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We present a computational method to determine if an observed time series possesses structure
statistically distinguishable from high-dimensional linearly correlated noise, possibly with a nonwhite
spectrum. This method should be useful in identifying deterministic chaos in natural signals with
broadband power spectra, and is capable of distinguishing between chaos and a random process
that has the same power spectrum. The method compares nonlinear predictability of the given data
to an ensemble of random control data sets. A nonparametric statistic is explored that permits a
hypothesis testing approach. The algorithm can detect underlying deterministic chaos in a time series
contaminated by additive random noise with identical power spectrum at signal to noise ratios as low
as 3 dB. With less noise, this method can also be used to get good estimates of the parameters (the
embedding dimension and the time delay) needed to perform the standard phase-space reconstruction

of a chaotic time series.
PACS number(s): 02.50.+s, 05.45.+b, 02.70.+d

I. INTRODUCTION

Deterministic chaotic processes can produce signals
with broadband spectra similar to random processes.
The chaotic system would have a finite-dimensional at-
tractor, whereas a truly random process ought to be in-
finite dimensional. Given observed data, a finite number
for the calculated fractal dimension of the supposed at-
tractor has been assumed to imply that a deterministic
process produced the time series in question. There are
biases, however, in commonly used dimension algorithms,
such as the Grassberger-Procaccia (GP) correlation di-
mension [1]. These algorithms seem to indicate a finite
dimension, even when presented with random noise. As
an illustrative, but not unique, example, Osborne and
Provenzale [2] numerically demonstrate that a stochas-
tic process with power spectrum 1/f* with 1 < a < 3
will result in a correlation dimension which converges to
D =2/(a — 1). Theiler [3] argues that this “anomalous
fractal scaling” is observed in some phase-space regimes
due to correlations between points that are close in time
index. In a colored random process, the short-time cor-
relations will produce an effect that will mimic a finite
correlation dimension. If one does not count those points
in the GP formula whose time separations are less than
the characteristic autocorrelation time, this anomalous
fractal scaling will be eliminated. There are known to
be other biases in the correlation dimension algorithm,
for example, the “edge effect” due to finite data samples
in high dimensions that biases downward the observed
value of dimension, a problem attacked by Dvorak and
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Klaschka [4]. This effect can make even white noise ap-
pear to have a finite correlation dimension, to say nothing
of colored noise. In any case, there is the question of how
to extract the dimension from a plot of “mass” versus ra-
dius, in other words, finding the proper “scaling region,”
which for the most part is done ad hoc (see Ref. [5]).
The Lyapunov exponent for a noise signal ought to be
infinite, in principle, but it is not clear how to use this
fact to create a practical and robust algorithm for distin-
guishing noise from chaos. Finally, the number of points
necessary to get good dimension estimates can grow ex-
ponentially with the fractal dimension, making difficult
the distinction between “medium-dimensional” chaotic
processes and noise. (See, however, [6].)

All the complications involved in getting a good di-
mension estimate motivate a search for a method to dis-
tinguish noise from chaos in an observed time series with-
out explicitly using a dimension algorithm. Our method
does this by using short-term predictability as a tool to
distinguish deterministic chaos from randomness. This is
aesthetically appealing as it emphasizes one of the fun-
damental distinctions between the two.

In brief, we compare the prediction error of the given
time series to the prediction errors, computed the same
way, of an ensemble of random time series which have
the same average power spectral density, and thus the
same autocorrelation, as the original data series. If the
prediction errors of the real time series are sufficiently
smaller than those of the random series we may reject
the null hypothesis that the input time series is noise.
This comparison with an ensemble of isospectral random
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time series, as suggested by Theiler (3], will fail to find
any difference when presented with linearly correlated
noise, of any power spectrum.

In practice, this depends on the assumptions that
one can perform the standard time-delay phase-space
reconstruction, and from that construct a predictor
that can approximate the dynamics of a supposedly
low-dimensional signal. The philosophical question of
whether some type of noise is truly “random” or merely
high-dimensional chaos is irrelevant for our purposes.
Our distinction between “noise” and “chaos” is deter-
mined by whether, in a practical setting, a prediction
function designed for low-dimensional chaos offers a pre-
dictive advantage over a collection of “control” data sets.
A deterministic, but sufficiently high-dimensional, data
set may not be distinguishable from noise by our algo-
rithm. This means that, for practical purposes, with the
given amount of data and the tools used, one would might
not find the methods of deterministic phase-space anal-
ysis significantly better than an analysis based on the
hypothesis of a random process.

One can also use this statistic as a criterion to get good
values of embedding parameters. One chooses the time
delay and embedding dimension so as to maximally en-
hance predictive ability compared to random time series
with the same spectrum. This selects a phase-space rep-
resentation that maximizes nonlinear predictability, but
only those representations that are highly predictable in
an “interesting” way.

II. THE PREDICTION ALGORITHM

The nonlinear prediction relies on the now stan-
dard time-delay embedding for reconstructing the phase
space [7]. Given an input scalar time series z(n), with
integer “time” n = 1,..., N, one forms vectors in d di-
mensions:

y(n) = (z(n),z(n+T),...,z(n+ (d-1)T)). (1)

The integer quantities T' and d being the time delay and
embedding dimension, respectively. The prediction prob-
lem is posed: given an input vector z € R that repre-
sents the current position in phase space, predict the next
scalar component 7 time steps ahead of the last compo-
nent of z. There is no barrier to predicting all the compo-
nents of the future image of z some 7 time units later, but
with a time-delay embedding as above, only the last com-
ponent provides information about the future state of the
system. Local information about the future evolution of
the close neighbors of z is used to predict the future evolu-
tion of z. Specifically, in our case, we find the single clos-
est neighbor (both Euclidean and L> metrics work fine)
y(n) to the reference point z. The predicted scalar, given
a fixed prediction interval 7 > 0, is z(n + (d — 1)T + 1),
the future iterate of the nearest neighbor to z. This lo-
cally constant predictor is the simplest form of the local
predictors discussed in Farmer and Sidorowich (8], and is
nearly too trivial to be called a “prediction algorithm.”
This choice is somewhat arbitrary and is motivated by
a desire for simplicity, reproducibility, and speed. More
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sophisticated methods could very well provide superior
results, though surprisingly, a brief investigation with lo-
cal linear and quadratic predictors [8], as well as with
radial basis function type predictors [9,10], did not show
significant improvements for our purposes. Those and
other methods require extra free parameters and entail
more computation and programming, so we concentrated
on the local constant predictor. In fact, using a phase-
space predictor as a distinguishing statistic is not a prior:
necessary, but we commend its use as it directly investi-
gates one of the principal differences between chaos and
noise, namely determinism.

We use a k-d tree search algorithm [11], as simplified
in Ref. [12], to rapidly accomplish the search for nearest
neighbors. The k-d tree is an extension to k dimensions
of the familiar binary tree data structure of computer
science. As suggested by Theiler [3, 13], we ignore those
neighbors whose time indices differ from that of the ref-
erence point by less than the autocorrelation time. This
eliminates the spurious enhancement of predictive ability
due to simple short-time correlations and has a similar
effect to evaluating the prediction error on a different
sample than that used to make the predictions, without
having to split a given data set into two or more parts
and suffer a loss in power due to fewer numbers of points.

We apply this prediction formula on every vector of the
data set y(j) to obtain a set of prediction errors. At every
point y(j) we compute the error e(j) involved in predict-
ing the next step forward, by first finding the nearest
neighbor in the data set of y(j), denoted by y(7;), and
computing the difference between the neighbor’s future
iterate and the actual evolution of y(j):

e =lz(mj+@-1)T+71)—z(G+d-1)T+7)|
(2)

With N scalar data points, one can compute predictions
on N — (d — 1)T — 7 vectors.

III. SURROGATE DATA

We create an ensemble of random time series (typi-
cally between 10 and 100 in number) of exactly the same
length and spectral magnitude, in the ensemble limit,
as the original scalar data set. With the input data se-
ries denoted as z(n) and its discrete Fourier transform as
X (k),

N-1
X(k) =Y z(j) exp2mink/N, (3)
n=0
we make M “faked” data sets, indexed by r € [1, M],
X" (k) = X(k)[§(k) + in(K)], (4)

where £ and 7 are independent, real Gaussian random
numbers with mean 0 and variance 1/2. The randomizing
numbers are not totally independent, though: we require
n(k) = —n(N — k) so that X7(k) = [X"(N — k)]*, thus
ensuring that the inverse transformation
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N-1
z'(n) = %f Z X7 (k) exp [-2mink/N] (5)
k=0

is purely real. This is the one-dimensional version of the
algorithm in Ref. [14], using simply the squared magni-
tude of the original signal’s Fourier transform as the in-
put power spectrum of the random process to simulate.
Each random time series z"(n) is embedded in the same
fashion as before, and from each of these, the predictor
errors e’ (j) are computed similarly.

There is a technicality. Due to central-limit behav-
ior, the probability distribution of the points z"(n) that
result from the inverse transform [Eq. (5)] tend to a
Gaussian distribution. The method as it stands can dis-
tinguish chaos from Gaussian colored noise, which is fre-
quently observed, but if the input signal z(n) is noise, but
with a strongly non-Gaussian distribution, the resulting
“faked” z"(n) data sets can sometimes be statistically
distinguishable from the original, therefore giving a false
positive result.

To alleviate this problem, we perform a “histogram
transformation” of the original scalar data set to obtain
an approximately Gaussian probability distribution func-
tion, before the embedding and calculation of the predic-
tion errors e(n). (Before computing each fake data set,
we redo this transformation.)

To accomplish this, we create a sample of Gaussian
random numbers the same size as the input data series,
and then sort both data sets in numerical order, making a
one-to-one correspondence between points with the same
index. This defines an invertible nonlinear scalar trans-
formation of the original time series to a new one, with
approximately Gaussian probability density. This trans-
formation locally preserves phase-space neighborhoods;
therefore, if the original series came from a dynamical
system, the dynamics will be preserved by this trans-
formation. Specifically, the Lyapunov exponents can be
shown to be invariant [15] under this transformation, and
thus by the Kaplan-Yorke formula [16], so ought to be
the fractal dimension. If, on the other hand, the original
time series is a random process, then so will be the trans-
formed one, but with Gaussian probability distribution.

As a check, we perform a two-sample Kolmogorov-
Smirnov test on the transformed input set and each fake
data set. If this statistic distinguishes the two (one-
dimensional) probability distribution functions with sig-
nificance greater than 95%, then we discard this fake data
set and create a new one. If this occurs very frequently,
it usually means that the input data set has a few Fourier
components much larger than the others, either because
of a very strong periodicity or because large power at low
frequencies. This means that our method of noise simu-
lation is not appropriate for the input data, and a new
one ought to be developed.

IV. THE STATISTIC

Our prediction formula is specifically designed for de-
terministic signals, and so should give comparatively bet-
ter predictions on deterministic data sets than on random
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ones. The crux of the algorithm comes down to com-
paring the sizes the prediction errors on the true data
set e(j) to the sizes of the errors on the faked data sets
e’ (j), r =1,...,M. One could, for example, examine
the ratio of the mean error of the true data set to the
mean error of all the fake data sets. When this ratio
is sufficiently smaller than 1, this implies that the true
data are more predictable than the fake data. But the
question remains, what is “sufficiently smaller” ?

Thus we reformulate the question as follows: Do the
two observed sample distributions of prediction errors
(from the true data set and from the faked data sets)
come from the same underlying distribution (the null hy-
pothesis that the input signal is noise), or are the true
prediction errors statistically smaller than the fake pre-
diction errors?

Unfortunately, all conventional statistical tests require
that the samples be independent, and this is not strictly
true in our circumstance, as, in principle, the prediction
at any one point is affected by all others in the same data
set. The only independent measurements come from in-
dependent data sets and thus, to be entirely rigorous,
one could use only a single measurement from the true
data and one from each fake data set. A very large num-
ber of fake data sets would need to be synthesized and
processed to achieve adequate statistical power, entailing
a huge computational cost. In practice, however, there
does not appear to be much correlation between predictor
errors whose reference points are sufficiently separated in
time. As an approximation, then we decimate the set of
predictor errors e(j) by a factor corresponding to the au-
tocorrelation time of the predictor errors (i.e., where it
drops effectively to zero), and then assuming that the re-
maining samples are independent. For nearly all cases we
studied, the autocorrelation time of the predictor errors
is much smaller than the autocorrelation time of the data
set itself. It seems that a rigorous justification of this pro-
cedure may be difficult, but it appears to be physically
reasonable and its success is borne out by experiment. If
this approximation is worrisome and computation cheap,
then one may always increase the time interval for the
decimation and then increase the number of surrogate
data sets to make up for the loss of power due to smaller
numbers.

With the decimated set of prediction errors on the real
data set denoted A, and the union of all decimated pre-
diction errors on fake data sets denoted B we form the
Mann-Whitney rank-sum statistic

N2 N3

U=)_> (4 -B), (6)

i=1 j=1

with N2 number of elements in A, N3 = M N3 the number
of elements in B, and © the Heaviside step function:
O(z) =1for z > 0and ©(z) = 0 for z < 0. This statistic
may be evaluated efficiently [O(N In N) time] by use of
a quick sort algorithm, and only depends on the relative
ranks of the samples of each set. For large N2 (which in
practical terms means a few tens), the quantity
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L U — NyN3/2
\/ % NaNs (N3 + N3 +1)

(7)

is normally distributed with zero mean and unit variance,
under the null hypothesis that the two observed samples
came from the same distribution. If on the other hand,
the samples in set A were smaller than those of B, in a
statistically significant way, we would observe small val-
ues of z. Thus, for example, if we observe a single 2 value
less than —2.33, we can state that we disprove the null
hypothesis at the 99% confidence level. In other words,
the probability that the two sets A and B were random
samples of the same (unknown) distribution is less than
a = 0.01. This statistic serves the equivalent purpose as
Student’s classical t-test, but does not assume an under-
lying normal distributions for each set. This is appre-
priate for our situation, as justified by numerical exper-
iment. (We have successfully used other distinguishing
statistics, such as the Kolmogorov-Smirnov test. That
test does not indicate which of the two distributions has
the larger or smaller elements, though.)

If one were to repeatedly compute the z values, cor-
responding to a range of time delays and embedding di-
mension, the probability that any of the z values exceed
that threshold under the null hypothesis is clearly larger
than 1%. Therefore, to maintain a set confidence level,
the limits on 2z get more stringent. With K repetitions
of the statistic the corresponding one-variable confidence
limit @ = 0.01 would need to be lowered. We conserva-
tively approximate the new the rejection threshold 2z,

Zo 2
/ 12 e “dz=0a/K. (8)
m

—00

Bearing in mind the approximations made in the method,
one ought to refrain from designating a given time se-
ries as having structure different from noise unless re-
sults indicated significantly enhanced predictability over
a range of time delays and embedding dimensions, as well
as increasing M, the number of “control” data sets, even
though technically a single statistic below the threshold
derived above indicates rejection.

V. NUMERICAL RESULTS

We apply the method to “data” generated from a de-
terministic three-dimensional model of Lorenz [17]:

it=—y?-2%—a(x-F),
y=zy —brz—-y+G, (9)
z=bry+zxz— 2.

We use the values a = 0.25,b = 4.0, F =8.0,and G = 1.0
where Lorenz points out that irregular behavior is en-
countered. The attractor has a numerically computed
fractal dimension d4 slightly greater than 2.5. This is
a more complicated attractor than the classical Lorenz
model [24]. We produced the data with a variable order
Adams integrator with a sampling time 6t = 0.05, with
N = 16384 samples of the x variable used as the univari-
ate time series. Figure 1 shows the z statistic [Eq. (7))
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FIG. 1. Statistic for Lorenz [17] data set, no added noise.

X axis is in multiples of the sampling time 7" = 0.05. Each
curve is for a different embedding dimension: d = 1 is the top
curve, with d increasing for successively lower curves.

as a function of time delay (in multiples of the sampling
time) and embedding dimension. We choose prediction
interval 7 to be 10 in these time units, about half the
mutual information time. This is the time for which the
average mutual information (see Fraser and Swinney [18])
reaches its first minimum, which is often used as a good
guess for a characteristic time scale, say as the time de-
lay for embedding. The method is not sensitive to the
exact choice of 7, within reason. The large negative z
values indicate that this data set is unquestionably de-
terministic. The statistic converges to its lowest value
for d = 5, which is consistent with other estimates of
embedding dimension [19], although using d = 4 would
probably cause little harm. There is a broad minimum
of acceptable time delays, perhaps from 10 to 30, that
result in the same level of predictability.

Figure 2 displays the same statistic when 10% (by am-
plitude) noise is added to the input data set. To demon-
strate the algorithm’s power, the noise signal has the

0p— —_— .

—_—
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[
T
F T T S S

0
Time Delay

FIG. 2. Statistic for Lorenz [17] data set, 10% added
noise. Noise has the same power spectrum as the original
signal.
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Z statistic

Time Delay

FIG. 3. Statistic for Lorenz [17] data set, 50% added
noise. Horizontal line is at 99% confidence level for rejection.

same power spectrum as the original (generated by the
method previously described), thus this noise cannot be
distinguished or removed from the original signal using
spectral approaches used in traditional linear signal pro-
cessing. The bottom plateau is raised above its previous
level, but almost all qualitative features are maintained.
Figures 3 and 4 show the cases of 50% and 75% noise,
respectively, where the horizontal line in these figures dis-
plays the 99% rejection threshold. For the first case, the
rejection of the null hypothesis is still significant for most
d > 1, over a wide range of time delays. The equal power
noise case shows the limit of the algorithm. There are
enough cases that exceed the rejection threshold to indi-
cate a deterministic element in the input series, although
the time delay and embedding dimension information is
lost. The second case, 75% noise, shows approximately
highest noise power at which one can still reject the null
in this system over a range of time delays and embedding
dimensions. To improve the performance for this run, we
used 30 fake data sets, three times the usual number, for
each point. With much more noise (negative signal-to-
noise ratios) we cannot reject the null hypothesis as the

Z statistic

5 10 15 20 25 30 3:5 40
Time Delay

FIG. 4. Statistic for Lorenz [17] data set, 75% added
noise. Horizontal line is at 99% confidence level for rejection.
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FIG. 5. Statistic for colored noise data set.
line is at 99% confidence level for rejection.

Horizontal

random noise swamps out the signal.

We have observed similar successes using other at-
tractors used in the dynamics literature, such as the
Hénon [20] and Ikeda [21] maps, as well as the
Rossler [22], Mackey-Glass [23], and Lorenz [24] attrac-
tors. In general, the algorithm can detect determinism
up to noise levels of about 50-100 %, depending on the
system, the type of noise, and how much computation
(in terms of the number of fake data sets) one is willing
to expend.

In comparison, we calculate this same statistic on data
from a first-order autoregressive random process:

z(n + 1) = 0.9z(n) + £(n), (10)

where the £(n) are samples of white Gaussian random
noise, zero mean and unit variance. We use N = 16384
points, M = 10 fake data sets, a prediction time 7 = 20,
and an autocorrelation cutoff of 200. These last two
quantities are estimated from the average mutual infor-
mation and autocorrelation plot in the same way that
one would do with a chaotic data set. Results are not
sensitive to the exact values, however. Figure 5 shows
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=30+ -— - —

<40t
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-80
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FIG. 6. Statistic for hysteretic nonlinear circuit data.
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FIG. 7. Statistic for wind velocity data. Straight horizon-
tal line is 99% rejection threshold.

the statistic as a function of time delay and embed-
ding dimension. Clearly, we do not reject the null hy-
pothesis that the data set is noise. We have obtained
similar results (acceptance of the null) with a number
of other random data sets, such as white uniform and
Gaussian numbers, 1/f® noise as considered by Osborne
and Provenzale [2] and Theiler [3], and colored random
processes with highly non-Gaussian probability distribu-
tion functions, such as log-normal. For the sake of brevity
we omit the graphs, all of which qualitatively resemble
Fig. 5.

Figure 6 shows the result of applying this technique
to 32768 experimental data points from a nonlinear
electronic circuit. The test emphatically distinguishes
the time series from noise, indicating a clean, low-
dimensional (dg = 4 or 5) chaotic system. Finally, Fig. 7
shows the application to a time-series measurement of
wind velocity at a fixed position [25]. Here there is no
rejection of the null hypothesis. Interestingly, though,
the statistic for embedding dimension 1 is lower than for
all higher embedding dimensions. Perhaps this indicates
possible nonlinear structure of the noise, which could po-
tentially also be distinguished from linearly correlated
noise in our test, though not clearly significant deter-
minism. These results are meant only as illustrations of
the technique, and are not the last word on these actual
physical systems.

VI. DISCUSSION AND CONCLUSION

In this work, we have demonstrated an objective test
to determine whether a given time series has determinis-
tic structure or is purely random, though possibly with
linear correlation. We term a time series to be deter-
ministic if we can practically observe more phase-space
predictability, in a statistically significant sense, than in
an ensemble of random time series with the same power
spectrum. This will point out where traditional linear,
spectral methods of analysis are not optimal, and where
a phase-space approach may be superior. The statistic
automatically adapts to changing sample size, requiring

a larger predictive advantage for a smaller data set in
order to reject at a given significance level.

One may use the statistic as a criterion for choosing
embedding dimension and time delay (or possibly any
other relevant parameters) for phase-space reconstruc-
tion: choose the reconstruction that maximizes the pre-
dictability, as defined by our algorithm. For the pur-
poses of embedding dimension, the essential mechanism
is the same as explored other recent work [19, 26]. If
one were to choose an embedding dimension that is too
small, there will be some regions of phase space where
truly separated points of the attractor, in terms of the
original dynamical system, are accidentally made close
by the embedding process. This results in what Kennel,
Brown, and Abarbanel [19] term “false nearest neigh-
bors.” The predictions made using these false neighbors
will be quite erroneous, and will contribute to increasing
the prediction error, and hence the z statistic. Once the
proper dimension has been reached, these errors will not
occur, and the statistic will stop dropping dramatically
with increasing embedding dimension.

For the purposes of determining time delay, the mech-
anism is not as clear. According to the mathematical
theorems [27, 28] that underlie the time-delay embed-
ding process, any time delay is valid, though of course
rigorously true only for the unphysical case of infinite
amounts of noise-free data. In a practical sense, though,
a range of time delays ought to work well, and this is of-
ten reflected in the broad minimum of our statistic as a
function of time delay. Using this method to obtain time
delays is simply a heuristic to satisfy some arbitrary, but
potentially useful, condition (maximize predictive abil-
ity compared to isospectral random processes) similar to
other proposed means, such as finding the first minimum
of the average mutual information [18], or the first zero
crossing of the autocorrelation function. In a general
sense, one can imagine how for very large time delays,
a chaotic signal can look more like noise, resulting in a
higher statistic, and how for very short time delays, the
signal can be mimicked by noise with finite autocorre-
lation, again resulting in higher values of the statistic.
It has perhaps the advantage of treating time delay and
embedding dimension, and possibly any other parame-
ters of a more sophisticated reconstruction, simultane-
ously. Liebert, Pawelzik, and Schuster’s method [26] also
makes claim to the same advantage, though their method
does not specifically address the question of noise.

Casdagli [9] has advocated using nonlinear prediction
(he specifically uses radial basis functions) to detect
chaos. He proposes examining the prediction error as a
function of embedding dimension. A clean chaotic signal
ought to show a large drop in prediction error once the
correct embedding dimension has been reached, whereas
a noise signal will not, in general. We have observed,
however, that prediction error can decrease with embed-
ding dimension even on random time series, and the er-
ror for a noise-contaminated deterministic time series will
not drop quite as radically as for a clean one, and hence
the distinction between the two may not always be ob-
vious. More recently [10], he proposes using a predictor
function possessing a parameter that can adjust the fit-
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ting model from a highly local predictor to a global one.
A noise signal should do as well with a global model as
with a local one, but a deterministic chaotic signal should
be more predictable with a local model.

Sugihara and May [29] have also used prediction as
a means of distinguishing chaos from noise. Essentially,
they examine prediction error as a function of time in-
terval ahead that one predicts, iterating a one-step pre-
dictor. A deterministic, chaotic time series will exhibit
increasing prediction error with increasing time step,
whereas for a noise signal (they only consider white noise)
the prediction error will be approximately constant. Dis-
tinguishing the two is done only heuristically. It seems
that this test will fail on correlated noise, as even in this
case, prediction error can be better for short times than
for long.

Brock [30] derives a statistical test on values of the
correlation integral to accept or reject the hypothesis of
white noise. Explicitly comparing an observed time series
with noise that has similar properties, such as probability
distribution and autocorrelation, is starting to become a
useful diagnostic tool for the analysis of observed data.
Early on, Grassberger [31] passed noise through a first-
order linear filter and showed it produced similar corre-
lation dimension statistics as a geophysical time series
previously claimed to be low dimensional.

Scheinkman and LeBaron [32] compare an observed
time series with temporally scrambled versions of the
same series, thus testing the null hypothesis of white
noise, but with the same probability distribution as the
original signal. More recently, Kaplan and Glass [33]
use the averaged directional vectors in a partitions of
phase space as a distinguishing statistic from autocorre-
lated random data sets and an analytic criterion based
on a random-walk hypothesis, though they do not test
their method’s sensitivity to noise. The methods out-
lined by Theiler et al. [34] are the most similar to those
presented here, the major difference being in our use of
predictor errors from many points in phase space instead
of the average prediction error as a distinguishing statis-
tic. Because the resulting increase in statistical power, we
should be able to achieve good results with substantially
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less computer time, though theoretically there is a poten-
tial for a false positive result. In addition, the surrogate
data sets used by Theiler et al. do not simultaneously
possess the same probability distribution function and
power spectrum as the observed set used to calculate the
statistic, though their transformed versions do. Their use
of local linear or polynomial predictors may be overkill as
a simpler local constant predictors appears to give simi-
lar performance. Theiler et al. also consider correlation
dimension as a statistic, but it would seem that the ex-
traction of a consistently good “scaling region” might be
too problematic to be easily automated.

Potential future enhancements to this method lie in the
area of developing new methods of generating surrogate
data, such as for multidimensional data sets (generate
random streams with identical autocorrelation and cross
correlation, as in Ref. [14]), or for new null hypotheses
such as noisy periodicity (extract a periodic wave form
and add noise).

In sum, we have presented a practical method to distin-
guish an observed data set from a linear stochastic pro-
cess with broadband power spectrum. The calculations
can be performed rapidly on common workstations and
show robustness in detecting determinism in the presence
high levels of additive observational noise. The statistic is
also useful in optimizing reconstruction parameters, such
as, but not limited to, time delay and embedding dimen-
sion in such a way that maximizes “nontrivial” nonlinear
predictability.
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