ with respect to the x axis. Therefore
the parameter describing the strength of disorder is [43]

The phenomenon of localization is not fully understood
in two-dimensional systems. There is still a vivid interest
concerning this problem (see, e.g. , Ref. [42]};therefore we
have also investigated the localization problem of off-

diagonal disorder using a tight-binding model over a
two-dimensional n Xn lattice with periodic boundary
conditions. It was essentially described by the Hamil-
tonian [43]

(6.14)

tonian will have a unifortn distribution in the range [44]
Vt(1 —g) & VJ & V, (1+g). Note that the same parame-
ter g appears for both the description of disorder in the
Hamiltonian as well as that of the lattice. As a conse-
quence, this model yields a simulation of the electron-
phonon coupling or the behavior of electrons moving in
the stochastic medium studied in Ref. [45], and resembles
some features of the model introduced recently by Dun-
lap and co-workers [23].

Using the Hamiltonian in Eq. (6.14), we have calculat-
ed the eigenstates of several samples by means of direct
diagonalization. It was already shown [44] that for small
0& q & g, the states remain extended, while for g & g,
weakly localized states appear. The critical parameter g,
is the amount of disorder at which those sites, which
were second nearest neighbors in the absence of disorder,
start to have a nonzero transfer integral. Its value de-
pends on the lattice geometry, ' in our case
ri, =(v'2 —1)/4.

In Fig. 8 we have plotted a cumulative picture of the
states of a few samples of 20X20 lattices for q =0.3. One
can clearly observe a strong correlation of the S„,and q
values, which is due to the complex nature of the spatial
behavior of the wave functions. The observed S„,(q) re-
lation can be fairly well reproduced; for instance, by a de-
cay form function with a short-range exponential and a
Friedel-oscillation tail

exp( —p) if p&Ro,
f(p)= . cos(ap+ y)+ 1

2
if p+Ro .

P

(6.18)

1.4

1.0-

0.8-
b.

0.6-

0.4-

with a=10 and RO=0. 75. Parameters A and q are
determined according to the requirement that f(p) and

g=5r/a . (6.16)
0.2—

Beyond the off-diagonal disorder arising from the dis-
tortions described above, dynamical disorder enters in
the Hamiltonian (6.14}by letting the cutoff' range depend
on g, which is an indication of the coupling between elec-
trons and lattice vibrations. In the simplest approxima-
tion we may set [44]

r, =a(1+ 2'), (6.17)

with the allowed range being 0 g~0. 5. Under such
conditions the off-diagonal parameters V,-. in the Hamil-

0.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 8. Structural entropy S„„vsfilling factor q for the mod-
el of off-diagonal disorder. The curve labeled a is for quadratic
decay (1+r) in two dimensions, curve b is for exponential,
and curve c is for Gaussian decay. Solid squares represent our
calculation of the eigenstates of a few samples of 20X 20 lattices
with periodic boundary conditions. The disorder parameter

g =0.3. The dashed curve stands for modeling Friedel-
oscillation-like behavior [see Eq. (6.18)].
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df(p)/dp should be continuous at p=RD. The dashed
line in Fig. 8 corresponds to (6.18).

VII. SUMMARY

In this paper we have introduced a classification
scheme for the characterization of one-particle states in
real space. Our method consists of the simple calculation
of two localization indices, the filling factor q that is de-
rived from the participation ratio and a localization pa-
rameter, the structural entropy S„„.Although q and the
Shannon entropy S have been used separately by several
authors, we have shown that there exists a universal rela-
tion between q and S„, that depends only on the decay
form of the wave function and the dimension d of the un-

derlying atomic network. This relation behaves uniform-

ly in the extreme delocalization limit, as it should, and
shows variations at the extreme localization limit. The
S„„(q) function may be calculated for ideal decay form
functions, which we have given for the case of Gaussian,
exponential, and power-law decays in dimensions
d =1,2, 3. The implementation of our method in already
existing program systems is particularly easy, based on
Eqs. (2.2) and (2.3), and Eqs. (2.7) and (2.9), together with
the explicit reference curves given in Appendix C. We
would like to mention that this kind of shape analysis is
independent of other methods used for the description of
the wave functions (e.g. , multifractal analysis [17,20]). In
actual numerical calculations, the localization map of the
system, which is the set I(q",S"„„)for all eigenfunctions

~p ) ], is compared to the ideal CLM curves. This leads to
useful physical conclusions.

ACKNOWLEDGMENT

This work was supported by the Orszagos
Tudomanyos Kutatasi Alap (OTKA), Grant Nos. 406
and 517/1991.

12
w(p)~0 for pE[r, , r2], w(p)dp=l,

11

the following inequality holds:

(A3)

f x(p)w(p)dp ~ f X(x(p))w(p)dp . (A4)

In the following considerations we will utilize the fact
that X(x ) = —ln(x ) is convex and continuous in the inter-
val (0, 0D ).

For a finite lattice it is easy to verify using (2.1) that
acting p, =Q;, x, = Q; satisfies the conditions required by
the finite form of Jensen's inequality. According to
definitions (2.2) and (2.7), (A2) results in

lnD «S . (A5)

Similarly, p, =Q, , x, = 1/Q; satisfy again the required re-
lations. In this case (A2) is equivalent to

S «lnN . (A6)

Subtracting lnD from inequalities (A5) and (A6), one easi-

ly arrives at

0«S„, —lnq, (A7)

which is exactly our basic inequality (2.10b).
For the continuous lattice model the range of integra-

tion [r&, r2] is chosen as [O,z], whereas

w(p)=f(p)p '/F(z) plays the role of the weight func-
tion, which, according to definition (3.5b) of F(z), satisfies
(A3). First setting x(p)=f(p), the corresponding form
of (A4) is

G(z) ( H(z)
F(z) F(z)

(A8}

Theorem 2: Jensen 's inequality in continuous form .If
function L: R—+I is convex and continuous on the inter-
val (a, b) and x: R~R such that x(p)E(a, b) if
pE [r„rz ], then for a positive weight function w(p),

APPENDIX A: THE ALLOWED DOMAIN
OF THE LOCALIZATION DIAGRAM

which is equivalent to

0~S„,(z), (A9)

N

p ~0 fori=l, . . . , X, gp, =l, (A1)

the following inequality holds:

A N

g x,p, ~ gX(x, )p, . (A2)

The proof of some basic relations for the structural en-
tropy S„, given in (2.10) for discrete charge distributions
and in (3.8) in the continuous lattice limit follows from
the well-known Jensen's inequality of analysis. Although
it can be formulated in a general way using the Lesbegue
integration technique, we will cite here only two particu-
lar cases.

Theorem 1: Discrete form of Jensen's inequality If.
function L: R~R is convex and continuous on the inter-
val ( a, b ), then for arbitrary points of the interval
x; E (a, b ),i = 1, . . . , N, and for any positive weights

where we have used expressions (3.5) and (3.7b). On the
other hand, setting x (p) = 1/f (p) (A4) gives

E(z) ~ H(z)—ln
F(z) F(z)

(A10}

Subtracting ln[G(z)/F(z)] from both sides and utilizing
Eqs. (3.7), one arrives at

S„„(z)~ —lnq(z) . (A11)

Inequalities (A9) and (Al 1) give the required relation
(3.8b) for the structural entropy in the continuous lattice
model.

In order to prove (3.8a) the range of integration will be
chosen as above [O,z], but with the weight function re-
placed by w(p) =p" '/E(z). Since the function
X(x)=x is convex and continuous in the interval (0, ~ ),
application of Jensen's inequality (A4) with x(p)= f(p),
as well as definitions (3.5), result in
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2
F(z) ( G(z)
E(z) E(z)

(A12)

which, considering expressions (3.7a) and (3.2b), is
equivalent to (3.8a).

(1—x )s(x)lns(x)+xl(x)lnl(x)
if x E(0, 1/A ),

A( )= 0 if x=o
lnA if x=1/A .

(BS)

0&q~1, 0&S„, —lnq (Bl)

is dense in the sense that for any pair (q, S„,) satisfying
(Bl) there exist a finite lattice and a wave function with
actual localization quantities (q, S,«) which approximate
arbitrarily the values chosen originally.

This wave function can be constructed with a steplike
charge distribution

Qt for i=1, . . . , K,

Q, for i =K+1, . . . , N (B2)

on an ¹itelattice, where for the "small" and "large"
components Q, ~ Qt. Introducing

x =K/N, 1=QtN, s =Q,N, (B3)

and using definitions (2.2), (2.3), (2.7), and (2.9), one easily
gets for the normalization constraint (2.1b), filling factor
and structural entropy,

1=(1—x)s+xl,
1/q = A = (1—x )s +xl

( —Inq) —S„,=B=(1—x)s lns+xl lnl .

(B4a}

(B4b)

(B4c)

Substituting the required values q and S„, into the left-
hand side of (B4b) and (B4c), the task of finding a wave
function with the proper localization quantities is
equivalent to the determination of the roots x, l, s
of the system of equations (B4), where A = 1/q,
B=( —

lnq ) —S„„,which according to (Bl) satisfy

APPENDIX B: COMPLETENESS
OF THE ALLOWED DOMAIN

The aim of this appendix is to prove that the allowed
domain of the localization diagram

Since A is continuous on the interval [0, 1/A ], from the
Darboux propert& [46] it follows that for any number B in
the interval [0,ln A ] there exists at least one
x E [0, 1/A ], such that A(x ) =B. If this x is a rational
number, we have found in this way a charge distribution
(B2) for which the localization quantities are exactly the
required (q, S,«) values. If x is irrational, we can find ar-
bitrarily close to it a rational number x', such that for the
localization quantities of the generated charge distribu-
tion, q

' =q and
~ S,',„—S„,~

is arbitrarily small.

1. Exponential decay

For the case of an exponential decay f(p) =exp( —p)
we have F(z) =y(d, z ), G(z) =2 dy(d, 2z ),
H(z)=y(d+ 1,z), where y(a, x) is the incomplete gam-
ma function [47]

y(a, x)= f t' 'e 'dt .
0

Using Eqs. (3.7) we obtain

q(z) = d2 [y(d, z)]
zd y(d, 2z )

(C2)

APPENDIX C: EXPLICIT FUNCTIONS
FOR DIFFERENT KINDS OF DECAY FORM

FUNCTION AND POLYNOMIAL FITS TO SOME
S„,VERSUS q CURVES

In this appendix we will give the explicit form of S„„(z)
and q(z) for some decay form functions commonly ap-
pearing in various fields of physics. Once S„„(z)and q (z)
are obtained it is possible to draw the S„,(q} curves run-
ning over all the values of z, namely, O~z & ~. %'e are
going to apply Eqs. (3.7) based on definitions (3.5). In
what follows E(z)=z /d is used for all decay form func-
tions. Some of these formulas may be somewhat compli-
cated; therefore we will also give a usable polynomial fit
to some curves S„,versus q.

1+ A, O~B lnA . (B5) and

The solutions of (B4) must fulfill the requirements

O~s ~1, O~x ~1 (x is rational) . (86)

Equations (B4a) and (84b), and restrictions (B6), lead to
the proper solutions

)
y(d+ 1,z)

1
y(d, z)

y(d, z) y(d, 2z)
(C3)

With the help of the relation y(d+1, z)
=dy(d, z) —z"e ', one can easily show the validity of
the z~O limit of Eqs. (4.5) for extreme delocalization,
and

r

r 1/2

1(x)= 1+ ( A —1)
1 —x

1/2 (B7)

lim q(z)=0, lim S„,(z)=d(l —ln2)

for extreme localization (see also Sec. V).

(C4)

s(x) =1— (A —1)
2. Gaussian decay

if 0(x ~ 1/A. By substitution of (87) into Eq. (B4c) the
right-hand side can be written as

The application of a Gaussian DFF f(p)=exp( —
p )

yields the integrals F(z)=P(d, z ), G(z) =2 P(d, &2z ),
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P(ax)= f t' 'e ' dt .
0

(C5)

H(z) =P(d+2, z), where P(a, x ) is defined the following
way:

we get

lim q(z)=0, lim S„,(z)= —(1—ln2) .
d

Z~ oo Z~ 00 2
(C8)

and

q(z) = d(&2)" [/3(d, z)]'
z P(d, &2z )

P(d+2 z) /3(d, z) d

/3(d, z) /3(d, &2z)

(C6)

(Cj)

These equations fulfill relation (4.5) for the case of ex-
treme delocalization (z ~0), and for extreme localization

For even values of a (a )2) this function is related to the
incomplete y functions /3(a, x)= —,'y(a/2, x ). For odd
values of a (a )3), P(a, x ) may be derived by partial in-
tegration with the help of p(l, x)=(v'vr/2)4(x), where
4(x) is the error function. A straightforward calculation
yields

We have to point out that, due to the relation
/3(2, x ) =y(1,x )/2, we obtain identically the same
curves S„, versus q for a two-dimensional Gaussian de-
cay and a one-dimensional exponential decay.

3. Power-law decay

Here we give the explicit results for f(p)=(1+p)
where m &0. The choice of this functional form of DFF
is due to the requirements (3.2) and the asymptotic be-
havior f(p)~p™.We give the explicit F(z, m, d),
G(z, m, d), and H(z, m, d) functions for the case when
dimension d is an integer; however, it is straightforward
to calculate these functions for noninteger values of d,
i.e., for fractals:

d —
1 'd (1+ )d

—k —m

F(z, m, d)= f x '(1+x)™dx=g k (
—1)"

I& =0

G(z, m, d)= f x '(1+x) dx=F(z, 2m, d),
0

H(z, m, d ) =m f x '(1+x )™1n(1+x)dx
0

(C9a)

(C9b)

(
—1)d —1 k m

k d —k —m
(1+z) " ln(1+z)— 1

d —k —m
+ 1

d —k —m
(C9c)

F(z, 1, 1)=ln(1+z),

H(z, 1, 1)= —,
' [ln(1+z) ]

ln8 =2,

F(z, 1,2) =z —ln(1+z),

(C10a)

(C lob)

(Cl la)

F(z, 2, 2) =ln(1+z )—
1+z

H(z, 1,2) = (1+z )ln(1+z )
—z —

—,
' [ln(1+z ) ]

H(z, 2, 2)= [ln(1+z ) ]
— [z —ln(1+z ) ];2 2

1+z
and in d =3,

F(z, 1,3) =ln(1+z )+ z(z —2)

(Cl lb)

(C 1 lc)

(Cl ld)

(t 12a)

F(z, 2, 3)= —2 ln(1+z),z+1 (C12b)

For integers m &d the functions in Eqs. (C9) have a
different form. In what follows we give these exceptions
for F(z, m, d ) and H(z, m, d ), keeping Eq. (C9b) in mind.
Therefore, in d =1,

H(z, 2, 3)= [(z+2)ln(1+z )
—z ]

—2 [ln(1+z ) ]1+z
(C12e)

H(z, 3, 3)= [2(4z+3)ln(1+z) —z(7z+6)]3

4(1+z )

+ =,
' [ln(1+z ) ] (C12fj

Using formulas (3.7) the calculation of q(z) and S,.„(z)
is straightforward. For any m and d it is also possible to
show that the filling factor and the structural entropy
obey relations (4.5) for extreme delocalization z~0. The
limit of strong localization is complicated. Let us intro-
duce the notation q "(m)=lim, „q(m, z) and

S,",„(m)=lim, „S„,(m, z). In any dimension d for m

obeying the relation 0 (m (d /2 one finds that
0(q "(m ) & 1 and 0(S,"„(m)& —

lnq "(m). For
d/2 & m &d, one gets q "(m)=0 and S,",„(m)= ~; and
for m ) d, we have q "(m)=0 and 0&S,",„(m) & ~. In
the latter case we find that, for m ~ ~,
S,"„(m)~d(1 —ln2), as one would expect, since the
power-law decay with m ~ ~ should show properties
similar to those of the exponential decay.

F(z, 3, 3)=ln(1+z )+ 4z+3 3

2(z+1) 2

H(z, 1,3)= —,
' [ln(1+z ) ] + —,'(z —2)(z+ 1)ln(1+z )

—
—,'z(z —6),

(C12c)

(C12d)

4. Polynomial fits for the S„,versus q curves
for exponential and Gaussian DFF

Since the computer programming of incomplete gam-
ma functions y(a, x ), as well as function P(a, x ), appear-
ing in formulas (C2) and (C3), and (C6) and (C7), is rather
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TABLE I. Coefficients of the eighth-order polynomial fits for Gaussian and exponential DFF and
d =1,2, 3. The E'o stands for the sum of residuals and E'l and e2 give the error of conditions, Eq. (C13).
Note that the polynomial for d =1 and exponential DFF is identical to the one for d =2 and Gaussian
DFF. The numbers in brackets indicate a multiplicative power of 10.

Coeff.

Gaussian

d=3 d=2
Exponential

d=3

Cp

e&

C2

C3

C4

C5

C6

C7

Cs

0.1534
—0.0205

0.5220
—4.4657
17.3965

—33.7736
32.8366

—15.3259
2.6771

0.3068
0.0191

—0.6721
7.4938

—34.7848
71.5218

—76.2570
41.5624

—9.1901

0.4602
—0.0660

2.0374
—18.5204

54.1223
—84.4764

75.6981
—36.7988

7.5435

0.6137
0.0866

—1.0719
—13.4191

65.7823
—135.6169

147.7381
—83.2435

19.1307

0.9205
0.1631

—16.2938
80.7179

—216.7032
344.7687

—322.2612
163.1958

—34.5079

6p

E]

1.38[—04]
3.27[ —11]
9.16[—10]

9.80[—05]
1.18[—10]
5.94[ —10]

1.61[—04]
3.43[—10]
9.58[ —10]

4.23[—04]
1.54[ —10]
2.08[ —09]

6.58[ —04]
4.12[—10]
3.19[—09]

complicated; we give here polynomial fits for the S„„(q}
curves in these cases. For power-law decay, however,
formulas (C9)—(C12) can be programmed easily.

We have fitted eighth-order polynomials fulfilling the
following constraints [see Eqs. (C4), (C8), and (4.6)]:

lim S„,(q) =0, lim S„,(q}= —
—,',d

(C13)
q~1 1

and

F(z) =f(pF )E(z), p~ E [O,z]
G(z)=f (pG)E(z), pGE[O, z]
H(z) = f(pH )lnf (p—H )E(z), pH E [O,z ] .

Using (3.7) and the above formulas,

(pF)
lim q(z)= lim
z-o z-o f (pG}

and

(D la)

(D lb)

(D lc)

(D2a)

d(1 —ln2) for exponential DFF,
lim S„,(q ) = —(1—ln2) for Gaussian DFF .

2

(C14)
f(PF } f(pF)

(D2b)
We have calculated S„, for 1000 equidistant q values
ranging from 0 to 1 and fitted the polynomial of the form

8

S..(q)= g ~&q (C15)
Ic =0

lim p+ = lim pG
= lim p& =0,

z~o z~0 z~0
(D3)

Considering that all pF, pG, and pH are in the interval
[0 z],

with a least-squares method. The coefficients of the fitted

polynomials are listed in Table I. The value of eo stands
for the sum of the residuals, and e, and e2 give the errors
of conditions (C13) respectively. According to the overall
statistics the error of the curves was so=10, and condi-
tions (C13) were satisfied with an error of e, 2

= 10

from which, together with Eq. (3.2a), it follows that

hm f(pF)= lim f(pG)= lim f(pH)=1 .
z}~0 z~O z~o

Equations (D2) and (D4) imply the final result,

Jim q(z)=1, lim S„,(z)=0 .
p~o z~o

(D4)

(D5)

APPENDIX D: CLM IN THE EXTREME
DELOCALIZATION LIMIT

We will study here the behavior of the expression (3.7)
for q and S„„aswell as the slope of the q} S„,curve at
the z =R /A, ~0 limit.

We apply the first mean-value theorem of integral cal-
culus [48] for the functionals (3.5). In accordance with
the theorem there exist numbers pF, p6 and pH such that

The slope of the q } S„,curve at the completely delo-
calized point z=0, q =1,S„,=O is

dS„, S,'„e= lirn = lirn
q~1 dq z~O q

(D6)

where the prime means the first derivative with respect to
variable z. Using definitions (3.7), straightforward calcu-
lation results in

Sstr
q'

G /E —( G /E )(F/E +H /E )F'+ (F/E ) G '+ (F/E )( G /E )H '

( F /E )
—

(F/E )( G /E )E'+ 2( G /E )F' (F/E )G'— (D7)
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Substituting now expressions (Dl) and taking into ac-
count limits (D4) one arrives at

lim D(z)=2nsdA, lim F(z)/f(z), (E4)

—F'+ G'+H'a= lim
z —-o —E'+2F' —6' (Dg)

Calculation of the appropriate derivatives from the expli-
cit formulas (3.5) leads to

f(z)[lnf (z) —f(z)+ 1]
[f( )

—I]'
f(lnf —f+ 1)

fh-i (f—1)' (D9)

Two consecutive applications of L'Hospital's rule to the
second expression of (D9) give the final result a= —

—,'.

APPENDIX E: RELATIONS
AMONG LOCALIZATION CLASSES

In this appendix we will investigate the various rela-
tions among the localization classes Ld, Lf, L„, and L, .
In the following considerations it will be useful to refer to
the following inequality. For nonexploding decay form
functions, relations (3.2) and definitions (3.5) result in

(E5)

L'Hospital's rule shows again that

which must be infinite by our assumption
lim, F(z)= ~ and (3.2). This is a contradiction; thus

fEL, implies fEL„,i.e., L, =L„.
Next we will show that norm localization indicates

piling localization, Lf DL„. We have seen previously in

(E2) that if fEL„both lim, F(z) and lim, G(z) are
finite, while the explicit form (3.5a) shows
lim, „E(z)=oo. Using definition (3.7a) for q we get
lim, „q(z)=0, or fELf

On the other hand, all ftlling localized functions are de
cay localized at the same time, Ld DLf. In order to prove
this statement we can treat two subcases. First, iff is not
only ftlling localized but norm localized, too, the conver-
gence of the norm integral F(z) requires lim, „f(z)=0.
In the second case, lim, „F(z)=ac, but since fELf,
lim, q(z) =0. Using now definition (3.7a) and inequali-
ties (El) one can conclude that F(z)/G(z) ~ 1 and
lim, „q(z)=0 requires

lim F(z)/E(z) =0 .

0&G(z) &F(z) &E(z) for 0&z & ac . (El) lim F(z)/E(z)= lim f(z)=0, (E6)

Let us prove first the equivalence of the classes L„and
L, . IffEL„, (5.5) and (El) lead to

0& lim G(z) & lim F(z) & ac . (E2)

As according to (3.6b) and (3.6c),

D(z) =nsd A, F (z)/G(z), (E3)

(E2) shows that for a given A, limit (5.4) is finite; thus

fEL, . We will give an indirect proof for the opposite
statement, supposing that there exists a finite-sized func-
tion f (5.4) but liin, „F(z)=~. Considering (E3) this is

possible only if lim, „G(z)= ao, as well. Applying now
L'Hospital's rule, as well as (3.5), one arrives at

i.e., fELd
From the above considerations it is clear now that

Ld DLf &L„=L„but it is also possible to see that the
containment relations are strict, i.e.,

(E7)Ld QLf QL„.
The counterexample f(z) = 1/(1+z ) in dimension d =3
is decay localized but neither Piling localized nor norm lo
calized. The same function in dimensions d =2 and d =1
is both decay localized and ftlling localized at the same
time, but does not belong to the class of normalizable
functions L„. The proof is straightforward, considering
the asymptotic behavior of functions E(z), F(z), and
G(z).
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