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Bistable chaos. II. Bifurcation analysis
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Results of a bifurcation analysis are given for the model of a Van der Pol—DuKng autonomous
electronic oscillator. The oscillator is described by three ordinary differential equations and consists
of a RC oscillator resistively coupled to an LC oscillator. The steady-state problem is described
by the unfolding of the quartic potential F = 4X —2+X + p,X, giving rise to the elementary
cusp catastrophe. We show how the bifurcation diagram evolves with p, and recover a "cross-
shaped diagram" reminiscent of the one obtained by Boissonade and De Kepper for the Belousov-
Zhabotinskii chemical system [J. Phys. Chem. 84, 501 (1980)]. We also show that nonzero values of
p, result in coexisting attractors with difFerent dynamics. Specifically, we show a limit cycle attractor
in one potential well coexisting with a chaotic attractor in the other well.

PACS number(s): 02.50.+s, 05.40.+j, 05.45.+b

I. INTRODUCTION

In this paper, we describe the bifurcation phenomena
arising in the circuit equations modelling the chaotic Van
der Pol Dugng —oscillator shown in Fig. 1. The bifur-
cations and dynamics in this oscillator are due to the
presence of the nonlinear negative resistor N whose I-V
characteristic we model with the polynomial

Itv(V) = v+ aV+ bV,

where a & 0 and b ) 0.
Previous investigations of this circuit and its variants

have assumed v = 0 and reported the main bifurcation
sequence shown in Fig. 2(a) [1—4]. The main sequence is
obtained by following a suitably chosen parameter path
in the (a, r ) plane (r is defined in Fig. 1). The sequence
begins with a symmetry-breaking transition (via a pitch-
fork bifurcation) from So to the conjugate attractors S+
and 8 . Both attractors undergo a Hopf bifurcation fol-
lowed by a sequence of period-doubling bifurcations to
chaos. The bifurcations from the S+ and S branches
occur at the same parameter values. This region of bista-
bility ends with a symmetry-increasing bifurcation [5, 6]
(via a crisis) to a single chaotic attractor Co. A one-
parameter family of the described bifurcation sequences
is expected to contain an element for which the pitchfork
and Hopf bifurcations occur at the same parameter value.
This bifurcation has generically codimension-2 and it has
first been described by Takens [7, 8] and Bogdanov [9]. It
is known as a Takens-Bogdanov (TB) bifurcation.
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The above bifurcation sequence possesses reflectional
or Zz symmetry and is not preserved by small pertur-
bations (i.e. , it is nongeneric). It is nongeneric because
the pitchfork bifurcation from So to S+ is nongeneric.
Physically this means that small symmetry-breaking ef-
fects are present and corresponds to v g 0 in model (1.1).
The generic picture for the pitchfork is given by the el-
ementary cusp catastrophe. In this paper we show that
the presence of the cusp catastrophe in the steady-state
problem gives rise to the bifurcation sequence shown in
Fig. 2(b).

The paper is organized as follows. In Sec. II we de-
scribe three nonlinear circuits obtained as limiting cases
of Fig. 1, and the TB singularity since it plays an essen-
tial role in later sections. We also show that the equa-
tions for one of the circuits can be transformed into the
model used by Boissonade and De Kepper [14] to inter-
pret bistability and oscillations for chemical reactions in
continuously stirred tank reactors.

In $ecs. III and IV, we give our analytic and numerical
results for the chaotic Van der Pol oscillator. In Sec. III
results for the symmetric system (p, = 0) are given. We
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FIG. 1. Circuit diagram for a chaotic Van der Pol—DuKng
oscillator.

FIG. 2. Main bifurcation sequences obtained along a
curve in the (a, r ) plane: (a) symmetric bifurcation se-

quence (v = 0); (b) asymmetric bifurcation sequence (v g 0).
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find a TB line of codimension-2 in the parameter space.
This line contains a degenerate point of codimension-
3 where a change of stability occurs. As described in
Guckenheimer and Holmes [10], several codimension-1
bifurcations (pitchfork, Hopf, homoclinic, saddle node of
limit cycles when Z2 symmetry is assumed) meet at a
codimension-2 degeneracy of the TB type. Homoclinic
bifurcations and saddle node of limit cycles are global
bifurcations and as such they require numerical meth-
ods to be tracked away from a small neighborhood of the
codimension-2 point. In our numerical experiments the
value of one of the parameters has been fixed so that
we are left with a two-dimensional parameter space that
intersects transversally the TB line. In Sec. IV, we use
numerical simulations to obtain a bifurcation set for the
asymmetric system. Again one of the parameters is fixed
(the same as in Sec. III). Now we are left with a three-
dirnensional parameter space that intersects transversally
a TB cusped sheet. The bifurcation set will be described
by restricting to several two-dimensional sections.

Finally we give our conclusions in Sec. V.

'g L

(b)

II. CIRCUITS AND SINGULARITIES

In this section we describe three limiting cases of cir-
cuit 1. By analyzing the model equations we find singu-
larities that are also present in the chaotic Van der Pol-
Duffing oscillator. There is a considerable advantage to
this approach. By taking the limits we get simpler sys-
tems. Some of the complicated behavior of circuit 1 is no
longer present, which makes easier the concentration on
the singularities. Altogether these limits give a good in-
tuition for what is going to happen in the full system and,
furthermore, introduce some machinery in an organized
way.

A. Limiting cases

The three nonlinear circuits shown in Fig. 3 are ob-
tained as limiting cases of Fig. 1. The circuit equation
for Fig. 3(a) is

1
Vi = — (bVi +cvi+ v)

which may also be written as

1 F
1 =

where F is the potential

F(Vi) = 4ibVi + zaVi + vvi.

The steady states of this circuit are completely charac-
terized by the canonical cusp catastrophe.

We recall some results from elementary catastrophe
theory [11].Given the potential F, the equilibrium man-
ifotd M is defined by the equation

where the subscript x indicates that the gradient is with

FIG. 3. Three nonlinear circuits embedded in the chaotic
Van der Pol—Duffing circuit: (a) nonlinear RC circuit; (b) Van
der Poi oscillator; (c) Van der Pol-Duffing oscillator.

respect to the state variables. In the present case this
yields for M the equation

bV& + aVj + v = 0.

By varying the control parameters a and v the familiar
folded surface of the canonical cusp catastrophe mani-
fold may be generated. The folds of this surface when
projected onto the (a, v) plane yield the cusp

Inside the cusp the potential F has two minima whose
relative depth is determined by v. In this region the
system is said to be bistable.

The circuit in Fig. 3(b) is a Van der Pol oscillator and
may be obtained from Fig. 1 either by setting Ci = 0 or
r = 0. Assuming r = 0 yields Van der Pol's equation

~ 1
Vi = — (bVi +avi+ v+ Il,),

1
0

II. = —Vj,

which in more familiar form is

V, + (o+3bViz) V, + V, =0.
1 1

The bistability present in the previous circuit has dis-
appeared (but see Zeeman [12] for a catastrophe theory
interpretation).



3102 M. G. M. GOMES AND G. P. KING 46

The circuit in Fig. 3(c) is a Van der Pol—Duffing oscil-
lator. The circuit equations are

Vi = — (bVg + «& + IL, + ~),
1

Vg r
II. = ———II..L

(2.1)

The reader will note that there is little difference between
the circuits of Figs. 3(b) and 3(c). Nevertheless the in-

troduction of the resistor r has a profound effect: Not
only is bistability recovered but, as will be shown be-
low, we also have a cusped curve of TB codimension-2
bifurcations (TB cusp).

B, A Takens-Bogdanov cusp

Before discussing system (2.1) further, we bring it into
dimensionless form with the scaling

FIG. 4. Bifurcation set unfolding a Takens-Bogdanov
point with Zp symmetry. Crosses are saddle points, black

(gray) dots are stable (unstable) steady states, and solid

(dashed) loops are stable (unstable) limit cycles.

and the region where F has a double well is inside the
cusped sheet

X= bL

C Vi. bLr
L~

r
7 = —t,

L '
(p)

~ (a —I'5
(2.6)

which yields the system

X=-(X' —nx+ p, ) —rZ,

Z=X —Z,

(2.2)

In addition to steady states we also have oscillations. The
coincidence of steady-state and Hopf bifurcations now
occur to yield a TB cusp.

C. A cress-shaped diagram

—L
A = G)P =

rCg

bL3 L
sCsv, and I' =

r r

For ease of interpretation we write system (2.2) as the
second-order equation

X+ —(n —1) +3X X+ = 0, (2 3)

where F is the potential

P(X) = 4X —s(n —I')X + pX. (2 4)

When p, = 0 the potential F has one minima for o, & I'
and two minima of equal depth for n ) I'. In the physics
literature the point n = I' is called a "second-order phase
transition" point. Examination of the friction term in

Eq (2.3) sh.ows that there is another "phase transition"
leading to the onset of oscillations with critical point o, =
1. The two critical points coincide at (n, I') = (l, l).
In the bifurcation theory literature this critical point is
often referred to as the "nilpotent linear part" or the
"Takens-Bogdanov codimension-2 singularity" (see Fig. 4
and Chap. 7 of Guckenheimer and Holmes [10)).

When p, g 0 we have, in regards to the steady-state
problem, the same situation as for our first nonlinear
circuit above. Now the equilibrium manifold is given by

X' —(n —r)X+ ~=0 (2 5)

where differentiation is with respect to ~ and the three
parameters are

A complete picture of the bifurcation set of system
(2.1) is given by showing that this system is equivalent to
a class of models of chemical reactors described by Guck-
enheimer [13] and used by him to correct some features
in Boissonade and De Kepper's "cross-shaped diagram"
[14]. The cross-shaped diagram derives its name from the
crossing of two curves in the (p, I') plane which divides
the plane into regions with oscillations, one stable steady
state and bistable steady states. The cross-shaped dia-
gram was used by Boissonade and De Kepper to summa-
rize some general relationships between bistability and
oscillations for chemical reactions in continuously stirred
tank reactors. They introduced model (2.2), where X
and Y denote concentrations of chemical species, as a
schematic representation of circumstances where a reac-
tor which has two stable steady states can become oscil-
latory.

For ease of exposition we proceed by giving a summary
of Guckenheimer's analysis. System (2.2) commutes with
the action of the group Z2,

(X, Z) ~ (—X, —Z)

if and only if p = 0. In this symmetric case the steady
states are

(0, 0) if n & I'

(0, 0) and (+v'n —F, +v'n —I ) if n & I'.

Thus there is a pitchfork bifurcation when n is increased
past I'. The characteristic polynomial of the lineariza-
tion about the origin is A2 + (1 —a)A + (I' —a). Thus
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the circuit, Il, is the current through the inductor, Ci
and Cs are capacitances, and r is the coupling resistor.
If v = 0 this system commutes with the action of the
group

(Vi) V2& IL) ~ ( Vl~ V2) IL).

For subsequent analysis it is more convenient to rescale
as follows:

X = vbrVi, Y = WbrVz,

Z = V'brsIL„
r 2

FIG. 5. Inside the box: Guckenheimer's cross-shaped dia-
gram for system (2.2). Lower-case letters correspond to phase
portraits from Fig. 13. Only regions of bistability are labeled.
Other labels represent bi%.rcations listed in Table I. Outside
the box: cusped sheet dividing the parameter space according
to the number of steady states and section where the cross-
shaped diagram is found.

By linearizing about this point we find a TB bifurcation
at I' = 1. On a section of constant o. ) 1 the bifurcation
set is the "cross-shaped diagram" given in Guckenheimer
[13j and reproduced here in Fig. 5.

III. THE SYMMETRIC SYSTEM

We now proceed with the bifurcation analysis of the
chaotic Van der Pol—Duffing oscillator. Applying Kir-
choff's current law to Fig. 1, we obtain the equations

t'
Vi ——— bVi +

~

a+ —
I

Vi +
~

v ——V2
~r)

1 1
Vs = —(Vi —V2) —Ir,

C2 r (3 1)

where the variables Vj and Vp are voltages produced by

(0, 0) undergoes a Hopf bifurcation when o. = 1, I' ) n.
There is a TB singularity at (n, l') = (l, l). The lin-
earization about (+go. —I', kgn —I') has characteristic
polynomial A2 + (2n —3I'+ 1)A + 2(n —I'). Thus the
nontrivial steady states undergo a Hopf bifurcation when
2n —3I'+ 1 = 0, o. ) I'. Nonlinear analysis is required
for the stability calculations. These are performed in
Guckenheimer's paper and the resulting bifurcation set
for p, = 0 is shown in Fig. 4.

To complete our picture we need to see how the bi-
furcation set in Fig. 4 evolves as we vary p. It can be
seen that steady-state bifurcations occur by crossing the
cusped sheet (2.6) in the (ci, I', y,) space. This bifurcation
is a pitchfork if p = 0 and a fold if p P 0. At a fold point
the state is

o. —I' a —I')
sgn(&) 3 sgn(p)

obtaining the system in the form

X = —p Xs —nX+ (y, —Y)
Y=X —Y —Z,

Z=PY,
(3.2)

where differentiation is with respect to r and the four
parameters are o, = —(1+ar), P = Csr2/L, p = v'brsv,
and p = Cs/Ci. Note that P and p are positive by
definition.

In order to understand the bifurcations of system (3.2),
it is first necessary to analyze the symmetric system.
Therefore in this section we set p = 0 and use local and
global methods to find the bifurcation set in the (a, P, p)
space of the symmetric system

X = —p(Xs —nX —Y),
Y= X —Y —Z,

Z=PY.

The steady states are given by

(3.3)

S = (0, 0, 0),
S+ = (+~n, 0, +~a) if'&0.

Thus, there is a supercritical pitchfork bifurcation giv-
ing rise to a symmetric double-well potential when o. is
increased past zero.

This section is divided into four subsections. The first
three subsections use local methods to obtain a partial
bifurcation set for system (3.3). The first subsection is
concerned with a stability analysis for the symmetric sys-
tem. We find a Hopf bifurcation of Se and give its criti-
cality with respect to the bifurcation parameter P. There
is also a Hopf bifurcation of S+. These two Hopf lines
meet the pitchfork line at a TB point with Z2 symme-
try. In Sec. III 8 a reduction to a two-dimensional center
manifold is performed near the Z2-symmetric TB point.
In Sec. IIIC a complete description of the linearization
about each steady state is given. By Glendinning and
Sparrow [15], the eigenvalues of the linearization impose
conditions on homoclinic orbits if they exist. For any
fixed p P 1, the center manifold analysis of Sec. III B
proves the existence of at least one line of homoclinic or-
bits in the (a, P) space. Following Glendinning and Spar-
row, the (n, P) space will be divided into distinct regions
according to the possible types of principal homoclinic
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orbits. Finally in Sec. III D we complete the bifurcation
set with global results obtained from numerical investi-
gations.

A. Stability analysis

The Jacobian matrix of system (3.3) is

J(X, Y, Z) = (—p( —n+ 3X')
1
0

There is a Hopf bifurcation of SP corresponding to eigen-
values +i~q, Aq where

Aq
——ap —1,

~, = —np (1+n),

along the intersection of the parabola

P = p(l —np)(1 + n) (3.4)

with the region —1 ( o. & 0. In this region Aq ( 0,
and thus the system reduces to a two-dimensional center
manifold near the parabola Eq. (3.4). In order to have a
three-dimensional center manifold we also need Aq = 0.
This is prohibited in the present problem since Aq = 0
implies o. = —) 0 which contradicts the condition —1 &
+&0.

System (3.3) has a TB bifurcation when the reduced
system has a nilpotent linear part. This happens when
aq ——0 which occurs for (n, P) = (0, p) for each p ) 0.
We will return to this point in Sec. III B. A TB bifurca-
tion also occurs for (n, P) = (—1,0). This point lies on
the boundary of our domain and must be investigated by
approaching the limit P ~ 0. In terms of the physical
parameters this limit can be achieved by taking r —+ 0
or C2 ~ 0 or L + oo. We do not pursue this question
further.

We now proceed with the linearization about S+.
These undergo a Hopf bifurcation, with eigenvalues kiu2,

Ag ———2np —1,

~2 =2np (1 —2n),

along the intersection of the parabola

(3.5)

with the region 0 ( a ( 2. Since A2 = 0 implies

& 0, we are again unable to obtain a three-
dimensional center manifold. Note that there are dou-
ble zero eigenvalues when o. = 0 or z, a = 0, implying

P = p, coincides with the TB point found above. The
case (a, P) = (z, 0) again requires an investigation of the
limit P ~ 0 and is not pursued further.

In order to compute the criticality of the Hopf bifur-
cation from S, we apply the coordinate change

such that

I
l'Edy 0 0 )

P LP=
~

0 —iu)g 0

( 0 0 Ag)

where I = J(S ). Note that this preserves the Z2 sym-
metry

Z)X ~ —Z) —X

Every ordinary difFerential equation with this symmetry
and the correct linear part is

z = xldyz + cpz + cyz z + c2zz + csz + dpxz

+dyxzz+ d2xz + epx z + eyx z + fpx + O(5),
x = Agx+ (hpz + hpz ) + (hgz z+ hgz z)

+(jpxz'+ jpxz') + (kpx'z+ kpx'z) + lpx'+ O(5).

Changing coordinates once more by

C() 3 Cg g C3p=z — . z + . zz + . z
2lMy 21&y 42M(

which also preserves the symmetry, and making x = 0
we get

j=uugp+ cgp p+ 0(5).

So the only important coeKcient is Re(c&) and the limit
cycle created at the Hopf bifurcation is unstable or stable
if Re(cq) is ) 0 or & 0, respectively. This is why cq is used
to determine criticality. A straightforward calculation
gives

3+~~ps(p + 2o.p —1)
2(np~ + 2np —1)

Thus Re(cq) ) 0 or & 0 if o. ) or & 2p (1 —p), respec-
tively.

In Fig. 6, a partial bifurcation set in the (n, P) space
summarizes these results for p & 1. It shows the pitchfork
P, the Hopf bifurcation H of SP, and the Hopf bifurcation
h from S+. The point where H changes criticality with
respect to the bifurcation parameter P is shown as H'.
Note that H' exists if and only if p & 1 coinciding with
TB when p = 1. This allows us to predict the existence
of a critical Hopf bifurcation h' of S+ somewhere along
the parabola h coinciding with TB and H' when p = l.

When p & 1, the phase portraits around the TB point
are obtained by changing the stability of all the equilibria
in Fig. 6 (see Fig. 4). In this case, the understanding of
the behavior in a small neighborhood of TB is all we need.
Other stable equilibria are not expected no matter how
far we go from this point in the parameter space. This is
why from now on we concentrate on the case p & 1.

B. A two-dimensional center manifold

In this section we make use of results in Guckenheimer
and Holmes [10] which we abbreviate here by GH.

We now turn our attention to a study of the neighbor-
hood of the TB point (a, P) = (0, p) where the lineariza-



BISTABLE CHAOS. II. BIFURCATION ANALYSIS 3105

H

PHm

FIG. 6. Partial bifurcation set obtained

p)/2p, (1+p) /4). h' has not been com-

(~ P) = ((~ —1)/4~ (1+~)'/4)» ~ d~
creases towards 1, both 0 and Q move to-
wards TB.

0.5

x = y+O(5),
y = axs+ bx2y + O(5), (3.6)

in the center manifold, which in the context of Z s
metry is unfolded by

ex 0 g sym-

x = y+O(5),
y = viz+ v2y+ axs+ bx2y+ 0(5), (3.7)

ifa b 0. rma orm in t' eifurcation sets of this normal f
(vi, v2) space are given in Carr [16] and GH. Comparin

b ac
with the partial bifurcation s t ' F' . 6,se in ig. 6, we see that

y a center manifold reduction we m t bt '

of the form (3.7) where a ( 0 d b h
mus o tain a system

—1. Re
we expect (n, p) = (0, 1) to be a degenerate TB point.

completion near TB as in GH has b

i urcation PHm, a saddle node of limit c cles PSN
the stabilit o

' '
y of the Hopf bifurcation h from 8+. There

remains the question of how th 1r ' '
ese resu ts appear in a

wher
g o a i rcation picture. We return to th' '

So is in haec. IIID

~ ~ ~

w ereweconcentrateonthecase ) 1
' fsince for this case

numerical simulations reveal more int t' b h

y computing the third-order approximation of the re-
duced system we get

x = y+O(5),
y = V'x'+ 3V'(V —1—)x'y+ O(5)

which is three-determined if and only if ~ 1. Thi
p iction of a degeneracy at p = 1. Further-

i p~~. iscon-

more, we can also con6rm that under the '

dition p & 0 the onl
a un er the imposed con-

e only degenerate point is (n P) = (0 ).
ain its codimension we compute the fifth-

order approximation of the reduced s t f
obtaining

sysem or p = 1

(3.8)

tion of system (3.3) about Sc h d b
~ ~

as a ou le zero and a
negative eigenvalue. The corresp d'spon ing eigenspaces are

Ep = ((X,Y, Z) [X —Y —Z = 0),
E i=((XYZ)]X+pY=O, X —Z=0 .

Thus the s stem redy duces to a two-dimensional center
manifold, which is tangent to X —Y —Z =

B GHas '
a ou ezeroy a system with Z2 symmetry and a double zero

eigenvalue reduces to a normal form

x = y+0(7),
y = —xs+ 3xs —9x4y+ O(7),

which is full detey rmined. According to the normal form

to a codimension-3 degeneracy.

(3.9)

C. Restrictions on homo 1'c 1nlc or its

In this section we make use of results in Glendinning
and Sparrow [15] which we abbreviate here by GS.
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( . ) exhibits Hopf bifurcations

y tates, a homoclinic connection to
, an a saddle node of limit cycles near TB

= (,p). s codimension-1 bifurcations, each of
these occurs along a line in the n s

u e op ifurcation lines was given in Sec. III A,

e inearization of the system about the saddle oint
gives information about beh

'
h

' ' '
. n

a Zq s mmetr
e avior near homoclinicity. In

a 2 symmetry context, Glendinning [17] shows th 'f
the Silnikov conditions

ows at i
i ions on the eigenvalues are satisfied

then infinite sequences of saddle-n d
aild

e-no e, period-doubling
an symmetry-breaking bifurcat' dions an more corn li-
cated homoclinic orbits must exist.

p-

th
G consider homoclinic orbits t t di s o s ea y states at which
e linearization of the system h

A, where A ) m as eigenvalues —p 6 ku,

and describe
, w ere p, A ) 0 and~ real.

Theydefine

th t'era io

in
ibe a sequence of bifurcation bt '

d b
'

g a parameter along a line of con t b

ibe ' ' so aine yvar-
cons ant near principal

omoc inicity. A omoclinic bifurcation f S'l 'k

yp
' ( 1, and it involves stable or unstable orbits if

& or (
&

respectivel . In
can e varied. Thus, results of GS apply to the two-
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In order to check Silnikov's condition we need to be in
a region of the parameter space where the linearization
J(So) of system (3.3) about So has a pair of complex
conjugate eigenvalues. Denote P(A) as the characteristic
polynomial of J(So). This has a double eigenvalue when

P(~) = "'(') =0.
dA

A straightforward calculation shows that this happens
along the cusp

ac+ aiP+ a2P'+ P' = o,

ai = $1[(1—~7)'(1+~) + 67(1+&)' —2(1 —~7)'~
—6(l —np) (1 + n) o.p]

a2 =
4 [

—(1 —o.p) —12'(l + n) + 27n p
+3(1 —~~)~~]

This cusped curve is schematically represented as DE
(for double eigenvalue) in Fig. 7. It divides the (ci, P)
space into two regions according to the number of com-
plex eigenvalues. Inside the cusp all three eigenvalues are
real and outside there is a complex conjugate pair.

We also have that any given 6 g 2 is constant along
the curve

1,( — &)'-&( + )

and b =
2 if and only if n = —'. The curves 6 =

2 and
b = 1 are also shown schematically in Fig. 7.

We are left with the question of where the homoclinic
line goes when it leaves a small neighborhood of the TB
point (n, P) = (0, p). This is one of the probleins ad-
dressed in Sec. III D. That information together with the
analysis of the eigenvalues in this section will be enough
to show the existence of Silnikov behavior near the seg-
ment of the principal homoclinic line that is in the region

& 1.

5=1 5 1/2

D. Global results

So far we have used local methods of bifurcation anal-
ysis applied to system (3.3). The information obtained
there will be completed here by numerical methods. More
precisely, the TB bifurcations found at (n, I9) = (0, p) for
any p imply a line of homoclinic orbits in the (a, P) space.
We now need to use global methods to determine the evo-
lution and eKects of this homoclinic bifurcation far away
from the TB point. Also, given the change of critical-
ity of the Hopf bifurcations H and h, we expect, in the
(n, P) space, lines where the created limit cycles undergo
saddle-node bifurcations. These lines meet H and h at
H' and h', respectively, and as global bifurcations they
could not be followed by local methods in the previous
sections.

In this section, results of numerical integration of
model (3.3) are described. The computations were car-
ried out using a fourth-order Runge-Kutta algorithm,
and most were done on a FASTec ATILT-DSP32 based
coprocessor board attached to a personal computer in sin-
gle, i.e. , 32-bit, precision. By this procedure we describe
dynamics related to global bifurcations, namely, saddle
node of limit cycles, period-doubling, and collision of at-
tractors. Double precision calculations were used as a
check on selected bifurcations.

All the results will be presented in the (o., P) space for
fixed values of p. Also here we assume p ) 1 for the
reasons stated before. The value p = 100 will be used in
this section.

The homoclinic bifurcation PHm whose existence was
proved near (n, P) = (0, p) by center manifold techniques
and results in Carr and Guckenheimer and Holmes has
been followed. Results for the location of this principal
homoclinic line in the (n, P) space are shown in Fig. 8.
Also shown in the Bgure for comparison are the results of
the analysis of the linearization at 9 given in Sec. III C.
We see that the homoclinic line crosses the cusp DE (dou-
ble eigenvalue) where a pair of eigenvalues changes from
real to complex conjugate.

Figure 8 also shows the principal homoclinic line go-
ing into the region where the Silnikov condition 6 ( 1
is satisfied. By Glendinning [17] this implies infinite se-
quences of saddle node of limit cycles, period-doubling

105

-0.5 0.5
100—

FIG. 7. Critical eigenvalue curves. J(S ) has a pair of
complex conjugate eigenvalues outside the cusped curve DE.
If there is a homoclinic bifurcation to 8 in the subregion out-
side DE where 6 ( 1 (to the right of 6 = 1) this bifurcation is
of the Silnikov type. In the region 2 & 6 & 1 the limit cycles
are expected to be of arbitrarily large period near homoclinic-
ity, and in the region 0 & 6 & 2 the limit cycles are expected
to be unstable.

95
0.00025 0.0005

FIG. 8. Principal homoclinic line to 8 . There is a homo-
clinic bifurcation to S by crossing the line PHm. It goes into
the Silnikov region (above DE and to the right of 6 = 1).
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FIG. 9. Bifurcation set at p = 100 and p, = 0. The at-
tractors before and after a symmetry-increasing bifurcation
are also shown. Before the symmetry-increasing bifurcation
(n, P) = (0.35, 700) and after (n, P) = (0.35, 300).

and symmetry-breaking bifurcations, and more compli-
cated homoclinic orbits occuring nearby. These bifurca-
tions occur along codimension-1 lines in the (cr, P) space
and therefore they are expected to cross. We have nu-
merical evidence of a codimension-2 degeneracy when a
saddle node (SN) of limit cycles and a period-doubling
(PD) bifurcation undergo a PD-SN interaction. This
point is not fully understood. We describe our obser-
vations here and keep the problem under investigation.
Preliminary results suggest a change of stability of the
period-doubling cascade. This also suggests a mechanism
for the change of stability near the principal homoclinic
bifurcation at 6 = ~.

We proceed by describing some bifurcation sequences
obtained by fixing cr and decreasing P from a value suffi-

ciently high to catch the whole variety of bifurcations.
The line PD in Fig. 9 represents the beginning of a
period-doubling cascade bifurcating from the stable limit
cycles created at the Hopf bifurcation h or at the sad-
dle node of limit cycles hsN depending on the value as-
signed to a. A homoclinic bifurcation CHm has been
found far from principal hornoclinicity. This is a homo-
clinic bifurcation of one of the limit cycles created in the

FIG. 10. Principal homoclinic lines to S and S+. The
homoclinic line PHm to S meets the TB point. The homo-
clinic line nHm to S+ does not meet this point.

period-doubling cascade starting at PD. There is a PD-
SN interaction when PD meets hs . Also CHm appears
to meet this point. This homoclinic bifurcation CHm
plays an important role outside the parabola of Hopf bi-
furcation from S+. These steady states are sinks in that
region and 9 has a one-dimensional unstable manifold
that goes into their basins of attraction. This implies
that when the first homoclinic line is crossed by decreas-
ing P, the orbit goes into one of these sinks, rather than
into the large stable periodic orbit that has just been
created as a result of the homoclinc bifurcation.

The stable periodic orbit obtained by the sequence of
bifurcations described above dies in a saddle-node of limit
cycles along the line CSN. We remark that PD, CHm and
CSN do not meet the TB point (O, p). If they did, then
this would contradict the existence of a two-dimensional
center manifold. Healey et al [3] have e.xperimental evi-
dence that PD folds over before getting into a sufficiently
small neighborhood of TB and that it stops being observ-
able at a PD-SN interaction.

We now have a picture of how the Hopf and homoclinic
bifurcations whose occurence was shown near (cr, P) =
(O, p) evolve as we leave a small neighborhood of that
point. The saddle node of limit cycles proved to exist
near (0, p) by a center manifold reduction in Sec. III has

TABLE I. Notation for bifurcations.

P
SN
H
h
H'
TB
HsN

p
SN

PD
PHm
CHm
nHm
PSN
CSN

pitchfork bifurcation
saddle node bifurcation
Hopf bifurcation from S
Hopf bifurcation from S+
degenerate H where a change of criticality occurs
Takens-Bogdanov bifurcation
saddle node of limit cycles created at H
saddle node of limit cycles created at h
period doubling of a stable limit cycle created at h or h
principal homoclinic bifurcation to S
first homoclinic bifurcation to S crossed by decreasing P (crisis)
homoclinic bifurcation to S+
saddle node of limit cycles involving one created at PHm
saddle node of limit cycles involving one created at CHm
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not been followed and is not included in Fig. 9. The
bifurcation set now includes some behavior not associated
with (0, p), namely PD, CHm, and CSN.

Also in Fig. 9 is the line Hs where the limit cycles
created at the Hopf bifurcations H from 8 undergo a
saddle-node bifurcation. The line H meets H at a
codimension-2 Hopf bifurcation H'. This point is not
shown in the figure but it can be recalled from Figure 6
which shows the analytical prediction for its location.

Homoclinicities to 8+ have also been found. Figure
10 h s a line nHm where these principal homoclinics ows a

1 ho-connections occur in the (n, P) space. The principa o-
moclinic line to So is also shown for comparision. We
observe that, by the center manifold analysis in Sec. III,
nHm does not meet the point (0, p).

The labels corresponding to bifurcations presented up
to this point are listed in Table I.

IV. UNFOLDING THE DOUBLE VfELL

In this section we consider the effect of the symmetry-
breaking parameter p, on the results described in Sec.. III.
For convenience we reproduce the model here:

and that system (3.7) in Sec. III B is the normal form for
the universal unfolding of the most generic Z2-symmetric
TB singularity. In order to break completely the symme-
try of the reduced system (3.7), we need the parameters
(pq, p2). The nonsymmetric universal unfolding is

x = y+O(4),
(4.3)

y = p, q+ pox + vox+ vzy+ ax + bx y+ 0(4),
if a, b g 0. This family of planar systems is described
in Dangelmayr and Guckenheimer [18]. These authors
divide the (pt, p2) plane into regions bounded by curves
along which codimension-3 bifurcations occur. To each
of these regions is associated a bifurcation set in the
(vt, v2) plane. By varying the symmetry-breaking pa-
rameter p of our system, we will be describing a hne in
the (p, t, pp) plane. By center manifold calculations near
(n, P, p) = (0, p, 0) we see that system (4.1) reduces the
normal form (4.3) with p2 = 0. By a change of coordi-
nates we can show equivalence with a time reverse of the

X = —p(Xs —nX —Y + y),
Y=X —Y —Z,

Z =PY.
(4.1)

(a)

As in Sec. III we fix p at some value & l. A bifurcation
picture will be given on sections of the (n, P, p) space.
For each fixed P there is a steady-state bifurcation when

we cross the cusped sheet (&z) = (sj as in Fig. 11 by
increasing n. This bifurcation is a pitchfork if p, = 0 and
a saddle node if p g 0. The state of the system at a
saddle-node bifurcation is

A A
(X, Y, Z) =

I
sgn(u) 3, 0, sgn(q) (4 2)

where n & 0. I inearizing about these steady states we

see that the Jacobian J (k~&, 0, +~& does not de-
pend on n. So for p g 0 there is still a TB bifurcation at
P = p but now for any (n, y) along the cusp (~z) = ( s )
as in Fig. 11. Thus, for each fixed p & 0 there is a TB
cusp in the plane P = p.

We recall that system (4.1) reduces to a two-
dimensional center manifold near (n, P, p) = (0, p, 0),

(c)

TB
(2)

Hopf bifurcation

Homoclinic bifurcauon

Saddle-node bifurcation

1 steady
state

TB-cus ~3steady
states

FIG. 11. Cusped sheet where steady-state bifurcations oc-
cur and TB cusp. The steady-state bifurcations are pitchforks
along the line P and saddle node otherwise.

FIG. 12. Schematic sequence of bifurcation sets for fixed
values of n: (a) nq, nq = 0; (b) n2, ng & ng (c) n3, n3 & n2.
See Fig. 14 for a localization of n~ in the (p„n) plane. Lower-
case letters correspond to phase portraits from Fig. 13. The
bistable region of Guckenheimer's cross-shaped diagram can
be obtained from (a) by joining the top of the two SN lines to
form a cusped curve. In (c) we show also the bifurcation dia-
grams by following paths (1) and (2). These paths cross the
whole region of bistability by keeping P fixed and increasing
P.
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FIG. 13. Planar phase portraits corresponding to Figs. 5 and 12. Crosses are saddle points, black (gray) dots are stable
(unstable) steady states, and solid (dashed) loops are stable (unstable) limit cycles.

planar Van der Pol—Duffing oscillator presented in Sec. II
and fully described by Guckenheimer [13] in the context
of chemical reactors. The "cross-shaped diagram" given

by this author, together with the location of steady-state
bifurcations obtained above, gives the bifurcation set in

Figs. 12(a) obtained by fixing n arbitrarily close to zero
and varying P and y, . Numerical simulations, not shown
here in detail, suggest an evolution of this bifurcation
set by increasing a as shown schematically in Figs. 12(b)
and 12(c). By schematic representation we mean not
only that the scale is not real but also that the compli-
cated Silnikov sequence of bifurcation is represented by
the single homoclinic line Hm. A planar representation
of the phase portraits in each region of Fig. 12 is given
in Fig. 13. For simplicity we make the convention that
Zz-conjugate phase portraits are equivalent. See Fig. 14
for a schematic localization of the values of n chosen in

Fig. 12 relative to the cusp (~z)z = (s )s.
Figure 15 shows the bifurcation set in the (o., P) space

for (p, p) = (100,0.01). Apart from the saddle node of
steady states SN that has been computed analytically
all the other lines were obtained by numerical simula-
tions. A comparison with Fig. 9 shows the expected fact
[expressed in the diagram of Fig. 2(b) of Sec. I] that the
coincidence of bifurcations from states that are conjugate
by the Zz symmetry in the idealization p, = 0 no longer
coincide when y, P 0. On the other hand, bifurcations
involving only symmetric states when p, = 0 (mapped
onto themselves by the symmetry) do not split into two

when p g 0.
One of the most remarkable phenomena observed by

breaking the Zz symmetry is the way that CHm splits
into two lines when p, is increased from zero. We recall
from Sec. III that when this line is crossed from above we
observe at CHm the collision of two conjugate attractors
C+ with the saddle focus So. The result is a symmetric
attractor Co. The projection of the attractors C+ and Co

onto the (X, Z) phase space was obtained by numerical
integration and the result is shown in Fig. 9. When p, =
0.01 and starting from above the two lines CHm we still
have two attractors but they are no longer conjugate by
any symmetry. Thus there is no longer a reason that they
should collide simultaneously with the saddle focus. Thus

by decreasing P when we cross the first CHm only one of
the attractors stops being an invariant set. By crossing
the second CHm the remaining attractor collides with
the saddle focus and we obtain a larger attractor that
may be seen as a perturbation of Co. A projection of
the referred attractors onto the (X, Z) space is shown in
Fig. 15. Again they have been obtained by numerical
integration.

sn

a I i I h I h I

2400-

1600 oe

h

0 001

800-

I

7B ~
0 II I I/ I

PHm
0 0.2 0.4

I
I

I

0.6 0.8

FIG. 14. Schematic localization of the sections taken in

Figs. 9, 12 and 15 relative to the projection of the cusped
sheet onto the (y„n) plane.

FIG. 15. Bifurcation set at p = 100 and p, = 0.01 (see Fig.
14 for a localization of p = 0 and p = 0.01). Also shown are
attractors obtained from numerical simulations for parameter
values (a, P) = (0.35, 700), (0.35, 510), and (0.35, 300).
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V. DISCUSSION AND CONCLUSIONS

We found, in a two-dimensional parameter space, a line
where a Silnikov bifurcation occurs. This line is divided
into two parts: on one side we expect stable limit cycles
of arbitrarily large period near homoclinicity and on the
other side we expect these limit cycles to be unstable.
Some of our results suggest a mechanism for this change
of stability by a sequence of interactions of saddle node of
limit cycles with period-doubling cascades in the wiggly
curve introduced by Glendinning and Sparrow.

Stimulated by experimental observations and physical
intuition derived from Ref. [4], we have studied the ef-
fect of unfolding the underlying double-well potential on
the bifurcation set of a bistable chaotic oscillator. Ap-
plication of this strategy yielded an example of a chaotic
system with a "cross-shaped diagram" [13,14]. We hope
these results will be helpful in interpreting results from
other chaotic systems that have multiple steady states
(see for example, Refs. [14, 19—21]).

A natural extension of the present work is to consider
a system with three potential wells. This is easily done

in the present model by including quintic terms in the
model for the nonlinear negative resistor. The unfolding
of the quintic nonlinearity leads to the butterfly catastro-
phe. We have taken a brief look at some of the possible
behaviors in this problem with the encouraging result
that in the region of parameter space where the butterfly
catastrophe shows the presence of three potential wells,
chaotic trajectories that explore all three wells can be
observed. We refer the reader to the paper by King and
Stewart [6] where some partial results are given.
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