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We report on the spatial distribution of particles in the reaction A +B~0. For the spatial dimension
d 4, this process exhibits anomalously slow kinetics which stems from the formation of a mosaic of
continuously growing domains which contain only one of the two species. We investigate the temporal
evolution of the distribution of domain sizes, as well as the distribution of interparticle distances between
closest-neighbor particles, both between the same and opposite species. Our results are considerably
richer than might at first be expected. The average distance between closest-neighbor AB pairs scales
differently than the corresponding distance between same-species pairs. The full distribution of A A sep-
arations is found to reflect the competing influences of these two length scales. Many of our observa-
tions can be accounted for in terms of simple scaling arguments. Rather surprisingly, many of our re-
sults are drastically altered if one of the species is immobile. The spatial distribution of the immobile
reactant exhibits a self-similar character, leading to complex behavior for the moments of the interparti-
cle distance distribution.

PACS number(sj: 82.20.—w, 02.50.+ s, 05.40.+j

I. INTRGDUCTIGN

A. Background

It has been recognized only fairly recently that the ki-
netics of the diffusion-limited reaction, A+B~O, does
not conform to the predictions of mean-field theory
[1—7]. This realization has stimulated considerable work
in clarifying the mechanism for the breakdown of mean-
field theory, and its implications on the kinetic behavior,
both under transient [1—7] and steady-state conditions
[8—11]. Furthermore, the reaction itself may be of in-
terest in various "real world" contexts (such as annihila-
tion of primordial monopoles in the early universe [2,4]
and electron-hole recombination in irradiated semicon-
ductors [12]).

The reaction process involves two species A and B
which are originally distributed at random throughout
space. They move by diffusion only and when two parti-
cles of opposite species approach within a fixed distance
of each other (the reaction radius), they react irreversibly
to form a third, inert species, which is then disregarded.
A basic quantity that characterizes the kinetics is the
time-dependent concentrations of the two species, CA(t)
and cB(t), respectively. When the initial concentrations
are unequal, the concentration of B's quickly decays to
zero, whereas the concentration of A approaches a con-
stant value. The focus of this work is the the case where
the initial concentrations of A's and B's are initially
equal, so that they remain equal throughout the reaction.
[Due to their equality, we shall often refer to their com-
mon value as c(t).] In this situation, c(t) tends to zero
relatively slowly, i.e., as a power law in time.

This gives, using the equality of the two concentrations,

c(t)= c(0) -(kt) —1

1+kc(0)t
(1.2)

Thus the characteristic exponent of the long-time decay
is —1, and the time scale is set by k.

However, it is well known that these results are in-
correct for spatial dimension d 4. In this case, domains
containing only one of the two species form and diffusion
is too slow a process to dissipate these domains. The ex-
istence of large-scale domains underlies the failure of the
mean-field theory, since it is no longer true that the en-
counter probability between an A and a B particle is pro-
portional to the product of their concentrations. We can
establish the large time behavior of c(t) by an argument
that explicitly accounts for the local density Auctuations
[2,3]. Within any finite volume 0 of linear dimension J,
the difference in the number of A and B particles can
only change by diffusion, that is, when a particle leaves or
enters 0 through the boundary. Then the difference
NA —NB will not be affected in its order of magnitude
during a time t+ which is of the order of L /D, where D

In a mean-field approximation, the time evolution of
the concentrations is determined by writing down rate
equations for c„(t) and ctt(t) Under .the assumptions of
a purely bimolecular reaction mechanism and spatial
homogeneity being maintained throughout the process,
the rate equations are

CA — kCA CB

CB = kCACB
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is the diffusion constant of the particles. However, at
t =0, the difference is of the order to the square root of
the initial particle number,

N„—N, =+&c(0)Z'" . (1.3)

If we assume that species A is initially the local majority
in 0, then for d ~ 4, essentially no B particles will remain
at time r& T.hus N„(t&) is approximately equal to
v'c (0)X ~, or, if one eliminates X,

c(t)=N(r)IX -&c(0)(Dt) '" (d~4) . (1.4)

This argument can be adapted to a variety of more
general situations. In particular, it is easily seen that the
above conclusion is not affected by the diffusion constants
of the two species being different. Indeed, even in the ex-
trerne case where one species is immobile, the reasoning
outlined above still applies. This approach is also valid,
independent of the reaction rate k. If k «1, however, a
large crossover region of mean-field behavior will be ob-
served, due to the fact that spatial heterogeneities which
form at early stages of the reaction are transparent and
therefore dissipate, due to the low reaction probability.
For sufBciently large times, however, heterogeneities
occur on a large enough length scale that they are opaque
to the species in the local minority. Consequently, the
fluctuation-dominated behavior of Eq. (1.4) ultimately re-
sults [3]. The basic argument can also be generalized to
fractals, where one obtains that c(t& ) is approximately—d /2 d
given by &c(0)X f, and t~ is equal to X ", leading to—d, /4
the time dependence c (t) -t ' . Here, df is the fractal
dimension, d is the dimension of a random walk on the
fractal, and d, is the spectral dimension. Although this
last argument has been questioned [13], it appears that
numerical results and independent analytical approaches
are essentially in agreement with this prediction [14,15].

Thus we see that the kinetic behavior of the A +B~0
reaction is determined by the competition between A-
rich and B-rich domains. In this paper, we will be in-
terested in the geometrical properties of these domains
and the distribution of reactants. We will address the fol-
lowing questions: what are the interparticle distances be-
tween closest-neighbor like and unlike species? How are
they distributed? What is the distribution of domain
sizes [16]? These questions turn out to have rather unex-
pected answers. We have previously reported [17] that
the interparticle distances between like and unlike species
grow with different powers of t for d ~2. More remark-
ably, these geometrical characteristics are rather sensitive
to details of the reaction process itself. In particular, our
previously reported scaling laws on distribution of inter-
particle distances and domain sizes are drastically
modified in the case where one of the reactants is irnmo-
bile.

The plan of this paper is as follows: We first describe
the details of a lattice model for the reaction, and the par-
ticulars of our numerical simulations. In Sec. II we shall
describe our results for the scaling behavior of interparti-
cle distances, both between particles of the same and op-
posite species. In Sec. III we analyze the distribution of

domain sizes in one dimension by making analogies be-
tween the dynamics of domains walls in two-species an-
nihilation and single-species annihilation. In Sec. IV we
examine the density profile of domains, from which basic
information about the distribution of distances between
same-species particles can be inferred. In Sec. V we con-
sider the distribution of interparticle distances, as well as
the scaling of various moments of this distribution. Fi-
nally, we discuss the situation where the reaction occurs
on a fractal substrate in Sec. VI. Throughout the paper,
we will present analytical or scaling predictions wherever
possible, and then bolster these by numerical simulation
data. Further, we will generally consider separately the
cases of equal mobilities and one species immobile, owing
to the radically different behaviors in these two cases.

B. The model

Our simulation results are based on the following lat-
tice model of the reaction process. %'e consider pointlike
particles of two species A and B on a lattice. At each
step of the simulation, we select a particle at random and
attempt to move it to one of the nearest neighbors, again
at random. If the target site is empty, the move is suc-
cessful and the particle moves accordingly. If the target
site is occupied by a particle of the other species, both the
original and the target particle are removed with proba-
bility k. If there is a particle on the target site of the
same species as the original particle, the move is rejected
and the selected particle remains at its original position.
This exclusion ensures that no multiple occupancy can
occur, a feature which greatly simplifies the actual coding
of this algorithm. After each move attempt, the time
variable t is incremented by 1lN(t), where N(t) is the
current number of particles. This ensures that one unit
of time corresponds approximately to having attempted
to move each particle once, on average. In all cases, our
simulations are performed with k set equal to one, as
smaller values mask the effects we are interested in, and
introduce an apparent mean-field behavior over a time
scale of the order of [D"/k c(0) ]'~' + [3]. For con-
venience, and also to provide an appropriate way to ex-
trapolate exponent estimates, we perform measurements
on the system at equal time intervals on a logarithmic
scale. The results we report in one dimension are pri-
marily based on the simulation of 900 realizations of the
reaction for up to 1.5 =11222 time steps on a chain of
50000 sites. For one specific application, we performed
longer simulations, but with fewer realizations. In two
dimensions, our results are based on averaging 50 realiza-
tions on a square lattice of linear dimension 500 for up to
50000 time steps. Periodic boundary conditions are em-
ployed for all cases studied.

In three dimensions, it has been found that the model
described above is not capable of reproducing, within nu-
merically accessible times, the t decay of the density
that is known to be correct in the long-time limit [7].
However, a rather minor modification of the aforemen-
tioned model can achieve this asymptotic behavior [18].
The procedure we followed is that when a particle is first
selected, all of the neighboring sites are tested for occu-
pancy by a particle of the opposite species. If opposite-
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FIG. 1. Definition of several basic interparticle distances that
help characterize the spatial organization of reactants. Shown
for the case of one dimension are the typical distance between
closest-neighbor particles of the same species, I», the closest-
neighbor distance between unlike species, I» (or the length of
the gap between domains), and the typical length of a domain,
L.

species particles are found, the initially selected particle
reacts with one of them (chosen at random) so that both
are removed. Otherwise, a direction is chosen at random
and the particle moves in this direction if the target site is
empty. The overall effect of this procedure is to
effectively increase the magnitude of the reaction rate and
allow one to reach the asymptotic regime more rapidly.
This modified model shows strong finite size effects, how-
ever, and must therefore be simulated on relatively large
lattices. On a lattice with X=200, the expected t ~ de-
cay was found to occur between t=30 and 1000, after
which the finite size effects mentioned above lead to an
exponential decay.

There are several natural ways to initialize the system.
In one set of simulations, each site is occupied at random
by an A, with probability c~(0), or a B, with probability
c~(0). Since the actual number of particles in a finite sys-
tem is typically unequal by an amount which is of order

, spurious effects w'ill occur at times of order X, due
to this existence of a true majority species. In one and
two dimensions, these time are much larger than the
range of our simulations. In three dimensions, however,
this is not the case, and our simulations are affected by
these resulting finite size effects. To avoid such problems,
we put at random an exactly equal number of A and B
particles, up to a prescribed lattice filling, which was usu-
ally taken to be unity. These two methods of initializa-
tion are found to give virtually identical results in the
one- and two-dimensional cases.

II. SCALING BEHAVIOR
OF INTERPARTICLE DISTANCES

A. One dimension

To determine the behavior of the interparticle dis-
tances, we first introduce I~ „and I~B as the distances be-
tween A A and AB closest-neighbor pairs, respectively
(Fig. 1). Further, let czar be the concentration of AB
closest-neighbor pairs. If we consider a time increment
At of the order of l„z /D, then there is sufficient time for
essentially all AB closest-neighbor pairs to react, since
one-dimensional random walks are compact. Conse-
quently, the number of reactions occurring throughout
the system, or the change in particle number, is of the or-
der of Xc„~. Dividing this change in number by the
length of the system, one finds that the concentration
changes according to [17]

Ac AB

l /D
(2.1)

I„,- [c(0)]-'"(Dr)'" . (2.2)

There are several intriguing ramifications about this pre-
diction. First, at least three lengths are needed to charac-
terize the spatial distribution of the reactants (Fig. 2).
From considerations of the kinetics alone, one deduces

G4
O

I I

A straightforward generalization of this relation holds in
two dimensions (with appropriate definitions of the vari-
ous quantities involved, as outlined below), but not in
higher dimensions, since the compactness of random
walks is an essential ingredient in the derivation.

Since we independently know the behavior of c (t), and
hence of the left-hand side of Eq. (2.1), it is sufficient to
have information on C~B to determine the scaling behav-
ior of l&B. In one dimension, there is one AB pair per
domain. Since domains have a typical size of (Dt )'~, one
concludes that czar scales as (Dt ) '~, and hence
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FIG. 2. Time dependence of the average distance between
closest-neighbor particles of the same species, (I„„)(); of op-
posite species, (l„s) ( ); and the average domain length, (L )
(+). Shown are numerical results for a one-dimensional system
when both species have the same mobility. The dashed lines of
respective slopes —', —', , and —,

' are a guide to the eye.

FIG. 3. Plots of the slopes of successive pairs of data points
in Fig. 2 vs 1/logl, t. The symbols have the same correspon-
dence as in Fig. 2. Averaging over consecutive pairs of data
points has been performed to reduce nonsystematic fluctuations.
The apparent exponent of ( I„„)is slowly increasing with time,
and is slightly larger than —' at 11 222 time steps.
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that the average domain size scales as (Dt)' . Addition-
ally, the typical interparticle spacing, which naively
might be expected to coincide with the configuration
average (l&A ), should scale as [c(t)] ', that is, as t '~ .
It is only through an explicit consideration of the spatial
arrangement of the particles that one finds that (lzs )
scales differently than (l„„).We can view this more
rapid growth of (IAAF ) as a manifestation of an effective
"repulsion" between opposite-species particles. Nearby
opposite-species pairs annihilate preferentially, leaving
behind a population of opposite-species pairs which are
further apart than the typical interparticle separation.

Another interesting point is the independence of ( l„s )
on the reaction rate k. Notice that in Eq. (2.1) the rate
constant k enters in a nontrivial way. Nevertheless, we
have discarded it in writing Eq. (2.2), taking the rate con-
stant to be of order unity. The theoretical motivation for
this neglect is the fact that two particles separated by a
distance I && 1 will collide not only once, but a large num-
ber (or order I) times in a time of order 1 . Thus, no
matter how small k may be, the probability that a pair
separated by a distance l reacts in a time l is essentially
one, a fact that we have also verified numerically.

The average separation between closest-neighbor
same-species particles exhibits a rather puzzling behav-
ior. As mentioned above, the time dependence of (1„„)
is characterized by an exponent which is close to, but
measurably larger than the value of —,

' that one might
naively expect (Fig. 3). Very roughly this larger exponent
value stems from the nonhomogeneity of the local densi-
ty. Since reactions are occurring only near the boundary
of a domain, the local density must be smaller than in the
central region of the domain. The range of this nonho-
mogeneity is controlled by the fact that the distance be-
tween two particles at the domain boundary scales as
t . The relative sparseness in density near the domain
interface permits the average distance between neighbor-
ing particles to be larger than the corresponding typical
distance. In Sec. V we will estimate the inhuence of this
local depletion when considering the density profile of a
domain. In one dimension, the density inhomogeneity is
found to give rise to an additional logarithmic factor in

N
I= g 1, /X=XIX, (2.3)

where the summation runs over all nearest-neighbor
pairs. Averaging this expression over all realizations im-
mediately leads to

(1)= ( I/c & I/(c & . (2.4)

Consequently, the exponent of (1) must be equal to, or
larger than, —,'. The spatial organization effects of the
A+8~0 reaction have a propensity to increase (I)
with respect to 1/(c) still further. As we shall discuss
later, the smaller-than-expected value of the exponent for
(lsd) apparently stems from the self-similar domain
structure of the B s, in which there is a power-law distri-
bution of very-short-distance separations between neigh-
boring B's.
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the scaling behavior of (l„„).
More remarkably, the interparticle distances exhibit a

strong dependence on the mobility ratio of both species.
In Fig. 4 we show simulation results for (I„„)and
(lsd ), when the 8 particles are immobile. In this case,
note the very slow approach of the exponent for ( lsd ) to
its asymptotic value, whereas the time dependence of the
exponent for (1„„)is roughly the same as in the equal
mobility case (Fig. 5). It is particularly disconcerting
that the exponent for ( lss ) remains below —,

' over a large
temporal range, since the asymptotic value of this ex-
ponent can be bounded from below by —,'. This bound can
be established by considering an arbitrary one-
dimensional system of identical particles whose concen-
tration varies as t ' . In this case, the average interpar-
ticle spacing 1 for a system of length X with periodic
boundary conditions can be written as

10
time

10 10

I I

0.1 0.2
1/j og, ,(time)

0.3

FIG. 4. Time dependence of the average spacing between
closest-neighbor A' s, (1» ), and between closest-neighbor 8's,
(ls~), W and, respectively, for a one-dimensional system
when the 8's are immobile.

FIG. 5. Plots of the slopes of successive pairs of data points
for (1«) and (Ized), shown in Fig. 4, vs 1/log, ,t. These re-
sults have been smoothed by averaging consecutive pairs of data
points. The symbols have the same correspondence as in Fig. 4.
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B. Higher dimensions

B

B~B =

B i B
B

A

A~A

A

FIG. 6. Operational definition of the "neighbors" of an 3
particle in two dimensions. Note that the particle marked B*,
which is one of the neighbors of the A, does not include the ini-

tial A as one of its neighbors.

In greater than one dimension, the basic quantities and
concepts we use to quantify the geometrical arrangement
of the reactants are less easily defined than in one dimen-
sion. In particular, ambiguity arises in defining the
closest neighbors of the opposite species for a given parti-
cle. If we were to consider only the closest two neighbors
of a particle, as in one dimension, then there would be the
risk of nearly always choosing neighbors of the same
species, even for particles at the edge of a domain. How-
ever, Eq. (2.1) requires that we know which particles are
most likely to react with a given particle. For this pur-
pose, any reasonable definition of opposite species closest
neighbors suffices. We have therefore used the following
criterion: we define the m particles nearest to a particle
as its neighbors, where we have takeo m to be 6 in two di-
mensions and 10 in three dimensions (Fig. 6). While the
choice of m is arbitrary, it is sufficiently large to almost
always ensure that neighbors will be taken in all direc-
tions around the particle. This makes it overwhelmingly
likely that at least one of the neighbors of a particle at the
edge of a domain will be of the opposite species. We then
define (I„„)and (is& ) as the average interparticle dis-
tances between same species, with the average taken over
all AA or BB neighbor pairs. For (l„~), we average
over all AB and BA pairs. [It is an unavoidable feature
of our definition that an A can be a neighbor of a 8
without the B being a neighbor of the A (Fig. 6).]

We now proceed to determine the time dependence of
the interdomain distance gap in the same manner as in
one dimension. For all d ~2, we still continue to apply
Eq. (2.1},since it should hold whenever random walks are
compact. Thus we again need to estimate c~z in order to
find the behavior of lz&. To this end, we must determine
how many particles are on the boundary of a domain.
This determination requires two hypotheses: (i) The per-
imeter of a domain is smooth, that is, it has length
t'" "I; and (ii) The particles in the perimeter zone are
separated by a distance of the order of l~&, irrespective of
their species. This is a fairly natural assumption which
we have also verified in the one-dimensional case. If this
assumption were false, then a rather absurd geometry
would result, in which boundary particles are neighbors
both of like and unlike species, yet remain infinitely
closer to like particles than to unlike particles.

From these assumptions, the number of reactants at
the periphery of a domain scales as (t ' /I „~ ) '. Hence
the concentration of reactive pairs is this number divided
by the volume of the domain t"

—1/2
cd'(t)=

l„a
(2.5)

Following the logical consequences of Eqs. (2.1) and (2.5),
we find

~ &(d+2)gad+&~
AB 7

and, in turn, we deduce that

(2.6)

(t) ~ t d(d+3)/4(d+I)
cwa (2.7}

In two dimensions, we have measured both c„tt(t) and

l„tt(t) and find satisfactory agreement with the predicted
values of the exponents. Our results give the value 0.83
for the exponent of c„z and 0.33 for the exponent of l„z
(Fig. 7).

In three and higher dimensions, the situation is more
subtle, as Eq. (2.1) is no longer valid. Now, it is relatively

unlikely that two neighboring particles of the opposite
species mill react within a time of the order Izz. Rather,
they wi11 do so with probability lzz ', or in other
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FIG. 7. Time dependence of the concentration of reactive
pairs, c»(t) {o),and the average distance between these pairs,
(l„s(t) ) (A), on (a) the square lattice, and (b) the simple cubic
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words, the characteristic time for two particles to meet,
when confined to a region of linear dimension l„z, scales
as I„"z. Consequently, Eq. (2.1) must be modified to

etc.

kc AB

At I
(2.8)

time

Using this relation, together with the additional assump-
tion that the interfacial region between domains is
smooth, i.e., the interfacial area scales as t'" ",one ob-
tains that, in three dimensions,

—1c~a =t

ll

j
'l~

l~a =t 1/4
(2.9)

Thus the nontrivial scaling of interparticle distances
disappears in three dimensions and above. Our numeri-
cal results, shown in Fig. 7, confirm the predictions of
Eq. (2.9), and thus also length support to the hypothesis
that the domain interface is a smooth object even when
the spatial dimension is greater than 2.

III. DOMAIN SIZE DISTRIBUTION

A. The case of equal mobilities

In this section, we shall concentrate exclusively on the
one-dimensional case. This is primarily motivated by
simplicity, as it is difficult algorithmically to define a
domain in higher dimensions. We could, of course, study
the correlation functions between like and unlike species,
but this only yields average properties of the distribution
of reactants, aspects which are not the main goal of our
study. Rather, we are interested in the distribution of
domain sizes itself. To obtain information about this and
related questions, one requires an easily computable way
of partitioning the particles into A-rich and 8-rich
domains.

To gain a rough understanding of the distribution of
domain sizes in the case of equal mobilities, it is con-
venient to focus on the dynamics of the domain walls,
defined roughly as the point midway between two unlike
neighboring particles. These domain walls annihilate
upon contact, and we further postulate that they move
diffusively (Fig. 8). Thus the dynamics of the walls
(denoted by W) should coincide with that of the density
of reactants in single-species annihilation, W+ W~O,
for which the kinetics has been solved exactly in one di-
mension [19—21]. The distribution of domain sizes in
two-species annihilation then corresponds to the interpar-
ticle distance distribution in single-species annihilation.
While this latter distribution is not known exactly, it is
rigorously known that the distribution obeys single pa-
rameter scaling. Further, it has been proved that the
scaling function decays exponentially for large values of
the scaled separation x (defined as separation divided by

FIG. 8. Space-time representation of the A+B~C reaction
in one dimension to illustrate the connection between the dy-

namics of domain walls (thin lines) and the single-species an-

nihilation reaction, W+ W~ W.

t '~ ), whereas the scaling function varies linearly in x for
small x. For the sake of a self-contained discussion, we
present simple heuristic arguments for these results.

The primary results about the interparticle distance
distribution in single-species annihilation can be inferred
in terms of known results for single-species fusion,
W+ W~ W [22,23]. For this reaction, the scaled distri-
bution of nearest-neighbor distances is exactly known to
be

X4(x)=xe (3.1)

This has similar properties to the interparticle distribu-
tion in single-species annihilation close to the origin, but
falls off much faster as x ~ 00. We now construct an ex-
act connection between these two processes by introduc-
ing the following general reaction scheme:

Y+ Y~Z,
Y+Z —+ Y,
Z +Z~Z

(3.2)

In this composite process, properties of the Fs will be ex-
actly as in the reaction W+ W —+0, whereas all properties
that do not take the identity of the particle into account
will coincide with that of the fusion reaction. Thus the
interparticle distance between any two particles, irrespec-
tive of identity, will be distributed as in Eq. (3.1). In the
mean-field approximation, the concentrations of Y and Z
are asymptotically equal. Since the reaction mechanism
itself does not inherently contain segregating tendencies,
we assume there is no large-scale segregation of Y's and
Z's. Then the probability of having an exceptionally
nearby YY pair is simply half the corresponding probabil-
ity for arbitrary pairs, so that a linear decay of the inter-
particle distribution in the fusion reaction for x close to
zero is suggested. On the other hand, there is a natural
way to obtain relatively distant YY pairs. This occurs
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whenever an exceptionally long string of Z's separates
two Ys. The probability of this event decays only ex-
ponentially in the number of intervening Z's, and hence
in the distance. This is to be compared with the Gauss-
ian decay for the probability of finding a large distance
between two arbitrary particles.

Based on these arguments, we are led to write the fol-

lowing scaling ansatz for N(L, t), the number of domains
of length I. at time t;

1
N(L, r)- —4(L/&r ),

t
(3.3)

where the scaling function 4(x) has the following asymp-
totic behaviors (Fig. 9):

x, x~0
-c.e ', x~~ . (3.4)

10 '
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Q)Q

Q

Here the factor l/t ensures that QLLN(L, t), which just
gives the length of the system, is independent of time.
This scaling form leads to a number of nontrivial conse-
quences, such as the number of domains which are small-
er than the typical size decaying as t . This latter pre-
diction is borne out by our simulations (Fig. 9).

B. The case of one immobile species

If one of the two species, say B, is immobile, then the
nature of the domain size distribution changes dramati-
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FIG. 9. The (normalized) probability distribution of domain
sizes, Pd, (x, t), for the case of equal mobilities of 2's and B's.
Shown in the distribution at t =11222 on a double logarithmic
scale (a) to exhibit the linear behavior at small distances, and a
semilogarithmic scale (b) to exhibit the large distance exponen-
tial tail. (c) Time evolution of the number of domains of fixed
length L for several representative lengths. The dashed line has
a slope —
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FIG. 10. (a) The (normalized) distribution of domain sizes,
I'~ d, (x, t), for the case of immobile B's. Shown is the distribu-
tion at t =11222 on a double logarithmic scale to exhibit the
power-law form at small distances. The dashed line has a slope
of —

—,'. (b) Time evolution of the number of domains of fixed

length for several representative lengths. The dashed line has a
slope ——.
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cally. Numerical simulations in one dimension illustrate
the basic new feature of a power-law tail for the srnall-
size limit of the distribution (Fig. 10), in contrast to the
peaked distribution in the equal mobility case. The ob-
served value of the exponent is close to —

—,', a value
which is suggestive of simple underlying mechanism. We
offer the following explanation which arises from the dy-
namics of one-dimensional random walks.

Let us define the function p(x) as the difference be-
tween the number of A and 8 particles in the interval
[O,x], where 0 is taken to be some fixed point in the sys-
tem. Then a plot of p(x) versus x is initially the graph of
a typical one-dimensional random walk (Fig. 11). As
time increases, this function becomes smoothed due to
encounters between A and 8 particles as weH as by the
diffusion of A particles. Regions of positive values of
p(x) thus relax by diffusion and also spread to neighbor-
ing regions of negative p(x). Up to time t, this spread is
limited to length scales of the order of &t. Regions of
negative p(x), on the other hand, are affected by the an-
nihilation process only, since the 8 s are immobile.
Therefore as the system evolves, each region that is local-
ly rich in A s initially, ultimately corresponds to a gap in
a 8 domain which is of the order of the size of the origi-
nal A-rich region. Up to time t, initial A domains of size
~&t will leave behind such a gap, while larger A

domains will still survive. The gaps therefore have a size
distribution identical to that of the positive regions in a
one-dimensional random walk, except for a cutoff at a
length of the order &t. The size distribution of such pos-
itive regions is the same as the probability that a one-
dimensional random walk first returns to the origin [24j,
from which one infers that the distribution of the gaps of
length x varies as x, up to the cutoff (Fig. 11). Simi-
larly, 8 domains are defined by the summation over BB

~ ~ «AAB BBBA A B AA BBABBBBB~ ~ ~

)i

interparticle distances up to the cutoff that scales as t '

Due to this integral relation between the distribution of
interparticle separations and domains, we infer that the
size distribution of the latter quantity varies as x

From this naive model, we can now infer the time
dependence of the distribution of 8 domain sizes by ap-
plying a scaling argument in the spirit of the preceding
section. Indeed, we expect the following scaling form for
the number of 8 domains of length L:

(3.5)

with the arguments presented above indicating that

4(x)-x '~ (x ~0) . (3.6)

IV. DENSITY PROFILES OF DOMAINS

A. General considerations

In this section, we study the distribution of particles in-
side a domain. Our primary focus is the one-dimensional
case, due to the aforementioned difficulty of clearly
defining what is meant by a domain in higher dimensions.
Even in one dimension, however, there is an indeterrnina-
cy in the meaning of the density profile, and we have em-
ployed two natural definitions (Fig. 12). In both cases, we
define the density as the probability of finding a particle
at a fixed distance from the midpoint of a domain.
Within a scaling formulation, it is convenient to rescale
this distance by the domain size. This can be performed
either using the typical domain size ("canonical" density
profile) or the size of the domain to which the particle ac-

We also expect that 4(x) vanishes exponentially for
x~ ~. It then immediately follows that the number of
domains of a fixed size L vanishes as t as t ~ ao, as is
borne out by the simulation data (Fig. 10).
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FIG. 11. Equivalence between an initial distribution of reac-

tants and a one-dimensional random walk. The temporal evolu-
tion of this equivalent walk is also indicated: positive regions
smooth out by diffusion, while negative regions are dissipated
only by the diffusive invasion of positive regions. The gaps be-
tween the S's which ultimately remain coincide with the first
passage of the equivalent random walk to the origin.

FIG. 12. Illustration of the construction for the "canonical"
and "microcanonical" domain profiles from the original distri-
bution of reactants. For the canonical profile, each domain is
rescaled by the average length before their profiles are super-
posed. For the microcanonical profile, each domain is rescaled
to a fixed length before superposition.
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tually belongs ("microcanonical" density profile) as the
rescaling factor. The qualitative appearance of the scaled
profiles according to these two prescriptions is rather
different, as shown in Figs. 13 and 14.

To obtain the canonical profile, we first superpose the
densities of all domains with respect to their common
centers, and then rescale the abscissa by the average
domain size. The ordinate is therefore proportional to
the density times the number of domains. Upon dividing
by these factors, one obtains the normalized canonical
density profile P' '(x), the probability of finding a parti-
cle at a distance xt ' from the center of the domain at
time t. Note that the range of x is unbounded, in princi-
ple. For the microcanonical profile, each domain is first
rescaled to the interval [—1, 1], which implies that the lo-
cal density in the domain is now proportional to t'
Upon superposing the density profiles of all domains and
dividing by the product of the average concentration, the
number of domains, and the average domain size, the
normalized microcanonical distribution P' '(x), is ob-
tained.
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FIG. 14. The microcanonical density profile for the case of
immobile B's. The upper set of data are the profiles of the B's at
t =194 (0), t =1477 (0), and t =11222 (6). The lower set are
the profiles of the A's at the same times. The profiles when both
species are mobile are qualitatively identical to the data shown.
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FIG. 13. Plots of the canonical density profile for the case of
immobile B's. Shown are the scaled density profiles, summed
over all realizations, of (a) the A' s, and (b) the B's for t =194
(o), t=1477 (0), and t=11222 (8). The former data are visi-

bly indistinguishable from the canonical density profile when
both species are mobile.

For the B's, this procedure leads to very accurate data
collapse both for the equal mobility case and for the case
of immobile B's (upper curve in Fig. 14). For the A' s, ex-
cellent data collapse obtains for the equal mobility case;
however, there is a small, but systematic deviation from
data collapse for the case where the B's are immobile
(lower set of curves). When these A profiles are rescaled
by fixed powers of time, rather than by intrinsic quanti-
ties, excellent data collapse is found, however. Thus we
attribute the evident lack of data collapse to the influence
of nonasymptotic corrections in the various rescaling fac-
tors.

The behaviors of these two density profiles are simply
related to each other. Namely, the contribution to the
canonical density profile at scaled position x is equal to
the microcanonical density profile at scaled position x /a,
times the probability of finding a domain of scaled length
e, summed over the possible values of a. This yields

P'"(x)= f "dam(a)P'MI(xra), (4.1)
X

where 4(a) is the scaling function for the probability of
finding a domain of size at ' introduced in the preceding
section. Thus we expect that the large-distance tail of the
canonica1 distribution should decay exponentially in x, as
is clearly demonstrated by the simulation data (Fig. 13).
An additional noteworthy feature of the canonical profile
for immobile B's is the sharp peak near the origin. This
stems from the square-root singularity in the size of B
domains [Eq. (3.6)].

For the rnicrocanonical profile, the profile resembles
the half period of a sinusoid, independent of particle
identity and the value of the diffusion coefficient. A cru-
cial feature of this profile is the linear decay of the densi-
ty in 1 —~x ~, as ~x~ ~1. As we will discuss in more detail
below, the feature controls the high-order moments of
the distribution of distance between closest-neighbor
same-species particles.
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B. Domain wall dynamics Bc(x,t) d c(x, t)
(4.4)

W+ W —+0,

W+A~W,
(4.2)

to provide a rough equivalent to two-species annihilation.
The A's do not react with one another and their motion
is characterized by a diffusion coefficient Dz. A priori
there is no reason to postulate that domain walls have the
same diffusion constant as the A' s, or, for that matter,
that they diffuse at all. However, we have already seen
that considering the domain walls to be a system of an-
nihilating random walks led to reliable results for the
domain size distribution, so we shall assume that their
motion is indeed diffusive, though with an unknown
diffusion constant D~.

For this simplified model, the problem of determining
the density profile of A's within the domain now reduces
to the distribution of a random walker between the two
absorbing wall particles. This three-particle problem can
be solved exactly if we neglect the possibility that one of
the enclosing W particles might disappear in an en-
counter with another W before reacting with the A.
With this approximation, the survival probability of such
a walker is known [25,26] to vary asymptotically ast, with

To account for a density profile which exhibits a linear
decay at the periphery and a relatively constant density
near the domain center, we consider an idealized model
in which the A particles diffuse independently within a
stochastically growing region defined by the two enclos-
ing B domains. We represent the edge of these two en-
closing domains by W (wall) particles, with the A and W
particles reacting via

subject to the boundary conditions

c{ L—(t)/2, t ) =c(L(t)/2, t) =0, (4.5)

with L(t}=Ct' . This rate of growth is the maximum
that can still be solved consistently within the adiabatic
approximation [27]. This method leads to the density
profile

c (x, t)-t cos[nx /L(t)], (4.6)

where A, is now an undetermined exponent that depends
on the value of the amplitude C. Thus the form of the
density profile is essentially the same for the cases where
the W particles recede deterministically and where the
8 s move stochastically.

We have also investigated numerically the density
profile for the situation of one immobile species. Rather
remarkably, the microcanonical density profiles of the
A's and the B's are virtually identical. There is also
minimal visible difference between these two profiles and
that of the equal mobility case. On the other hand, the
canonical profile of the immobile species exhibits a rela-
tively sharp cusp at the domain core (Fig. 13},a feature
which undoubtedly stems from the power-law contribu-
tion of small BB separations, a singular behavior which is
most likely to occur at the center of a domain. The coin-
cidence between the microcanonical domain profiles for
the equal mobility and immobile B cases is rather surpris-
ing, as the BB distances are distributed according to a
power-law form at small distances. Evidently, the
averaging involved in computing the density profile ob-
scures this self-similar structure.

e=cos
D

D„+Dw
(4.3)

V. DISTRIBUTION OF INTKRPARTICLK DISTANCES

A. The case of equal mobilities

The existence of a power-law dependence for the survival
probability of an A inside a domain is at least consistent
with the t ' decay for the density. However, it must be
noted that there is no value for the diffusion constant of
the W particles which will give an exponent less than one
for the time dependence of the decay of the A' s. Thus
the correct value of —,

' cannot be reached. This deficiency
presumably stems from the neglect of reactions between
W particles. Nevertheless, useful insights are gained
from our mapping to a three-particle system; in particu-
lar, the density profile at long times is proportional to
cos[nx /L{ t}]for domain defined by ( L(t)/2, L (t}/2). —
This sinusoidal variation provides a reasonable qualita-
tive account of our numerical data for the microcanoni-
cal domain profile.

An even simpler approach that provides qualitatively
similar results is to reduce the three-particle problem sti11
further by assuming that the two absorbers deterministi-
cally recede from one another, with the distance separat-
ing them growing as &t. For this reduced problem, the
density profile is given by the solution to the diffusion
equation

From the above results about the domain profile it is
possible to draw far-reaching conclusions for the distribu-
tion of interparticle distances. These inferences rely cru-
cially on two basic features of the domain profile. First,
we will exploit the fact that the microcanonical density
profile of a domain vanishes linearly in the distance to the
edge of the domain. We further assume that, apart from
the variation in density on a length scale of order t ', the
A's are distributed loca11y at random. This is a reason-
able assumption in view of the randomizing influence of
diffusion.

Based on this latter assumption, we are led to write the
probability of finding an A A separation of length l„„as—pl~ zthe Poisson form, pe ". Since p is of the order of
t ', the typical values of l~~ will be of the order of
t ' . To generalize to the situation where there are densi-
ty variations on a scale of the domain size, we note that
these variations are slowly varying, so that it is plausible
to still write the local distribution of separations in a
Poisson form. We therefore define the probability of en-
countering a closest-neighbor A A separation of length
l~z at time t at a scaled position z in the density profile as
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P (I z t)=t ' P' '(z)

Xexp[ —1„„P'~)(z)t '~ ], (5.1)

where P™(z)is the microcanonical density profile.
To obtain the average distribution of separations, ir-

respective of the position inside the domain, P„„(1„„),
we integrate over the extent of the domain to yield

1 —e
PAA(~AA —1+@

Xexp[ —IAAP1vI(z)t
'~

] . (5.2)

The range of the integral is over the populated region of
the domain. Thus the cutoff e (in scaled units) is deter-
mined by specifying that there is of the order of one par-
ticle between z = —1 and —1+@. In terms of the density
profile, this condition reads [28]

f P (M)( z )dz r
—1/4 (5.3)—1

Since the shape of the density profile is linear near the
end points, it immediately follows that e=t ' . Notice
that this cutoff is merely the average gap length (IAs )
written in scaled units.

To obtain the interparticle distance distribution for
l~„&&t'~, we use the saddle-point method to evaluate
the integral in Eq. (5.2). Since P' '(z) goes linearly to
zero as z~+1, the end points will give the dominant
contribution to the integral. From these considerations
we find
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range of up to 10 time steps is consistent with what
would be observed if M1(t) actually varied as t' lnt.
However, the effective exponent is increasing with time,
which does not accord with the hypothesized time depen-
dence. Additionally, only part of the full scaling form of
the distribution given in Eq. (5.5) seems to be accessible
by simulations. The exponential large-distance decay can
indeed be observed (Fig. 16), but the hypothesized x
decay takes place over too small a length range (from t '

to t ) to be measurable at the longest times that we
simulated, 11 222 time steps.

We have also examined the distribution of AB dis-
tances (Fig. 17). As we expect, the distribution scales
with t . With respect to the scaled distance x, the dis-

tribution of gap lengths goes linearly to zero as x~0,
and decreases exponentially as x ~~. The former result
is quite natural. Each particle which is part of an AB
pair performs a random walk in which the other member
of the pair acts as an absorber. Thus the limiting distri-
bution ought to be similar to that of a random walker on

—
1 i4

2
—l~~ eP„„(l„„,t ) = I A A e (5.4)

Introducing a scaled variable x equal to l~„t ', we

may now write, for x )&1,
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PAA(x, t) =x exp( xt '
) . — (5.5)
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time

10 10

(IAA(t))= f x "P„„(x,t)dx .
0

(5.6)

By a direct calculation, we find, for the reduced moments
M„(t)= (lA" A(t) ) ' ",

From this form for the distribution of interparticle dis-
tances, we can now evaluate the scaling behavior of the
corresponding moments,
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Most of these results are confirmed to a reasonable de-
gree of accuracy by our numerical simulations (Fig. 15).
A notable exception is the case n = 1, where the apparent
exponent roughly extrapolates to a value close to 0.28.
The actual numerical value of the exponent in the time

FIG. 15. (a) The reduced moments, M„(t)=—(I„"„(t))'", vs

time on a double logarithmic scale for the case of equal mobili-
ties of two species. Representative values of n are shown. (b)
The behavior of the slopes between successive pairs of data
points, smoothed by averaging consecutive data pairs and plot-
ted vs logl &t, to indicate the asymptotic value of the corre-
sponding exponents for the time dependence of M„.
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B. The case of one immobile species
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FIG. 16. The distribution of distances between closest neigh-
bors of the same species, P» (x, t), at t = 11 222 on a semiloga-
rithmic scale to exhibit the large-distance exponential tail. The
date are smoothed by averaging the distribution over five con-
secutive points. The slope of the best-fit straight line that fits
the asymptotic decay {dashed and offset) varies as t
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the half line, with an absorber at the origin. For this
latter problem, the probability density decays linearly in
x for x ((1, in accord with the small-distance behavior
of the gap distribution. The origin for the exponential
large-distance decay, as opposed to a Gaussian form, is
not clear, however.

M„(t)- .1nt, n =
—,
'

t(2n —1)!4n n ) I
2

(5.8)

Our numerical data for the reduced moments for posi-
tive integer n are in good agreement with the expectation
of Eq. (5.8). Rather strikingly the reduced inoments of
order less than —, are predicted to have a finite limiting
value as t ~ ~ (Fig. 19), a behavior which stems from the
large number of exceptionally small BB distances. The
fractional order moments do increase quite slowly with
time in a manner that is consistent with their values
reaching a finite asymptotic value [Figs. 19(a) and 19(c)].
The two-point slopes from successive pairs of data points
all seem to extrapolate to zero in the long-time limit.
However, for the range of times accessible in the simula-
tion, it does not seem possible to identify unambiguously
that the reduced moment of order n =

—,
' is marginal in

the sense of Eq. (5.8). Nevertheless the data are at least
consistent with its predictions.

Owing to the broad distribution of sizes for the
domains of immobile particles, it suggests that the
relevant scaled distance between closest-neighbor BB
pairs is their separation divided by the size of the domain
to which the particular distance belongs, rather than di-

%hen one species is immobile, the situation is more
complex, but also more interesting. Our numerical simu-
lations indicate that the distribution of AA closest-
neighbor distances has essentially the same form as in the
case of equal mobilities for the two species. However,
from the first-passage argument outlined in Sec. III, the
probability of finding a BB closest-neighbor distance
equal to x is proportional to x at small distances, a
form that holds up to a characteristic distance which
scales as t'~ (Fig. 18). For this form of the distribution,
a simple calculation shows that the time dependence of
the reduced moments of interparticle distances between
the immobile species, M„(t)= ( las (t) ) ' ", is

const, n (—,
'

0

0
e

1
0 Oi

00

0 0
kt K R ItR t X t I Q
0 OC)CRD CX)0

0~CIQ 0
0 0 CIQCXDEDID 0

o. 1
4

I

250 500 I

10 100 1000

FIG. 17. The distribution of gap lengths between domains,
P»(x, t), at t =11222 on a double logarithmic scale (a) to ex-
hibit the linear behavior at small distances, and a semiloga-
rithmic scale (b) to exhibit the large-distance exponential tail.
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FIG. 18. The distribution of distances between closest-
neighbor (immobile) 8's, P»(x, t), at t =11222. The dashed
line has a slope —
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viding by the average domain size. This scaling pro-
cedure is analogous to that used to obtain the micro-
canonical domain profile. Since the B s are immobile,
there is a nonvanishing probability of finding a BB sepa-
ration which is a finite fraction of the domain size. In
contrast, diffusion tends to cut off the largest A A separa-
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FIG, 20. The "microcanonical" distribution of BB separa-
tions for t=10' (0), t =10 (A), and t=10' (9) on a double log-
arithmic scale.
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tions at a scale which is of the order of t . This micro-
canonical approach yields a distribution of scaled BB sep-
arations which exhibits data collapse over a wide range of
time scales (Fig. 20). This result provides additional evi-
dence that the B's are fractally distributed within their
domains.
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FIG. 19. Time dependence of the reduced moments
M„(tl = (laa(t) )' " vs t on a double logarithmic scale for
representative values of 0& n & 1 for the case of immobile 8's.
For positive integer values of n, the M„(t) all vary as power
laws in time. In (b) and (c), we plot the smoothed slopes be-
tween successive pairs of data points for M„(t) to provide an es-
timate for the asymptotic value of the corresponding exponents
for M„(t). Shown are these estimates for representative values
of (b) n ) 1, and (c) 0 & n & 1.

C. Higher dimensions

In higher dimensions, we do not have numerical data
for the density profile of a domain. Nevertheless, one can
construct an approximate form for the density profile, us-
ing the same approach that was applied in one dimension.
In greater than one dimension, we consider the density
profile as being equivalent to the probability distribution
of a particle diffusing within an absorbing ball whose ra-
dius is expanding as &t. The adiabatic approximation
still applies for such a system and we therefore predict a
density profile which decays linearly to zero in the radial
coordinate near the extremity of the domain. From this
fact, one can easily deduce scaling laws for the time
dependence of the moments (l„"„(t))which are amen-
able to numerical tests.

It is also worth noting that the linear decay in the den-
sity profile at the domain edge leads to an alternative and
simple derivation of the fact that the AB distance scales
as t' in two dimensions. Let us define T such that a
shell of thickness T at the domain boundary contains of
the order of v t /T particles (Fig. 21). This provides a
reasonable definition of the "outermost shell, " since, on
average, one particle will be contained in every area of
linear dimension T. If the density profile decays linearly
in the distance from the periphery of the domain, then
the concentration in this outermost shell will vary as
t ' (r/t' ), where r is the distance from the edge of the
domain. From this form, it follows that the entire outer-
most shell contains of the order of T /&t particles. In
order for this to coincide with &t /T, as requ&red by the
definition of T, it is necessary for T to scale as t ', in
agreement with the independent arguments given in Sec.
II B, as weil as with numerical results.

Following exactly the same reasoning as in the one-
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in the distance to the edge of the domain. The reason for
this discrepancy is as yet unresolved.

VI. THE REACTION ON A FRACTAL SUBSTRATE

FIG. 21. Schematic illustration of the "outermost" shell of a
domain. Also shown is the spatial variation of the density
across the extent of the domain. The density stops varying at a
distance of order &t from the domain edge.

dimensional case, we now assume that the probability dis-
tribution of same-species interparticle distances l„„in a
region of local density p is given by the Poisson form

&pin e "". We now introduce the scaling variable
x =l~„t ', from which we obtain the following scaling
expression for the number of A A pairs separated by a
distance I» ..

As mentioned in the Introduction, the particle concen-—1, /4
tration should decay as t ' on a fractal substrate,
where d, is the spectral dimension [14,15]. There is an al-
ternative theory which starts with specific hypotheses for
the scaling of interparticle distances and uses these re-
sults to derive a different result for the decay of the densi-

ty [13]. One of the underlying ingredients, however, is
the claim that AA and AB distances scale in the same
way, an assertion which has been found to be incorrect in
the Euclidean case. Thus the conclusions of this ap-
proach should be viewed with caution.

In the following, we will take the view that d, /4 is the
correct decay exponent for a fractal. We shall then use
Eq. (2. 1) to infer a relation between the concentration of
AB pairs and the scaling of the AB distance for the case
where d, &2, i.e., for the situation where random walks
are compact. For this purpose, we define the distance be-
tween two points as the number of steps in the shortest
path connecting them (the so-called "chemical" distance).
In terms of this chemical distance, we will require several
additional characteristic exponents of fractals. These in-
clude the chemical dimension d&, which describes the
number of points N(I) at a chemical distance I or less
from the origin via the relation

(6.1)

P„„(l„„,t)=t 4(x)exp( x t ' ),—

4(x)-x (x ))1),

(5.9)
the chemical dimension of a random walk d&, which de-
scribes the typical time t(I) required for a random walk
to go a chemical distance I,

where the normalization factor of t ensures that the
quantity +I„„N(l„„,t) remains time independent. The
cutoff at x of the order of t ' ' rejects the fact that there
are no A A distances significantly larger than the typical
AB distance, a criterion which has the same physical ori-
gin as in the one-dimensional case.

From this scaling form, one obtains the following scal-
ing laws for the reduced moments M„(t)= (Iz„(t)) ' ":

t "4, n &2

Mg(t)- t' (lnt)', n =2
n)2

(5.10)

Our preliminary evidence suggests that the first two mo-
ments do not scale anomalously, but more extensive
simulations are needed to adequately test the predictions
of Eq. (5.10).

In summary, a considerable body of indirect evidence
seems to indicate that the average density profile of a
domain decays linearly in the distance to the edge of the
domain in two dimensions. There is, however, no easy
way to verify this assertion. An attempt to define a mi-
crocanonical density profile by superposing the profiles
found on one-dimensional slices appears to give a decay
of the density at the domain periphery which is nonlinear

d(~r(I)-I ',
and the spectral dimension d„given by

2dj
d. =

dw
1

(6.2)

(6.3)

This last exponent is also conveniently defined by the
probability that a random walk is at the origin at time t, a—1 /2
quantity which decreases as t ' . This implies that
random walks on fractals with d, &2 are compact. For
simplicity, and because these already form a vast majori-
ty of the fractals usually considered, we shall limit our-
selves to this case.

We can now formulate our hypotheses concerning the
nature of the domains and the interparticle distances.

(i) The domain boundaries are regular in the chemical
distance, that is, they have chemical dimension d&

—1.
Here we see the importance of using the chemical dis-
tance: On a topologically one-dimensional object, such as
the Koch curve, it is manifestly wrong to hypothesize
that domain boundaries have dimension df —1, where df
is the fractal dimension. Rather the domain boundaries
have dimension zero, which is what we obtain with our
definition.

(ii) Same-species particles at the domain boundary are



3146 F. LEYVRAZ AND S. REDNER

separated by a distance of the order of 1&B. This basic as-
surnption is the natural extension of the corresponding
result on a Euclidean lattice.

From these assertions, we now obtain

CAB

—1/d
1

d, —1

lAB

(6.4)

W

Substituting this into Eq. (2.1), and employing l„~ in-

stead of I~B for the time needed for AB pairs to react,
one obtains l~B —t~, with

~(+2~, —2

2d( (dt+d( —1)
(6.5)

It should be emphasized that I„B is a chemical distance.
To obtain the corresponding scaling for the Euclidean

df /dt
distance, we use the connection l=R ' between the
chemical distance l and the Euclidean distance R beween
two points. Thus the Euclidean distance between
closest-neighbor AB pairs involves the exponent gd&/df,
with g given by Eq. (6.4).

In view of the peculiar nature of fractals and the atten-
dant conceptual difficulties, the above results should be
viewed as nothing more than tentative suggestions. Our
predictions have some merits, however. They reduce to
the correct results in the Euclidean case. Furthermore,
they depend only on the connectivity of the fractal
through the so-called "intrinsic" dimensions. The results
are therefore unaffected by deformations, so that the
Koch curve or the Peano curve are characterized by
one-dimensional exponents. The principal weakness of
our approach lies in the arbitrary nature of many of the
hypotheses involved, specifically those concerning the
geometry of the interface between two domains.

VII. CONCLUDING REMARKS

In diffusion-limited two-species annihilation, an initial-

ly homogeneous distribution of equal densities of A's and
B's evolves into a mosaic of single-species domains which
grow indefinitely with time. When both species are
equally mobile, the concentration within the central re-
gion of the domains is roughly constant and is propor-
tional to t, while at the periphery the concentration
vanishes linearly in the distance to the domain edge. This
feature is responsible for the existence of a new length
scale, 1„B,which is larger than the typical interparticle
spacing and smaller than the typical domain size. This
new length is of fundamental importance, as it deter-
mines the rate at which reactants are brought together.
The depletion layer at the edge of the domain, and the at-
tendant enhanced interparticle separations, is also re-
sponsible for the anomalous scaling of the moments of
the distribution of distances between closest-neighbor

same-species pairs. As a consequence, the reduced mo-
ments of the distribution of distances, (Ized(t))' ", in-
crease much more rapidly than the average separation be-
tween same-species particles, ( l„z (t) ) when n is large.

When one of the species is immobile, the spatial organ-
ization of the reactants becomes considerably more rich.
The domains of the immobile species are "eroded" by
infiltration of the mobile species from the exterior. Thus
vestiges of the initial distribution persist in the interior of
the domains of immobile particles. In particular, this
leads to a power-law tail for the number of small separa-
tions of the immobile particles. The reduced moments of
the distribution of distances between closest-neighbor B's,
( lg ~ (t) ) ' ", is now governed by this short-distance singu-
larity, rather than by any large-distance enhancement.
Thus we find very different time dependence for
(I„"„(t))'" and (lpga(t))' ". In particular, the latter re-
duced moment approaches a constant as t~~ for all
n (—,'.

One ramification of our work is to two-species annihi-
lation when the two components are initially separated, a
problem which has recently been intensively studied
[29—34]. For this system, considerable attention has been
devoted to determining the spatial extent over which the
reaction actually takes place. According to a mean-field
treatment, the width of this reaction zone grows as t~,
with g= —,', a result which also appears to hold for simula-

tions in two dimensions. However, in one dimension, a
number of simulations give g=—0. 3 [33]. Following our
treatment of the domain profile, the asymptotic concen-
tration of order unity smoothly matches to a depletion
layer of width t', in which the concentration vanishes
linearly as the reaction zone is approached. These facts
are sufficient to deduce that the separation between the
closest AB pair grows as t ' . It should prove interesting
to understand the relation between this separation and
the width of the reaction zone.

In higher dimensions, we have a less than satisfactory
understanding of the domain structure and the spatial or-
ganization of reactants. Thus far, we have not devised a
good algorithm that unambiguously defines domains in
greater than one dimension. We attempted to define a
microcanonical density profile in two dimensions by su-
perposing the profiles of one-dimensional slices. Unfor-
tunately, this apparently natural definition gives a non-
linear decay of the density at the domain periphery, a
feature which is at variance with our results about mo-
ments of interparticle spacings. Thus a better approach
is needed to identify domains in two dimensions. More-
over, questions such as the distribution of domain sizes
cannot even be meaningfully addressed in higher dimen-
sions. The same is true for many aspects of the density
profile within a domain. In three dimensions, our under-
standing of the domain structure is meager. Numerical
evidence indicates that the anomalous behavior of the

gap size no longer occurs, corresponding to no large-scale
depletion in density at the domain edge. These results
also suggest that the interface between domains is
smooth, even for d )2. All these results, however, still
leave unresolved the question of how domains are organ-
ized spatially in higher dimensions.
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