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Scaling behavior of randomly triangulated self-avoiding surfaces
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The conformation and scaling properties of two-dimensional randomly triangulated self-avoiding sur-
faces embedded in three-dimensional space are studied using Monte Carlo methods. Results for the frac-
tal dimension d, and the spectral dimension d;, as well as the ratios of the eigenvalues of the moment of
inertia tensor (which characterize the mean shapes of the surfaces), are presented. It is shown that these
surfaces belong to the self-avoiding branched polymer universality class.
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The statistical mechanics of tensionless two-
dimensional membranes has recently attracted a great
deal of attention [1,2]. Initially, this interest arose be-
cause of applications in the physics of microemulsions
and biological membranes and vesicles. More recently,
similar issues have been discussed in the context of string
theories in high-energy physics.

Most biological membranes, as well as the surfactant
monolayer membranes which provide the basic structural
element for complex fluids, such as microemulsions, are
found in the fluid phase, where the molecules can diffuse
freely and their hydrocarbon tails are disordered. At
length scales large compared to the size of individual
molecules, these membranes can be modeled as self-
avoiding, tensionless surfaces whose bending modes are
controled by a bending rigidity k. A fluid membrane of
linear size L is expected to exhibit transverse fluctuations
[3] of extension L, ~(kT /k)!/2L on length scales small
compared to the persistence length £, [4]. These shape
fluctuations lead to a monotonically decreasing scale-
dependent effective rigidity [5,6]. At length scales
L >>§,, this effective rigidity is negligibly small, and the
membrane is expected to be in a crumpled state charac-
terized by the absence of long-range orientational order
of normals erected perpendicular to the local surface ele-
ments [2]. The structure of the crumpled state is charac-
terized by the fractal dimension d, [7], which relates the
mass of the membrane to its radius of gyration, and the
spectral dimension d; [8—10], which describes the mean-
square displacement of a Brownian particle diffusing
within the membrane. The object of this paper is to
determine the scaling behavior of self-avoiding fluid
membranes with a fixed topology at length scales L >>§£ e
It is shown that these surfaces belong to the self-avoiding
branched polymers universality class, with d =2 and
d,=1.25+0.05.

Our conclusions are based on a Monte Carlo study of a
simple string-and-bead model for randomly triangulated
two-dimensional surfaces of fixed topology embedded in
three dimensions. The surface is modeled by a triangular
network of N hard-sphere particles of diameter o =1 con-
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nected by tethers of maximum extent /,. For a fixed tri-
angulation, this model has been used extensively to study
polymerized, or tethered, membranes [11]. To model a
fluid membrane one must, in addition, sum over all possi-
ble triangulations, i.e., consider the triangulations as a
dynamical field [12-25]. This can be accomplished using
a two-step Monte Carlo procedure. First, one attempts
to sequentially update the position vector of each mono-
mer by a random increment in the cube [—s,s]>. The
move is accepted if it does not violate the constraints im-
posed by the finite tether length and hard-sphere self-
avoidance. s is chosen so that approximately 50% of the
updating attempts are accepted. Second, one attempts to
flip N randomly chosen bonds. A bond flip consists of de-
leting a tether and constructing a new one between the
two previously unconnected vertices of the two adjacent
triangles. The flip is accepted with a probability given by
the Boltzman factor [16] if all vertices have a minimum
of three neighbors after the flip. We do not explicitly set
an upper limit on the maximum number of neighbors.
This bond-flipping procedure has been shown to be er-
godic [12]. If, during a single time step, all links or bonds
have the same probability of being flipped, this transfor-
mation also preserves detailed balance. We have checked
that increasing the number of bond-flip attempts per
sweep by a factor of 5 does not influence our results. Fi-
nally, note that one more term needs to be incorporated
in the action. In order to ensure reparametrization in-
variance, the integration measure over the position field
should have the form [12-14,17]

Dr=Hqi3/2d3ri R (1)
i
where g; is the coordination number of monomer i. We

have absorbed the coordination number part of this mea-
sure into the action as a term

BH,=—a3 Ing, , )

where a=3 [18].
Our simulations were carried out primarily on surfaces
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of spherical topology consisting of N monomers using

=V2 and s =0.1. This choice of parameters ensures
self avoidance and leads to coordinate vector acceptance
rates on the order of 0.48 and bond-flip acceptance rates
of about 0.08. The procedure we employ conserves both
the number of monomers and bonds. Some runs were
performed on open membranes with free-edge boundary
conditions. Since we do not flip boundary tethers, the
open membranes we simulate have perimeters of fixed
length.

In order to characterize the scaling behavior and con-
formation of the membrane we have determined the
mean values of the eigenvalues A, (i=1,2,3) of the
(discretized) moment of inertia tensor [19]
qlqj

—rrf—rf1, (3)

aB Nz 2
as well as the anisotropies ;=(X;/A3), i =1,2, where
A; is the largest eigenvalue of the moment of inertial ten-
sor. The sum, R;=3 (A, ), characterizes the extent of
the membrane in the embedding space in terms of its sur-
face area (~N). If the membrane is crumpled, one ex-
pects R g2~N Y, with an exponent v < 1. Alternatively, one
can use the fractal dimension d s [7] to relate the mass N
of the membrane to its size in the embedding space:

N~R, f. These two indices are related by v=2/d,. If
the membrane is a fractal object, one would also expect
the volume V of a vesicle to scale with N with another
nontrivial fractal dimension d: V~R:V.

The anisotropies I'; characterize the mean shapes of
the membrane. Although the overall ensemble average of
the membranes we simulate must be spatially isotropic, it
was noticed some time ago [20] that the mean shapes, re-
ferred, for example, to the object’s own principle axes of
gyration, are not. In fact, the values of I';, like the ex-
ponents d r and dy, characterize the universality class of
the object under consideration.

Figure 1 contains a plot of our data for the mean-
squared radius of gyration Rg2 and, for vesicles, the mean
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FIG. 1. Mean-squared radius of gyration Rg2 and vesicle

volume ¥V vs number of monomers N. The solid lines are plots
of RZ~Nand V~N.
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volume V versus the number of monomers. Averages
were taken over 107 to 4X 10’ Monte Carlo steps per
monomer. The data are consistent with R§~N Y, with
v=1, for both vesicles and open membranes. For vesi-
cles, we need to go to larger system sizes to see scaling.
In general, we find that the data for Rg2 are ‘‘noisier’”’ than
for the mean volume ¥ and that the data for V scale very
nicely already for moderate values of N. These results
imply d;=d,=2, values which characterize self-
avoiding branched polymer behavior [21,22]. Further-
more, typical configurations, such as the one shown in
Fig. 2, also exhibit the collapsed, treelike, ramified struc-
ture which characterizes this universality class. Note
that many of the branches collapse to the minimum-
allowed diameter (three-bond circumference for our algo-
rithm).

Our results for the anisotropies I'; =( A, /A;), as well
as the ratios of the mean values of the eigenvalues of the
moment of inertia tensor £, =(A,)/(A,), are shown in
Fig. 3. Only results for vesicles are presented because our
data for open membranes showed significantly greater
scatter. The finite-size corrections to these quantities can
be seen to be rather small; furthermore, our data are con-
sistent with a leading analytic correction term (1/N), as
is the case for branched polymers and lattice
animals in two dimensions [20]. Assuming
I,=r*(1+y;/N+ ---), we obtain '}’ =0.117+0.003
and I';=0.335+£0.006. The X are several percent
smaller. The crumpled vesicles are therefore prolate and
more anisotropic than branched polymers in two dimen-
sions. Although the I'; (and =;) are the most direct mea-
sure of the anisotropy, there are no results available for
these quantities with which to compare. For technical
reasons, the shape of fractal clusters has generally been
characterized in terms of expectation values of rotational-

FIG. 2. Typical configuration of a vesicle with N =607
monomers.
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FIG. 3. Anisotropies I';=(A;/A;) and =,=(A;)/(A;),
i=1,2vs 1/N for N =47, 127, 247, 407, and 607. The straight
lines are fits to the data.

ly invariant polynomials of 7,z [23,24]. Two quantities
which have been analyzed are

d ATrT?)

A =
4 d—1 ((TrT)?)
and
g = d? (TrT?)
T (d—1)0d—2) (TrT)?) ’
where ‘f'aﬁ= ‘Taﬁ—— Xﬁaﬁ, and A=(1 /d)2?= A

0=A, =1 is a normalized measure of the anisotropy. The
sign of —[1/(d —1)3]<S,;<1 determines whether the
object is oblate (S; <0), or prolate (S, >0); its magnitude
is a measure of the strength of the anisotropy. A linear
regression analysis of our data for these quantities aver-
aged over 2X 10’ Monte Carlo steps per monomer for
N =47, 127, and 247 yields A;=0.383%0.031 and
S§3=0.248+0.033, in excellent agreement with the results
A3;=0.39010.003 and S;=0.27%0.01 obtained by exact
enumerations of lattice animal clusters in three dimen-
sions [25].

Finally, we determine the spectral dimension d,
[8—10], which characterizes the connectivity of the ran-
dom surface. The standard way to measure d; is by
averaging over random walks performed on a sufficient
number of independent realizations of random surfaces of
various size. The mean-square displacement after ¢ steps
of a random walk on a surface consisting of N mcnomers
is expected to scale as [26,27]

([r(6)—r (O PY=N"f(t/N*'%),

where the scaling function f (x)~xd‘/df for x <<1 and
f(x)=const for x >1. For x <<1, the mean-squared
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FIG. ;I»}d The scaling function f(x)={[r(¢)—r(0)]?)/N" vs
x=t/N *,obtained using v=1and d; =1.25.

i d_/d . .
displacement scales as ¢ °~ 7, while for x >>1 it saturates
at a value proportional to the mean-squared radius of

gyration. The crossover time, 7~N ~ °, is the mean time
it takes for the walk to access all sites. The longest relax-
ation time 7y in our simulations is the characteristic time
it takes for a monomer to diffuse over the whole surface.
It therefore also scales with the same exponent, namely,
e~ N

In order to determine the spectral dimension, we have
averaged [r(z)—r(0)]? over 2N walk on 22 independent
realizations of vesicles of size N =127, 247, 407, and 607.
Taking v=1, we find that the data for
([r(£)—r(0)]*>> /N" collapse on a universal scaling func-
tion for d;,=1.2510.05 (see Fig. 4). This is in agreement
with the best estimate we know of for branched polymers
(d,=1.2) [28].

All these results are consistent with the conclusion that
randomly triangulated self-avoiding surfaces belong to
the self-avoiding branched polymer universality class.
This agrees with what was found for self-avoiding ran-
dom surfaces constructed from elementary two-cells (pla-
quettes) on a three-dimensional simple-cubic lattice
[29,30]. Since both discretizations yield the same scaling
behavior, it is reasonable to assume that the predictions
of these models provides an accurate description of the
behavior in the continuum limit.
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