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We describe a method for noise reduction in chaotic systems that is based on projection of the set of
points comprising an embedded noisy orbit in IR toward a finite patchwork of best-fit local approxima-
tions to an m-dimensional surface M'( lR", m d. We generate the orbits by the delay coordinate con-
struction of Ruelle and Takens [N. H. Packard et al. , Phys. Rev. Lett. 45, 712 (1980); F. Takens, in

Dynamical Systems and Turbulence, 8'arwick, 1980, edited by D. A. Rand and L.-S. Young (Springer,
Berlin, 1981)] from time series v (t), which in an experimental situation we would assume to have come,
together with additional high-dimensional background noise, from an underlying dynamical system f:
M~M existing on some low m-dimensional manifold M. The surface M' in IR" is the assumed embed-

ded image of M. We give results of systematic studies of linear (tangent plane) projection schemes. We
describe in detail the basic algorithm for implementing these schemes. We apply the algorithm iterative-

ly to known map and How time series to which white noise has been added. In controlled studies, we

measure the signal-to-noise ratio improvements, iterating nM times until a stable maximum 5M is

achieved. We present extensive results for 5M and nM for a wide range of values of embedding trial di-

mension d, projection dimension k, number of nearest-neighbor points for local approximation v, embed-

ding delay b, sampling interval hT, initial noise amplitude JV, and trajectory length N. We give results

for very low and very high noise amplitudes 0% JV 100%. We develop an empirical method for es-

timating the initial noise level for a given experimental time series, and for the optimal choice of algo-
rithm parameters to achieve peak reduction. We present interesting results of application of the noise-

reduction algorithm to a chaotic time series produced from a periodically driven magnetoelastic ribbon

experiment on the control of chaos. Two noteworthy elements of the noise-reduction method we de-

scribe result in certain stabilizing and efficiency features. The first is our use of a physical replacement
time series, which is a unique scalar time series with the property that its corresponding delay coordinate
construction data state vector time series in R is optimally close to the noise-reduced replacement vec-

tor time series generated by the projection. The second is the introduction of a "measure-ordered" cov-

er, which produces notable improvement in reliability, control, and computational efficiency of the
whole algorithm.

PACS number(s): 05.45.+b, 02.60.+y, 02.50.+s, 02.70.+d

I. INTRODUCTION

In attempting to gain understanding, or control of a
complex physical process, some kind of simple model,
where possible, is always a valuable first step. The ubi-
quity of low-dimensional chaotic behavior in physical
systems is likely a consequence of its genericity in the
solution properties of nonlinear differential equations,
which are again and again the basis of physical modeling.
Experimentally, the underlying simplicity actually
present can be masked by a high level of noisy back-
ground contamination. This can be especially serious in
the presence of chaos, and especially when the simple
low-dimensional system is coupled to a much larger
reservoirlike system whose high-dimensional fluctuating
input results in further complexity unimportant for the
simple system model. On the other hand, the presence of
low-dimensional chaos also presents an opportunity since

chaotic phase portraits sample dimensionally large por-
tions of the phase space.

There may be many physical systems where this kind
of picture actually is possible, but where large-amplitude,
high-dimensional background interference has obscured
evidence of the low-dimensional behavior. Fluid systems,
turbulent behavior, oceanographic and geophysical phe-
nomena, and meteorological and biological phenomena
are examples where data are typically very noisy and
complex. The absence of adequate, experimentally useful
and reliable chaotic noise-reduction techniques does not
merely limit our ability to detect the presence of low-
dimensional dynamics. In some cases, this lack may have
led to premature judgments about the presence of chaos.
In this paper, we present a robust noise-reduction pro-
cedure for chaotic systems that (i) does not require prior
knowledge of an underlying dynamics, and (ii) has per-
formed satisfactorily in very high noise environments [up
to 100% noise, or 0 dB signal-to-noise ratio (SNR)] in the
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cases we have examined. The scheme possesses consider-
able structure and flexibility in how it can be applied.
Also, through a systematic study of the output of our al-
gorithm, we have been able to develop a method to esti-
mate in some cases the noise level present in an experi-
mental time series.

Generally speaking, a complicating feature to the
chaotic noise-reduction problem is that the signal will
have a broadband spectrum just like the background con-
taminant. Traditional bandpassing techniques might re-
sult in unacceptable signal distortions, or simply be
ineffective. An interesting early exploration of such a
Fourier based linear filtering approach in the context of
chaotic dynamics is that of Badii and Politi [1]. Another
approach based on linear signal processing ideas was
Broomhead and King's singular value truncation [2] of
the trajectory matrix for the whole orbit of a digitized,
embedded time series. More recently, the problem of
reduction of noise has been the subject of renewed atten-
tion. Several new approaches based on the theory of non-
linear dynamical systems have been developed. Kostelich
and Yorke [3] combine a dynamical learning technique
with a least-squares trajectory adjustment procedure to
create a new trajectory. The procedure is then iterated
several times. Farmer and Sidorowich [4] also employ a
learning technique, and exploit expanding and contract-
ing behavior to achieve a noise reduction. When the map
is specified beforehand, the method of Hammel [5] has
achieved more than ten orders of magnitude improve-
ment using Anosov-Bowen shadowing ideas. Farmer and
Sidorowich [6] have combined Hammel's shadowing ap-
proach with statistical methods to produce comparable
results. The shadowing techniques have been implement-
ed so only for two-dimensional maps. Also when a clean
reference orbit is available for the noisy data, noise reduc-
tion can be achieved by a conditional probability tech-
nique (Marteau and Abarbanel [7]). These methods ex-
ploit dynamical properties and statistical properties of
the dynamical system to effect noise reduction. In con-
trast, our method is motivated by the fundamental
geometric picture of an underlying smooth manifold.

Our general approach is a natural development from
later work of Broomhead, Jones, and King [8], who de-

scribed a method for estimating topological dimension
for the dynamics underlying a chaotic time series in the
noise-free case. Their method involved another, local
singular value analysis, distinct from that of Ref. [2]. In
this later work [8] a procedure was developed to exploit
the fact that points of a chaotic trajectory that lie in a
small ball centered on any given trajectory point po
generically will lie close to the tangent space at po. The
noise-reduction idea we explore here is that in the pres-
ence of noise these points typically lie off (the embedded
image of) the manifold for the dynamics due to the fact
that noise is generally very high dimensional. The basic
idea of the method is to estimate where the manifold M'
is and move the errant points closer to it to form a candi-
date replacement trajectory. In this work, we use the col-
lection of local tangent spaces at points po as an approxi-
mation of the manifold M'. For points in a small neigh-
borhood of a given po, one simply projects them into the

tangent spaces to remove the noise. We actually employ
a refinement of this approach, designed to take M' curva-
ture effects into account in a crude way, and to soften
effects of rare statistical outliers, for high noise cases in

particular, viz. we choose an average of original and pro-
jected points instead of just the projected point itself.

There is a possible difficulty with this kind of pro-
cedure, i.e., that of moving points in the phase portraits,
but it can be remedied. Normally, the embedded trajec-
tory is constructed from a measured scalar observable by
the use of delay coordinates [9,10], but the candidate re-
placement trajectory described above is usually not itself
realizable as a delay coordinate construction from a sca-
lar time series. This alone likely implies some loss of in-

formation about an underlying dynamics. We can, how-

ever, identify a "physical" replacement trajectory that is
so realizable (see Sec. IV), and thereby recover a cleaned-

up scalar observable. In fact, this also leads to improve-
ments in the noise-reduction performance.

A second element of the present work is our use of a
systematic procedure for covering the embedded object.
By ordering the elements U' ' of the cover according to
the magnitudes of r ' for various cx, where r denotes
the radius of the ball enclosing a fixed number of points
nearest neighbor to a given corresponding reference point

po, we produce a rough separation of densely and sparse-

ly populated regions of the noisy attractor. The resulting
"measure-ordered" cover [UI '~a=i, . . . ,N, ] allows us

to design a natural scheme to prevent multiple projec-
tions. We first project points in cover elements having
small radius r since the manifold should be better ap-
proximated by tangent spaces in these elements of the
cover. Once a point has been projected, we prohibit it
from being projected again. In contrast, the simple ap-
proach of covering the trajectory by nearest neighbors to,
say, every fifth point in the orbit, misses some points and
overcounts others. This leads to uncontrolled, uneven
manipulations of trajectory points in the noise-reduction
procedure. It is also inefficient. In one Henon map
study, this procedure involved 600 time-consuming
nearest-neighbor searches, while for the same example
the measure-ordered cover required only 400.

We begin by describing the theoretical foundation for
the geometric method in Secs. II—IV, introducing in Sec.
IV the physical replacement time series mentioned above.
In Sec. V we describe the noise-reduction algorithm. In
each of the following sections we examine a succession of
separate noise-reduction issues. We present numerical re-
sults of a systematic study for the Henon map in Sec. VI
along with results from a few studies of the Ikeda map.
We give our results for flows, Lorenz and Rossler sys-

tems, and perform an initial exploration of dependence
on sampling rate and delay in Sec. VII ~ In Sec. VIII, we

investigate the nature and limits of the method by exam-

ining performance against very high and very low noise
for both the Henon and Lorenz cases, sampling rate
dependence for the Lorenz system, and some dynamical
features of algorithm performance for a few specific ex-

amples. In Sec. IX we develop an empirical method for
estimating in some cases the initial noise level in an ex-

perimental time series where a true underlying signal is
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unknown. We present results for application of the algo-
rithm to a chaotic time series taken from a periodically
driven magnetoelastic ribbon experiment on the control
of chaos [11]. We conclude the paper with a discussion
and summary in Sec. X. Two appendixes are attached at
the end. In Appendix A we give a simple proof of
Theorem 2 (from Sec. III); in Appendix 8 we describe the
linear algebra of singular value theory and give a
geometric interpretation of our method, sharply contrast-
ing it with that of Ref. [2].

V

II. DELAY COORDINATE CONSTRUCTION

v(t): t =r), . . . , rN (2)

represent such a time series with t; GZ (we suppose for
flows that t G R is now replaced by t, EZ by means of a
sampling procedure applied to the original physical data).
Assume that there is a dynamical system of the form (1)
underlying the evolution of the time series, and denote by

V(t): t =t), . . ., tN (3)

the ideal measurement along a trajectory of (1) that
would result in the absence of the noisy background. Let
S:M~IR be a smooth scalar function, which is the
quantity we seek to recover, i.e.,

V(t)=S(f'x), (4)

where xEM is the initial point of the trajectory. We sup-
pose we have sampled (2) at uniform time intervals r, so
that t, =is„i =1, . . . ,ND and we take w, =1 in the fol-
lowing discussion. The delay coordinate construction
from v(t) proceeds as follows [9,10]. One forms data
state vectors P=P(t) in a Euclidean space R from the
time series V(t) by

P(r)=(V(r), V(t+6 ),V(t+2A), . . . , V(r+(d —1)b)),

where 6, normally a positive integer, is the time lag be-

The mathematical model for a chaotic system is a non-
linear, smooth dynamical system defined on some
differentiable manifold, the phase space. Let M be a
differentiable manifold, and denote by

f': M —+M

a smooth dynamical system defined on M with t ER or Z.
In the case of tCR, the dynamical system is a Pow.
When t GZ, the dynamical system is given by the itera-
tion of a smooth map or diffeomorphism f. Both cases
can arise as models of chaotic systems from physical, bio-
logical, and engineering sciences. We shall refer to these
"real" systems as physical systems. Flows and maps
model physical systems with continuous time and
discrete time, respectively.

An experimental measurement on a physical system
typically produces a time history of a scalar quantity that
includes a noisy background component. Let

FIG. 1. Delay coordinate construction.

tween coordinates and is called the delay. This gives a
representation of the trajectory f 'x, in a Euclidean space.
With the help of this construction one can apply the
theory of smooth dynamical systems to investigate the
evolution of time series when these arise from a map or
fiow. When applied to the experimental time series v(t)
of Eq. (2), we assume that the data state vectors that re-
sult give a correspondingly noisy representation off 'x in
Rd

Combined with Eq. (3), Eq. (5) amounts to defining a
map 4 fromMto R where

4(x)=(S(x),S(f x), . . . ,S(f' " x)) . (6)

III. ERROR FUNCTION FOR ESTIMATION
OF THE TANGENT SPACE

One of the simplest of embedding invariants is the to-
pological dimension of M. A manifold is a space that is
isomorphic to Euclidean space locally at every point.
The topological dimension is the unique dimension m of
these Euclidean spaces. Since 4 is an embedding, the to-
pological dimension of M is also the dimension of the
tangent space T M' at any point pEM', as a linear sub-

See Fig. 1.
The following theorem of Takens implies that, in gen-

eral, one can expect complete information about the
dynamical system f ' from just one time series.

Theorem 1 /10': Suppose a smooth dynamical system
f ' is defined on a manifold M, and a smooth scalar func-
tion S is also given as above. Define the map 4: M~IR
by Eq. (6). If dimM =m and d ~2m +1, then it is a ge-
neric property of f' and S that the map 4 is a smooth
embedding of M into IR .

A smooth embedding preserves geometric properties of
the manifold and dynamical information about the sys-
tem. One can thus perform computations on
M'=4(M) C R and expect the results to apply to M pro-
vided at least that the quantities one computes are invari-
ants of the embedding. For Takens's proof, smoothness
meant f and S should be at least C .
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space of T IR =IR". Since we suppose m to be unknown,
we form data state vectors as above from the observed
time series v(t) with trial dimension d chosen large
enough that by some suitable test 4 may be assumed to
be an embedding. We seek a suitable basis for estimating
the tangent spaces T M'.

We proceed by constructing a quantity that can
represent the error of approximation of a finite cluster of
points in IR" by a linear space. We will find the require-
ment that the error be minimized leads to an eigenvalue
problem for a matrix X closely related to that employed
in the local singular value analysis of [8].

Let Hk be a k-dimensional linear subspace of IR" and v

be a vector in IR"; we define the distance between v and
Hk as

d

(v u )

j=k+1
(10)d(v, Ht, )=

and we have

D(r, H&)=D(r;u». . . , ut, )

V

(x ui)'= g u Xu, ,
i =0 j=k+1 j=k+1

~here the "local excursion matrix"

For each k we seek to minimize D over all k-dimensional
linear spaces Hk.

Let u, , . . . , ud be an orthonormal basis for I such
that u1, . . . , uk spans Hk. Then for any vector v EIR"

1/2

where Q& is the projection from R onto H„and
~~ ~~

is the
Euclidean norm in IR".

The data state vector orbit for the pure time series
V(t) samples the image 4(A) =A'CM' of the chaotic at-
tractor A for the system. Owing to the presence of noise
the points of the orbit in R" for the noisy time series v (t)
fluctuate out of M'. Near any point poEIR" lying in the
orbit for the noisy time series, let p1, . . . , p, be the v
nearest neighbors contained within a ball of radius r. We
choose a reference point qEM' that is close to all the
points p; so that ~~p;

—
q~~ & r holds for all i =0, 1, . . . , v

(Fig. 2). Denote by x; the unit vector

p
(8)

Unless the noise is very strong, we expect these vectors to
approximate tangent vectors to M' at g reasonably well if
r is sufficiently sma11. For this sample we define the error
of approximation by Hk as

V

D(r, Ht, )= g d(x, ,Ht, )v+ 1,.

FIG. 2. Schematic picture of neighborhood of p on recon-
structed attractor X'. In the figure k =m =2 for the plane. We
have taken tl=p [see Eq. (15)]. The distance of the unit vector
pointing at p; to the tangent space T M' is of order r, hence

D(r, k) is of order r . Any line through p in the tangent plane is

an example of an Hl, with k =1(2. The distance of almost all

unit vectors to this line is of the order of the length of the vector
and hence of order 1.

V

X= gxx; (12)

is a d Xd, symmetric positive definite matrix. Thus
minimizing D is equivalent to minimizing the sum of the
d —k positive definite quadratic forms u Xu over ortho-
normal sets u1, . . . , uk.

Theorem 2: Let k, &A,2& ~A.d be the eigenvalues
of a d Xd symmetric matrix X and let w„.. . , wd be the
corresponding orthonormal eigenvectors. Then
wk+, , . . . , wd minimize the sum of quadratic forms
specified on the right-hand side of Eq. (11), and the
minimum is

d
D=

j=k+1
(13)

The proof of the theorem is sketched in Appendix A. In
particular, we have

d

minD (r, H& ):D(r, k) =—g AJ(r) .
j=k+1

(14)

Let w„.. . , wd be the eigenvectors of X. Then we esti-
mate %'t, = ( w„.. . , wt, ) as the best linear k-dimensional
space for local representation of points near g on the or-
bit for v(t). If k ~m, our estimate && is expected to
obey T M'C&z reasonably well.

We remark that X is the square of a d X (v+ 1) matrix
R having columns given by the x;,i =0, 1, . . . , v, viz.
X =RR . The eigenvalues of X are non-negative, they
are squares of the corresponding singular values of R,
and the w; coincide with the corresponding singular vec-
tors of R. A simple outline of matrix singular value
theory is given in Appendix 8, together with a geometric
interpretation of the A, , &&, and the minimization pro-
cedure described above. We also provide in Appendix B
a brief description of the so-called "singular spectrum
analysis" of Ref. [2] in order to display clearly the impor-
tant differences between their methods and the methods
of the present paper.

For points selected from a ball of radius r about po, we

expect that generically the sample average will differ
from a suitably unbiased choice for q by an amount
O(r ), viz.
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p= g p;=—q+r A.1

v+ 1,. (15)

D(r, Hk)= g d(r;, Hk)+1 =0

Accordingly, we choose g=q(r) —=p.
We close this section with a few remarks regarding al-

ternative formulations of the geometric method. In place
of Eq. (9) for the error of approximation of the sample

po, . . .,p, by the linear space Hk, we might consider an
alternative object,

a better candidate matrix would have r,- weighting fac-
tors since this would emphasize points closest to q. Here,
however, one might as well choose a smaller value of v
and uniform weights, i.e., a corresponding X for a smaller
value of v. We conclude that the eigenvectors of X pro-
vide a reasonable and most natural basis for projection to
T M'.

IV. CONSTRUCTION OF THE PHYSICAL
REPLACEMENT TIME SERIES

where r; =p; —g=r;x; in which r; = ))r;~(. Mathematical-

ly, the foregoing development can be repeated with the
result that D(r, Hk) attains its minimum value

D(r, k)= g AJ(r)
j=k+1

(17)

for the last d —k eigenvectors wk+1, . . . , wd of the ma-
trix

v 1 v

v+1,. 0
' ' v+1,. (18)

and where X,(r) & A,z(r}» Xz(r) are the correspond-
ing eigenvalues. Except for our use of g as reference
point, X is a local excursion matrix for the (v+ 1)Xd ma-
trix R whose rows are the r, introduced by Broomhead,
Jones, and King [8].

The behaviors of D(r, k) and D(r, k) as r~0 are
different: generically, when m =dimM',

O(r), k &m
D(rk)

O( 2) (19)

while

O(1), k &rn
D(r k)~ ' (20)

In other words D(r, k)~0 for any k, while D(r, k) —+0
only for k &m, a sharper measure of the error than
D(r, Hk) (Fig. 2).

Nonetheless, our objective has been to identify a pro-
cedure to estimate the tangent spaces to M'. The treat-
ment up to Eq. (14) takes the matrix X and hence
w1, . . .wk as supplying an optimal basis of IR from
which to perform the projection into T M, while that
based on X gives w, , . . ., wd. The principle difference be-
tween X and X is the weighting effects provided by the
coefficients of the term x, x,- in the respective sums in
Eqs. (12) and (18). Each of the directions x,. is weighted
equally in X, while directions to points p; farthest away
from q receive much greater weight in X owing to the r;
factor. The resulting eigenvectors will reflect this and the
respective candidate tangent space will be tilted toward
points receiving larger weights. For the case of X we ex-
pect the heavy weighting of the farthest points generally
to be disadvantageous in that possibly unwanted bias is
introduced by curvature effects of M' or random fluctua-
tions when noise is present. It might be thought now that

(21)

where pJ(t) is the jth component of p(t), and where we
have chosen a definition for 8 appropriate to the Euclide-
an norm of 8 and root-mean-square (rms) I norm for
functions of t. For simplicity, we have again chosen
r, = 1 in Eq. (21), but the algorithm does not have this
restriction. We also assume NL, is greater than (d —1)h.
We regard 6 as a function of ND independent variables
v(1), . . . , u(ND), whose minimizing values we seek. For
the trivial case d = 1, Eq. (21) reads

ND

(22)

with the obvious solution u(t)=p, (t), 1&t &ND. For
d =2, we have

The noise-reduction procedure actually begins by
averaging the data state vectors p(t) for the noisy time
series u(t) with their projections into the k-dimensional
linear subspaces %1k of T R [Eq. (30)]. This results in a

P
candidate replacement data state vector time series p(t).
In general, however, this data state vector time series is
unphysica/ in the following sense: except for extremely
rare accidents, p(t) cannot be realized by a delay coordi-
nate construction from a scalar replacement time series
v(t}. We recall Eq. (4) in Sec. II, which expresses the
construction of the dynamical quantity which the noisy
measurements v (t) represent, namely, the coordinate
function S:M~IR mediating the embeddings of
Theorem 1. S represents the measurement process (see
Fig. 1). This scalar function S is the only link between
the observations and the dynamics of f on M, so we will
impose a requirement that a replacement data state vec-
tor time series in IR be realizable as a delay coordinate
construction from some replacement scalar time series
v(t). We refer to this as a physical requirement and such
time series as physical replacement time series (PRTS).

Accordingly, the next step in the noise-reduction pro-
cedure is to construct a suitable physical replacement
time series from a given candidate replacement data state
vector time series, realized under some noise-reduction
projection protocol. To determine the best v(t) we mini-
mize the error committed relative to p(t), viz.
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N —b,D

Ip) (t) —v(t) I'+ g Ip, (t) —u(t +6) I'
f=l f=l

ND —
t-), ND

Ip, (t) —v(t)I' + g Ip, (t —~ ) —v(t)I'

g Ip)(t) —v(t)I'
f=l

ND
—6

+ g g Ip, (t —(j —1)tI), ) —u(t)I'
t =1+6,j =1

then

u(t) =X(t) (28)

V. ALGORITHM FOR NOISE REDUCTION
BY PRO JECTION

minimizes ( . v(t) is thus realized as the unique physical
replacement scalar time series [12j. The delay coordinate
construction from v(t) gives the corresponding physical
replacement data state vector time series, which is the
closest possible to that of p(t) by the criterion of
minimum B.

f =1+ND

One easily finds

Ip2(t —5)—v(t)I The method proceeds through three stages.

Stage 1. Implement a covering procedure

P, (t), 1&t &tI),

2

u(t)= —,
' g p)(t (j —1}h),—I+A, &t &ND —6
j=l

p, (t —b, ), 1+ND b, & t & ND —.

d —1 1

( = y E„"+E+y E„'I',
k=1 k=d —1

(25)

(24)

The formulation of the general case can be constructed
by inspired scrutiny from these examples. The analysis
goes as follows. We write 6' as

Jg I ( p( ) ) U ( 1 )
) ( p

c U c } (29)

Step 1. Select a random set of 1V, candidate reference
points po

' from among the p(t), t =1, . . . , N,
N =ND (d ——1)b,. For each po ', a= 1, . . . ,N„in turn,
find its v nearest neighbors and form its neighborhood

ly subject to the condition that po( )g U'~' when aAI3.
We shall take X, to be the smallest number such that the
neighborhoods U' ' cover the entire trajectory p(t).

Step 2. For each cover element U' ', evaluate cf=p' ',

the sample average, and r =maxo;&„IIq—p'; 'II, then
order the cover elements according to the value of r
This gives an ordered array

where
k5 k

g Ip&(t
—(j —1)&)—v(t)l

f =1+(k —1)6j=1

k=1, . . . , d —1,

such that r, '
r2

' ~ . ~rN '. This order is chosen to
C

correspond roughly, when the noise level is not too high,
to that of the values of p'(U' 'AA'), where )u' is an as-

sumed invariant measure for the dynamical system on the
attractor A'. We call A, the measure-ordered cover.

E(f)
k

Let

ND (d —1)h

g Ip, (t (j —1)h) —u(—t)I
f =1+(d —l)b, j=1

ND
—(k —i)S

X X
f =1+ND

—kb, j =d —k+1
Ip, (t —

(j —I)&)—u(t) I',

(26)

k=d —1, . . . , 1.

k

o'„'(t)= —g p&(t —(j —1)b, ),
j=l

1+(k —1)h & t & kA, k =1, . . . , d —1;
(r(t)= —g P, (t —(j —I)b, ),

Stage 2. Implement a projection procedure

Step 3. Starting from the first neighborhood of the
cover (po", U"'), estimate the corresponding q-=p as in

Eq. (15).
Step 4. Relative to the reference point g form the ma-

trix X according to Eq. (12) from points po", p', ", . . . , p'„".
Compute the eigenvectors wl, . . . , wd corresponding to
the eigenvalues I, , A, d of X.

Step 5. Let &(, be the linear space (w), . . . , w), )
spanned by w), . . . , w)„k&d. Denote by Q(, the projec-
tion operator from R onto &k. Replace the points

pj E U by a new collection:

p,'"-p,' '=q+f (p,"'—q}+(I—f)Q~(p,"'—q»
X(t)= 1+(d —1)6 & t &Nu —(d —1)b, ;

d
o'„~(t) )= — g P, (t —

(j —1)h),
j=d —k+1

1+Nu —kb, & t &ND —(k —1)tI), ,

k=8 —1, . . . , 1;

0 &f & 1,j =0, 1, . . . , v . (30)

In our calculations, we take f =0.5. We are averaging
the projection points with the original data state points
by means of the factor f to take account in a rough way
of the local curvature effects of M' [13].

Step 6. Repeat Steps 3—5 for each succeeding point po
'
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in the order of the measure-ordered set JK, until A, , is

exhausted, but with one difference. There will be almost
(a))

surely a first value a=a.
&

at which U has nonempty
intersection with U l

&

U' '. In Steps 3 and 4, the v+1
points from which g is estimated and X is computed
therefore will contain some points that already have been
projected. Points previously projected are not projected
again in Step S.

Step 7. Denote the data state vector time series result-

ing from Steps 1—6 by p(t), t =1,2, . . ., ND (d ——l)b, .
Compute the corresponding scalar PRTS u(t),
t =1,2, . . . , ND from Eqs. (27) and (28).

v„(t)= V(t)+Er)„(t),

u„(t)=V(t)+mr)„(t),
(34)

5„=101ogiog R, , (35)

where the improvement ratio from the ith iteration is

R, =(rt,'(t))/(q, (t)), i =I, . . . , n (36)

in which q, (t) is the initial noise time series. Since

(rt, (t) ) =1 we also have

so that v„(t)=u„+,(t); also ri„(t)=r)„+,(t). The SNR
change from n iterations is

Stage 3. Carry out an iteration protocol

For a data state vector time series of given length [14]
N=ND —(d —1)h and a given noise amplitude JV (see

below), the basic parameters of the algorithm, from the
standpoint of iterating Stage 1 and Stage 2, are the fol-
lowing: d, the embedding trial dimension; k, the projec-
tion dimension for the local regions of M'; 6, the delay,
which is the principle control on the embedding itself; ~„
the algorithm sampling time which is now the constant
interval with which the given [15] time series is sampled;
and v, the number of points nearest neighbor to po in
each neighborhood.

Step 8. Replace the original times series v(t) by v(t),
re-embed and repeat Steps 1—7 for some choice of d, k, v,
5, and v;. Carry this out repeatedly for some choice or
schedule of d, k, v, 6, and ~, .

We give expressions for the noise remaining after n
iterations of the algorithm. We write the scalar time
series upon which the projection algorithm is applied as

u (t)= V(t)+art(t), (31)

and the scalar PRTS after a single run as

v(t) = V(t)+art(t) . (32)

5$=Sf —4; = 10 log,o—:10 log,+,(g'(t) )
(q (t))

(33)

where the angular brackets refer to time average and R
designates an "improvement ratio. " In the iteration pro-
cedure the PRTS for the nth iteration is the initial time
series for the (n + 1)th iteration. We write

We assume that in the time series originally given
u (t) =ui (t); the noise term i)(t) =r)i(t) has zero mean and
unit variance; and e is the strength of the initial noise. In
practice, the initial relative noise amplitude JV=e'/~

~
V~ ~,

where
~ ~ V~ ~

denotes the (rms) I norm of V(t),
t =1, . . . , ND, corresponds to the initial signal-to-noise
ratio 4; directly. For example, a relative noise size of
iV=1% corresponds to 1;=40 dB and 100/o corre-
sponds to 0 dB.

Precisely, the change in the signal-to-noise ratio (SNR)
produced by an iteration of the algorithm by Eqs. (31)
and (32) is

15„=101ogio,n ~ 1 .
g„(t))

(37)

As long as R„&1 continues to hold, g„~0in the sense
of an 1 norm (rms). A change in sign of logi+„signals
an onset of SNR performance degradation.

VI. SYSTEMATIC STUDY OF ALGORITHM
PERFORMANCE FOR MAPS

We concentrate on the Henon map [16],

x ~x'=a —x +by,
=x

(38)

with more or less standard parameter choice; a =1.42,
b =0.3; at the end we state a couple of results for the Ike-
da map. We assume gi(t) to be uncorrelated Gaussian
white noise. We take 5= 1 and ~, = 1 in this section. For
the studies we report in this section, we generated two
long orbit time series, one on two Sun 4 computers and
one on two Spare stations. We selected an N =3000 or
N = 10000 portion of each of these for our computations.
For a fixed A; we generated a Gaussian white-noise time
series [17] of appropriate variance to be added to the or-
bit time series. The initial noisy time series was then held
fixed for each combination of N and JV. Thus for a given
noisy time series, i.e., fixed N and JV, the parameters of
the algorithm are (d, k, v).

A. Initial logarithmic growth of SNR improvement

after n =n~ iterations (except for occasional very low
amplitude oscillations near the peak), and then it falls.
5~ and n~ will be featured in most of the following stud-
ies. Figure 4 shows typical examples.

The behavior of the algorithm under iteration, for a
range of d and fixed choice of k,v, is systematic and stable
[Fig. 3(a)]. The improvement in SNR typically first rises
with each iteration. For a few typical examples we have
examined, this initial rise is approximately logarithmic
[Fig. 3(b)]. In all cases we have studied where the initial
rise occurs, the graph goes through a simple maximum,

(39)
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24-
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48

TABLE I. Peak algorithm performance as a function of
(k, v): (d~|, )(6M,nM), with 6M in dB. Henon system, N =3000,
JV= 1%. Largest peak 6M is in boldface.
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44
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v=10

(6)(5.6, 13)
(8)(6.5, 26)

(10)(7.4, 46)

v=20

(5)(6.1,7)
(7)(7.1, 12)
(8)(7.5,46)

v= 30

(5)(6.0, 5)
(7)(7.1,8)
(7)(7.3,40)

(4)(5.5,6)
(7)(6.4, 7)
(8)(6.7,25)

12
0 2 4 6 8 10 12 14 16 20 I

t 40
2 4 8 16 32 64

FIG. 3. (a) Typical variation of I (dB) with number of itera-
tions n of the projection algorithm. The examples shown are
Henon runs for N=3000, JV=10% and (k, v)=(3,20) with
various d. (b) Examples of the initial logarithmic change of
$(dB) for several runs of Henon data with varied conditions.
X: N= 3000, JV= 1%, (d, k, v) =(9,4, 10); +: N= 3000,
%=10%, (d, k, v) =(9,3,10); Q: N= 10000, JV= 1%, (d, k, v)
= (8,4,20); Cl: N = 10000, JV= 10%, (d, k, v ) = ( 8, 3,20).

(d, k, v) by applying the algorithm to each of ten different
noisy orbit realizations. The ten realizations were gen-
erated by ten different Henon orbits with ten, also in-
dependently generated, white-noise time series added.
The error fiag in Fig. 4(a) was obtained from these ten
different realizations. As stated earlier, the I pa) choice
variations are smaller but always present as well. The ini-
tial SNR for the ten realizations was (40.02%0.06) dB.
That for the computation results shown in the figure was
39.07 dB.

C. Performance dependence on d

B. Statistical fluctuations

10--

8

10--

8--

(b

~10%

2

4--

Measured values of 5~ and n~ Auctuate slightly with
noise and orbit realizations. There are also small varia-
tions with choice of tpa I, the centers of the cover for the
noisy attractor, which we varied randomly for every cal-
culation. Here, in ten 3000, 1%, (d, k, v)=(7, 3, 20) runs,
keeping noise and orbit realizations fixed, we found the
SNR improvement after 15 iterates to be (6.56+0.09) dB.
Incidentally, we also computed the SNR for the time
series found by averaging the cleaned-up orbits from the
ten runs. The result was 45.99 dB, for a 6.80-dB im-
provement, only slightly better than the mean improve-
ment of 6.56 dB. We conclude that variations in random
selections of the po do not affect algorithm performance
significantly.

We estimated the statistical scatter for 6M for fixed

For given N, JV, k, and v, the location of the peak value

5M depends on d [Fig. 3(a)]. For low d, the curves for
various N, JV, k, and v combinations go through very
broad maxima after many iterations before turning
around, while for higher d the peaks are sharper, lower,
and occur much earlier. If d is sufficiently high, the first
iteration yields a negative improvement, and with each
successive iteration the resulting SNR continues to drop.
We shall focus our study on d values low enough that this
does not occur. Hence we may examine the dependence
of 5M vs d on the choice of (k, v) for each condition of the
specified N and JV' values.

D. Systematic behavior

For (N, JV)=(3000, 1%%uo) and (N, JV)=(3000, 10%), we
performed systematic and complete series of computa-
tions of (5M, n~) for all combinations of v=10, 20, 30,40
and k =2, 3,4 (Tables I and II). We did the same for the
more time-consuming N =10000 trajectory case, in the
following combinations: JV=1% and 10% with k =3
and v=20, 40, 60, and with v=40 and k =2, 3,4, and
~=1% with v=20 and k =2, 3,4, 5 (Tables III and IV).
In all cases we began with d =k +1, continued until we

reached a peak value, at d =d z, of 5M, and then contin-

ued beyond until performance degradation had clearly set

in. We observed very systematic behavior of both 5M and

nM with variation of N, JV, d, k, and v.

2 I
I

0 2 4 6 8 10 12
d-k

5 7 9 11 13 15

FIG. 4. (a) 6M (dB) vs d —k plots for Henon runs with
N=3000, JV=1% runs, and v=10. The error Aag indicates a
statistical fluctuation of +0.3 dB due to different orbit and noise
realizations. (b) Example of the widening of 6M(dB) vs d plots
as initial noise level JV increases. The examples shown are
Henon for N= 10000 and (k, v) =(4,40).

v= 10 v=20 v=30 v=40

2 (8)(8~ 9,29)
3 (9)(8.5, 84)
4 (10)(7.7, ) 100)

(6)(9.4, 26) (6)(9.1, 13) (5)(9.o, 18)
(8)(8.3,36) (8)(7.8, 23) (7)(7.4, 28)

(10)(7.7, 50) (10)(7.0, 16) (10)(6.3, 14)

TABLE II. Peak algorithm performance as a function of
( k v )' (dp& )(6M,nM ), with 6M in dB. Henon system, N =3000,
A'= 10%. Largest peak 6M is in boldface.
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TABLE III ~ Peak algorithm performance as a function of
( k v ) ( dpi' )(6M,nM ), with 6M in dB. Henon system, N = 10000,
JV = 1%. Largest peak 6M is in boldface.

10--

8--

(a)

10 -.

8

(b)

v=20

(7)(9.8, 11)
(9)(9.9, 18)

(10)(9.8,49)
(11)(9.1, 116)

v=40

(6)(8.5, 8)
(8)(9.2, 15)
(9)(9.1,40)

E. 5 vsd

v=60

(7)(8.6, 14)

6

4
I

2

0 ~ ~

3 4 5

v=10

=20

6 7 8 9 10 11 12
d

6

4

2-

0 I I
I I I I

3 4 5 6 ~ 8 9 10 11 12
d

For fixed k, 5M first rises with increasing d then falls
after reaching a peak as the examples in Fig. 5 show. For
the higher noise level or longer trajectory, the plots are
shifted upward and to the right. It takes larger d values
to achieve peak performance but peaks are also higher.
For the higher noise, not only are the plots generally
higher, they are also broader [Fig. 4(b)]. We remark also
that higher peaks resulted from lower v values, especially
for higher noise cases.

10 .-

8-

6-

4"

2"

(c
10

8

4

2 .-

F. 5~ vsd —k

Since the main step of this algorithm is a projection
from dimension d into k, one might expect that the per-
formance depend uniformly on d —k. Plots of 5M for
fixed v against d —k do indicate a dependence of 5M on
d —k whose form is somewhat independent of the values
of k and v [Figs. 4(a) and 6]. We remark that the plots of
5' are higher for low k when IV=10%, while the situa-
tion is reversed for JV= 1%%A. The effect is most pro-
nounced for JR=3000, and somewhat less so for 10000,
l%%uo cases.

0 I I I
I I I I I

3 4 5 6 7 8 9 10 11 12
d

0 I I I I
l 1

3 4 5 6 7 8 9 10 11 12
d

10

8

FIG. 5. 6M(dB) vs d plots for Henon runs: (a) N=3000,
JV=1%%uo, k =2; (b) N=3000, JR=10%, k =3; (c) N=10000,
=1%, k =3; (d) N=10000, JV=10%, k =3. Each contains
plots that correspond to different v values.

G. n~ vsd

The number of iterations needed to reach maximum
SNR improvement, 5M, was varied over a wide range
with N, JV, d, k, and v (Fig. 7). For fixed (d, k), n~ is
nearly always larger for lower v values for every com-
bination of (N, JV) In additio. n, plots of n~ vs d lie
higher for higher k and higher N and JV.

H. Ikeda map, N =10000

The Henon map has high dissipation since the Jacobi-
an determinant has magnitude b =0.3. Correspondingly,
the dimension of the Henon attractor is low. On the oth-
er hand, the Ikeda map [18]

10

8"

6--

4--

6

4

2--

I
I I I I

0 2 4 6 8 10 12
d-k

10--(

8--

6--

4--

TABLE IV. Peak algorithm performance as a function of
(k, v): (dp&)(6M, nM), with 6M in dB. Henon system, N=10000,
A'= 10%. Largest peak 6M is in boldface.

v=40

2--
k=3

0 2 4 6 8 10 12
d-k

2

0 2 4 6 8 10 12
d-k

(10)(10.0,42)
(8)(10.3, 13)
(8)(9.S,31)
(9)(8.4, 60)

v=60

(8)(8.8,30)

FIG. 6. 6M(dB) vs d —k plots for Henon runs: (a) N=3000,
JV=10%, v=20; (b) N=10000, JV=1%%uo, v=40; (c) N=10000,
W= 10/o, v=40. Each contains plots that correspond to
different k values.
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tern dependence we ran a few ca1culations for this system.
The plots in Fig. 8 show the kind of behavior we should
now expect for 5M, although the JV=1% cases give no-
ticeably lower 6~ values than we found for the Henon
map. We discuss reasons for this in Sec. VIII when we
consider low noise limits of useful applicability of the
present method.

1000--100
(b)

100 .-

n„

=)010

VII. ALGORITHM PERFORMANCE FOR FLOWS:
PRELIMINARIES

20

=30

v=40

1 I I I

We present results of analysis of numerically generated
flow data in this section, focusing principally on very
finely sampled time series for benchmarking purposes.
The noise time series again is an uncorrelated, unfiltered
Gaussian white-noise process. Since the noise amplitude
at time t, is added to the clean time series value V(t } for
each 1 ~i & ND, there is a considerable spectral mismatch
between the two, a setting in which any standard low-
pass filter will give a good result. %'e give results of cal-
culations for the more important, coarsely sampled case,
in the next section, where also the context is that of high
noise. We first fix attention on the Lorenz system [19],

3 4 5 6 7 8 9 1011 123 4 5 6 7 8 9 10 11 12
d

1000—1000--

(d)(c)

100

k=3

nMnM

10--10

x =o(y —x),
y =px —y —xz, (x,y, z}C R'

z= —pz+xy,

0 2 4 6 8 10 12
d-k

0 2 4 6 8 10 12
d-k

(41)
FIG. 7. n~ vs d plots for Henon runs: (a) N=3000, JV'=1%,

k =2; (1) N=3000, JAN=10%, k =3. n~ vs d —k plots for
Henon runs: (c) N=10000, A=l%%uo, v=40; (d) N=10000,
JV= 10%, v ——40.

taking the usual parameter values p=28, p= —'„and
o = 10. We give a few results at the end of the section for
the Rossler system. We concentrate on N = 10000,
A'=10% studies, but we also include some X =3000 and
30 000 and iV= 1% results.

The noise-free Lorenz time series that we work with
represent the x coordinate of the solution of Eq. (41}.
The solution for the first was obtained from a fourth-
order Runge-Kutta method with a fine integration time
step ho =0.001. The first 20000 points were discarded as
transient behavior from a randomly chosen initial condi-

z'= A +Bz expi [k —p (1+~z~ ) '], z CIL (40)

for A =0.85, B =0.9, k =0.4, and p =6.0, is relatively
weakly dissipative since its Jacobian determinant is
B =0.81. Its attractor has somewhat higher dimension
and has very different geometry. To see the effect of sys-

10--
N = &0 OOQ

v=2Q 32--9--
34--=1630-8-- =21

4=10% 32--
28-7--

n/

/

30--
26-

5„28--6--
24-

22-

22
2 4 8 16 32 64

18
0 10 20 30 40 50 60 70

8
v=80

10 12

FIG. 8. 5M (dB) vs d plots for the Ikeda map for v=20. The
10% noise case has k =3. Isolated runs with other v values for
k = 3 are also indicated in the plot.

FIG. 9. (a) Typical variation of $(dB) with number of itera-
tions n of the projection algorithm. The examples shown here
are Lorenz 3 (6T=0.05) runs, N = 10000, JV= 10%, and

(k, v)=(3,40) with various d. (b) Examples of initial logarith-
mic change of $(dB) for Lorenz 0 runs, with again N= 10000,
A=10Vo, and (k, v)=(3,40). The embedding dimensions are
d =5 { ), 7 (0), 9 (0), 11 ( 8 ), and 15 {X).



LOCAL-GEOMETRIC-PROJECTION METHOD FOR NOISE. . . 3067

TABLE V. Properties of Lorenz time series.

Time
series

Lorenz 1

Lorenz 2
Lorenz 3
Lorenz 4
Lorenz 5
Lorenz 6

js

1

5

10
25
50

100

0.005
0.025
0.05
0.125
0.25
0.5

Approx. no. of
points per cycle

175
35
17.5
7
3.5
1.75

tion. The resulting very finely sampled time series of
length N=10000 covers only about 11 oscillations, or
approximately 900 points per cycle. We call this time
series Lorenz 0. The other time series we use in this sec-
tion and the next are produced by sampling from a very
long second solution having integration time step
h, =dt =0.005. These time series, Lorenz 1 to Lorenz 6,
have physical sampling intervals ~,dt =ET, and ~, and
other parameters as shown in Table V.

The SNR improvement 5„shows the same kind of be-
havior described in Sec. VI for the Henon map cases [Fig.
9(a)]. We observe a roughly logarithmic increase prior to
maximum for each fixed d [Fig. 9(b)]. For the rest of the
section, we take (d, k, v) =(15,3,40).

For the Lorenz 0 time series, the largest 5M occurs for
b =1, and 5M falls very slowly out to 5=140 (Table VI).
On the other hand, the dependence on delay is much
more pronounced for the less finely sampled Lorenz 2
and Lorenz 5 time series (Table VII). Thus, for the
Lorenz 2 time series the time interval represented by de-
lay 1 is 25 times that for Table VI and the number of
points per typical oscillation is about 35. For the Lorenz
5 time series the latter number has fallen to 3.5.

Returning to the Lorenz 0 study, a few sample calcula-
tions for N =3000, 10000, and 30000 for %=10% indi-
cate that there is no significant difference in the values of
5M (Table VIII).

Just as for the map studies of Sec. VI, the improvement
in SNR saturates in all the calculations presented above
for every delay chosen. Different delays lead to different

1

10
20
30
40
50
60
70

100
110
120
130
140

10.85
10.47
9.82

10.41
9.76
9.73
9.69
9.65
9.61
9.38
9.20
9.11
9.19

TABLE VI. Algorithm performance as a function of delay 6
for the Lorenz 0 time series. N= 10000, JAN=10% (22 dB),
(d, k, v) =(15,3,40), ho =ET=0.001.

5M (dB)

TABLE VII. Algorithm performance as a function of delay
6 for the Lorenz 2 and Lorenz 5 time series. N=10000,
JV=10% (22 dB), (d, k, v)=(15,3,40), dt =0.005: first column,
~, =5, ET=0.025; second column, ~, =50, ET=0.25. 5&(0
means immediate (n = 1) SNR degradation.

1

2
3
4

10
20
30

6M (dB)

10.31
10.78
9.94
9.33
7 44
2.16
1.34

5M (dB)

6.31
0.02

—2.3
—3.4
—5.0
—5.3
—5.6

embeddings, and it might be hoped that if we follow up a
series of iterations using one delay with another series
having a new delay, a jump in improvement would result.
As shown by several calculations of this type in Table IX,
improvement jumps are real if modest. As we shall see in
Sec. VIII, however, this strategy of changing delays does
not seem to work for maps and there is reason to expect
it may fail for coarsely sampled flows.

For comparison, we also applied the algorithm to a
finely sampled time series obtained from the Rossler sys-
tem [20]:

x= —y —z,
y =x +ay, (x,y, z) GI
z =bx cz +xz,

(42)

TABLE VIII. 6~ dependence on trajectory length for the
Lorenz 0 time series. N = 10000, JV= 10%%uo, (d, k, v) = (15,3,40),
ho= ET=0-001

1

30

N =3000

11.55

N =10000

10.85

10.41

N =30000

10.56

where we chose Rossler's values for the spiral-type at-
tractor, a =0.36, b =0.4, and c =4.5. A fourth-order
Runge-Kutta method was used, with integration time
step 0.005. Our results are similar to those for the finely
sampled Lorenz case. For an N =10000, JV= 1% exam-
ple with (k, v) =(3,40), we found 5M =9.03 dB for d =9,
5M =9.97 dB for d = 12, and 5M = 10.58 dB for d = 15.

We conclude that for well-sampled flow time series, the
algorithm performs reasonably well. The sampling inter-
val b, T =v;dt is an important parameter for flows. We
can understand the issues involved as follows. As hT
grows, the number of sample points per typical oscilla-
tion falls. For hT sufficiently large, a flow time series will
become sawtooth, resembling the time series for a map.
For finely sampled time series, the projection scheme per-
forms some averaging along the flow lines, which mimics
low-pass filtering. Thus the effect of spectral mismatch
between signal and noise gives us a few-decibel reduction
for free. Unlike low-pass filtering, there is also some
smoothing here across the flow lines, but probably not as
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6= 1~10 5=30~20 6= 10~(5)~1
8.72~(9.44)~ 11.59A'=0. 1%

JV= 10%

10.30~ 12.06
10.39~14.38
10.14~13.61

9.79~ 11.46
8.94—+ 10.09 10.09—+ 14.55

much for the finely sampled case as the coarsely sampled.
As the sampling rate falls, the Nyquist frequency 1/2b, T
approaches the frequency corresponding to a typical os-
cillation of the signal. When this happens, the number of
points per typical oscillation approaches 2. For coarsely
sampled time series, the spectra of signal and noise be-
come more closely matched. Here conventional low-pass
techniques become ineffective. The advantages of
geometric projection, in which smoothing is performed in
phase space, should come into play in these cases since
low-pass filtering cannot perform smoothing across How

lines. Long time series, however, may be required to as-
sure adequate recurrence properties. Accordingly, for
any given choice of (d, k, v) we might expect lower values
of SNR improvement. Therefore to optimize perfor-
mance, systematic studies like those done for the Henon
map need also to be done for the coarsely sampled case.

for projection from d =7. In the second row of the table
we have entered the change in SNR after one iterate of
the 80-dB time series. Reading the table, we may charac-
terize the significance of baseline noise by saying, for ex-
ample, that projecting from d =7, the algorithm is essen-
tially unable to distinguish an 80-dB noise time series
from a perfectly clean one. Correspondingly, the —91.5
dB for d =3 represents an absolute lower limit of noise
amplitude (-0.003%) for which the algorithm might be
able to produce an improvement, while this lower bound
is —70.5 dB (-0.03%}for d =7.

From a practical point of view, however, one would
most likely decide from Fig. 10(a} that a noise-reduction
effort for JV=0.01% (1;=80 dB) is hardly worthwhile.
For JV=O. 1% (4; =60 dB) the situation is better. As we

have seen, plots of 5~ against d for fixed k attain peak

VIII. NATURE AND LIMITS OF THE METHOD 10 -.

In this section we investigate the nature and limits of
the method —for both very high and very low noise cases.
We examine variations in performance with the choice of
delay for the Henon map, and with physical sampling in-
terval for the very high noise Lorenz case. For the latter
case, we give results of comparison with a local averaging
of the time series, which simulates a low-pass filter. We
display results of effects of application of the algorithm
on phase portraits for Henon and Lorenz examples and
for the case of a pure white-noise time series containing
no underlying signal [i.e., V(t) —=0]. We also give a few

comparisons of Lyapunov exponent calculations.

8"

6"

0
3 4 5 6 7 8 9 10 11 12

d

3 4 5 6 7 8 9 10 11 12
d

10-10"
v=40(c)

88

A. Very low noise limits of the method (the "20-dB rule" )
6 .-6--

We begin with a Henon map study for very low noise
amplitude (0.1%,0.01%). We choose (a, b}=(1.42, 0.3)
as in Sec. VI. Comparing the 5~ vs d plots for noise am-

plitudes JV=1% (39 dB), 0.1% (60 dB}, and 0.01% (80
dB) indicates that as the noise amplitude comes down, so
do the plots in both 5M values and in d [Fig. 10(a)]. For
80 dB, the method fails to produce significant improve-
ment.

Generally speaking, any scheme of noise reduction will

introduce some noise into the data. We refer to the
amount of noise produced by application of the method
to a clean time series as the baseline noise. In Table X,
we show results of a single iteration of the algorithm on a
noise-free Henon time series for the same (k, v)=(2, 20}
and for a range of d values. Thus —91.5 dB is the
single-iterate baseline noise for projection from d =3 to
k =2, while —70.5 dB is the single-iterate baseline noise

44-

22

0 I I I I I

I I I I I I V I I

0 2 4 6 8 10 123 4 5 6 7 8 9 10 11 12
d-k

FIG. 10. (a) Comparison of 5M(dB) vs d plots of Henon runs

for various initial noise levels JV. (b) Algorithm performance

for delay 2 cases for Henon: N=10000, k=2 and JV=1%. (c)

Algorithm performance for delay 2 cases for Henon:

N = 10000, k =2, and JV= 10%. (d) Algorithm performance for

high noise (JV=30%) Henon: N= 10000 and k =2. The isolat-

ed point showing a large reduction was run on a Sun and the
rest run on the Spare stations, hence having different orbit and

noise realizations.

TABLE IX. Algorithm performance under various embedding strategies for the Lorenz 0 time
series. 5M(dB) for N = 10000, (d, k, v) =(15,3,40), ho =AT=0.001. Final SNR are in boldface.
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TABLE X. Comparison of the effect of one iteration on very low noise (80 dB) time series with base-
line noise for the Henon system. Baseline noise= —$1 for 0% noise case. N=10000, (k, v) =(2,20) ~

—4& (clean)
51 (80.0 dB)
Sum

—91.5
0.4

—91.1

—84.0
0.0

—84.0

—81.7
—1.6

—83.3

—75.0
-5.4

—80.4

—70.5
—9.8

—80.3

values for d a little larger than k, how much larger de-
pends on JV. This can be seen from Fig. 10(a},also. For
JV=O. 1%, the peak region has d ~ 3 =k + 1. From Table
X, the baseline noise for projection from 1=4 or 5 is
about —85 to —80 dB, or 20 dB below ef; for 0.1% (60
dB}. For JV= 1%, the peak region has d ~ 5=k +3, and
the baseline noise for projection from d =6 or 7 is —75
to —70 dB, which is 30 dB below 4; for 1% (40 dB).
From these examples we might infer a general, if rather
crude, rule of thumb for deciding ahead of time for an ex-
perimentally generated time series, say, whether a noise-
reduction effort will be worthwhile, provided there is
some idea about the noise level in the experimental data.
For instance, if a model dynamical system is available for
the experiment, then baseline noise data can be calculated
for projection from d values a little larger than k =m, the
topological dimension for the model. This baseline noise
value should be, say, at least 20 dB below the lowest prac-
tical data noise level for use of the algorithm to be
worthwhile. If no model is available, then a baseline
noise calculation is not possible, and, of course, this "20-
dB rule" cannot be used.

B. Dependence on delay

In Table XI we show baseline noise results for the
Henon map with 6= 1, 2, and 3. For d =3, the baseline
noise jumps a whopping 16 dB with each increase of de-
lay by 1, and for d =4, the jump is 20 dB each time. We
can expect performance for delay 6=2 to be degraded
relative to the 6=1 results of Sec. VI. Thus the 20-dB
rule applied to d =4 gives a practical lower limit noise
level of —40 dB (-1%)while for d =5 it gives —30 dB
(-3%). The results portrayed in Fig. 10(b) support these
arguments. Going to JV=10% we (again) get better per-
formance as expected [Fig. 10(c)j. The trend of the plots
from Fig. 10(b) to Fig. 10(c) is the same as that for the
JV=0.01% plot to the JV= l%%uo plot in Fig. 10(a).

We have performed single iterate baseline noise calcu-
lations for the Ikeda map and Lorenz system also. Com-

paring Table X and the first line of Table XII, we see a
striking difference between the corresponding Henon and
Ikeda map baseline noise levels. There is a typical 20 to
30 dB difference for every value of d from d =3 to 7. If
we apply the 20-dB rule to the Ikeda map for k =2 we
would expect a SNR of 40 dB or so to represent the
lowest practical noise level with which the algorithm
might successfully deal. The story for projecting into
k =3 is similar, and the relatively, though not abysmally,
poor showing for %=1% (Fig. 8) is consistent with this
expectation. The baseline noise levels for the Ikeda map
for projection into k =4 and those for the Henon map for
k =2 are relatively close (Tables XI and XII}. But this is
not enough to conclude that 5M values will be compara-
ble, as may be seen by comparing the corresponding data
depicted in Figs. 6(b) and 8 [21]. A lower baseline noise
appears necessary, but not suScient to assure good per-
formance. Still, we might expect better Ikeda map results
for JV=10%, and our results support this (Fig. 8).

For the Lorenz system, baseline noise levels for the
Lorenz 0 time series are uniformly very low for a wide
range of delays (Table XIII). For Lorenz 1 to Lorenz 6
series, a significant dependence on sampling interval and
delay appears (Table XIV). It is interesting to compare
the declining performance of the algorithm with increas-
ing sampling time and delay shown in Table VII with the
rising levels of baseline noise in succeeding rows and
columns of Table XIV. The 20-dB rule does reasonably
well once again in signaling the onset of significant degra-
dation of algorithm performance.

C. Very high noise cases for the Henon map

It may be surprising at first sight to find ourselves pre-
dicting better improvement for higher noise levels. But a
little reQection reveals the cause. The projection method
is actually a noise-processing scheme; the more there is to
process the more effective the method can be. Of course,
there are limits to this. The SNR improvement saturates
with n, and its maximum values go through peaks as
functions of d. As long as JV is well above the appropri-

TABLE XI. Baseline noise (dB) dependence on delay for the
Henon system. N= 10000, JV=0%, (k, v) =(2,20).

TABLE XII. Baseline noise {dB) dependence on k for the
Ikeda system. N=10000, JV'=0% (baseline noise), v=20.

3=2
5=3

—92
—76
—60

—84
—63
—43

—82
—51
—36

—75
—42
—32

—71
—37
—29

k=2
k=3
k=4

—61
—69
—90

—61
—74
—76

—59
—61
—70

—47
—56
—69
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TABLE XIII. Baseline noise (dB) for the Lorenz 0 time series. N=10000, JV=O%%uo, (d, k, v)=(15,3,40), ho=ET=0. 001. Two
time series realizations.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

l

2

—160 —108 —91 —91 —89 —84 —85 —84 —82 —85 —85 —88 —88—160 —104 —92 —91 —88 —86 —8S —8S —86 —87 —90 —93 —109 —112

ate baseline noise, these saturation limits do not seem to
depend too much on JV. The obvious question is, how far
can we go with this? How high an JV can this noise-
reduction scheme deal with?

Unfortunately run time grows significantly with JV, in
particular, for the long trajectories (at least 10000) that
seem to be needed for the larger improvements. In addi-
tion, the large 5M values occur for increasingly high d
where nearest-neighbor searches are more time consum-
ing. We computed a 30% noise (10 dB) case for the
Henon map for (k, v)=(2, 20} and (2,40). The resulting
peak 5M values of 8—9 dB [Fig. 10(d)] are only slightly
lower than the peak 5M values of 9—10 dB for the 10%
noise, k =2 case [Fig. 6(c)]. This is not enough to con-
clude a significant loss of performance for JV=30% rela-
tive to JV= 10%. We also ran three 100% noise ( —1 dB}
calculations for (d, k, v) =(10,2, 20), (12,2,20), and
(11,2,40) and found 5—6-dB improvement. The dimension
values chosen were below the peak, so the best 5M might
be larger.

D. Sampling interval dependence for Lorenz time series
with very high noise

Again as in Sec. VII, we take (d, k, v)=(15,3,40) ex
cept where explicitly otherwise stated. For the very
finely sampled Lorenz 0 time series (b, T =0.001), we see
12—15-dB improvement for 30% (11.6 dB) noise cases
(Table XV). For the Lorenz 1 time series (bT=0.005)
and 100% (0—2 dB) noise cases we see similar improve-
ments (Table XVI). To achieve these results, we have
employed a strategy of reembedding by changing delay
after a succession of iterations using one embedding.
Since baseline noise levels are very low for the delays
chosen for the reembeddings (Table XIII and Table XIV),
we could expect reasonably good performance for each
embedding.

For comparison with standard linear techniques we
performed a 100% noise study on Lorenz 1 (b T =0.005)

and Lorenz 3 (hT =0.05) time series, for which the num-
ber of points per typical oscillation is 175 and 17.5, re-
spectively. For a linear filter we just performed a very
simple sliding local average of nearest neighbor points in
the time series, 50 points for the Lorenz 1 time series and
5 points for the Lorenz 3 time series. For the geometric
projection, we chose a reembedding strategy for the
Lorenz 1 time series. We iterated a delay 1 run to 5M,
then followed up with delays 10, 20, and 30, iterating to a
maximum improvement each time again. For the Lorenz
3 time series we took delay 6=1 and iterated to max-
imum improvement. Further application of the algorithm
with 5=2 did not yield noticeable improvement. SNR
improvements for the study show that the geometric pro-
jection algorithm has held up better than the local
averaging in both cases (Table XVII).

We compare the effect of the two methods further. For
the Lorenz 1 time series, the time series resulting from
the geometric projection still retains some high-frequency
oscillations (Fig. 11). The residual noise still riding the
cleaned-up time series is no longer white. Instead, it is
correlated. For comparison, we show in Fig. 12 what a
corresponding 17-dB noisy Lorenz 1 time series looks like
when the added noise is unfiltered white noise. The spec-
tra1 mismatch consequent to the fine sampling is apparent
as the fuzzy quality of the noise [Fig. 12(b)].

Local averaging did not perform as well for the more
coarsely sampled time series, Lorenz 3, where the number
of points per typical oscillation is 17.5 (Fig. 13). Since
the time series is sampled ten times more coarsely than
the Lorenz 1 time series, the high-frequency structure
seen in Fig. 11(c) cannot survive here. Nevertheless the
smoothness of the cleaned-up time series in Fig. 13(b) has
been a surprise to us.

We note an additional effect of the geometric projec-
tion, associated with the reembedding strategy. In Fig.
14 we show a Lorenz 0 study for JV= 10%. Although the
SNR improvement from following up a 6= 1 iteration se-
quence with a 5=10 sequence is only 3.5 dB, the charac-

TABLE XIV. Baseline noise (dB) for the Lorenz 1 to Lorenz 6 time series. N=10000, JV=0%,
(d, k, v) =(15,3,40); dt =0.005.

AT=0.005
AT=0. 025
AT=0. 05
AT=0. 125
AT=0. 25
AT=0. S

—118
—82
—68
—49
—39
—23

—104
—68
—53
—39
—23
—18

—95
—60
—47
—31
—19
—16

—89
—54
—42
—23
—18
—16

10

—71
—42
—26
—18
—16
—16

20

—59
—28
—22
—17
—16
—16

30

—56
—26
—21
—17
—15
—15
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TABLE XV. High noise algorithm performance for the Lorenz 0 time series, N=10000, JV=30%
(11 60 dB)~ ho=ET=0 001

Conditions

(15,3,20)
n

8.03 dB
15

10

3.57 dB
15

20

0.85 dB
15

12.45 dB

(15,3,40)
n =nM

11~ 88 dB
106

2.69 dB
13

0.19 dB
8

14.76 dB

ter of the residual noise is changed, in the direction of
less high-frequency structure.

We close this subsection with some results from a
100% noise coarse sampling Lorenz study (Table XVIII).
The results are fair and promising. The low values of nM
strongly suggest that (d, k, v) values have not been well
chosen for these runs.

E. Some dynamical features of algorithm performance

Although SNR improvement 5 depends only on the
relative rms power in the residual noise ~~@~ by Eq. (37),

nonetheless it still constrains the possibilities
significantly. For both maps and not too highly sampled
Qows, the residual noise is significantly shifted towards
the low-frequency end of the spectrum, corresponding to
residual distortions riding on the signal [Fig. 13(b)].
These effects show up in the phase portraits as exactly the
same thing, namely, attractor distortions. In fact, attrac-
tor recovery can be pretty good (Figs. 15 and 16).

In a certain sense also, these distortion effects are
different for a map than for a flow. For a map, the at-
tractor shape is set by the intricate winding of an unsta-

40
(a)

20
(c)
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0
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—20
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I
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FIG. 11. Time series plots for (a) 100%%uo (0.3 dB ) noise Lorenz 1 data. (b) The noise-reduced time series after 4 passes [5=1, 10,
20, 30 and (d, k, v) =(15,3,40)] of 15 iterations by geometric projection (4f = 17.3 dB). (c) A blowup of the first 1000 points from (b).
The resulting time series still tracks the original time series well but small-amplitude, high-frequency oscillations are still clearly visi-
ble. (d) The same short segment of the time series reduced by a 50-point local averagi. ng (4'f =14.3 dB). The clean Lorenz 1 time
series is plotted in each figure for comparison.
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erformance for the Lorenz 1 time series, N=10000,TABLE XVI. High noise algorithm pe
JV= 100%, (d, k, v) =(15,3,40).

Conditions 10 20

4';=1.95 dB
n AM

12.14 dB
98

12.14 dB

4;=0.29 dB
n =min(nM, 50)

11.33 dB
50

4.71 dB
50

0.68 dB
18

16.72 dB

b1e manifold, which cannot be traced by connecting
uentia11 . But for a flow we can connect

e more visi-and this renders the attractor shape mthe dots, an i
k whether the noise-11e. It is a fair question to as w e

e ure will "invent" an attractor, a relative-
1 simple-looking phase portrait shape. en e
nal time series is w i e n

'h't oise the answer, whether as a
flow or map, is no ~~ ig.(F' 17). For some more general kinds

of random noise, this is unlike y1 to be the case, an issue
we do not try to investigate here.

%e discuss some of the unfinished business of our

tematics o pe of rformance of the algorithm qua ynam'
h well are dynamica1 properties of the orig'that is, ow we are

a so venture anoise-free time series recovered? But we a so
few guesses ere aseh b d on the properties of the examples
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FIG. 12. Lorenz 1 time series with 13%
~ ~

white noise added
—17.5 dB) for comparison with the 17.3-dB time series plots in

Fi . 11. (a) The complete 10000-point time

(- . or

1000 points. The spectral mismatch of the n
ig. . a

noise to the (Lorenz
1 time series) signal is clearly evident in, ,b.

FIG. 13. Plots of the first 100 points for 100% noise Lorenz 3
a five oints local averaging,time series resulting from (a) ve p

S' =6.7 dB; and (b) geometric projection with b = an

(d, k, v) = ( 15,3,40), S =10.7 dB. The original Lorenz 3 time
series is also plotted as the dotted curve for comparison.
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Lorenz 1

(ET=0.005)
Lorenz 3

(AT=0.05)

Geometric
projection

17.0

10.3

Local
averaging

14.0 (50 pts)

6.3 (5 pts)

TABLE XVII. SNR improvement 5$ (dB) for JV= 100%.

Lorenz 5
Lorenz 6

No. of
points/cycle

3.5
1.75

5~ (dB}

6.3
3.5

7
4

TABLE XVIII. Coarsely sampled Lorenz data, JV= 100%
with (d, k, v) =(18,3,40}.

above. For all but the largest exponent, the Lyapunov
spectrum is sensitive to high-frequency noise, and some-
what less so to low-frequency distortion since it is an
average quantity computed from derivatives over the at-
tractor. So this may bode well for algorithm perfor-
mance in regard to metric quantities such as these. In
addition, the time sequencing of the points controls the
chaotic invariant measure and periodic orbit structures.
As this time sequencing actually is very well recovered
for the examples shown in Figs. 11 and 13(b), we think it
likely that low-order periodic orbit structures and the in-
formation dimension will be also well recovered.

We have tested these speculations with a few

Lyapunov exponent calculations. For the Henon exam-
ple of Fig. 15 the largest, A,

„

is closer to the correct value
A, , =0.408 for the cleaned-up data than for the noisy data
formed by adding an equivalent amount of white noise
(Table XIX}. These results were gained by using a code
that computes Lyapunov exponents described in Ref.
[22]. The exponents are computed from orbits realized
under delay coordinate construction from a given
N =10000-point time series using local cubic fits in di-
mensions d =2 and 4. Ten separate 1000-point segments
were used to compute the required Lyapunov-Oseledec
average; each table entry is an average of the resulting
ten X's.

For the Lorenz 3 example of Fig. 16 we performed the

2P

(a)

2-
- (c)

15—

10—

-5
0 200 400

t
600 800 1000

-2
0 200 400

t
600 800 1000

20
(b)

(E5)

15—

10—

—5
0 200 400 600 800

-2
0 200 400 600 1000

FICx. 14. The nature of the noise changes with each pass [i.e., each series of iterations to maximum 5 with a given delay and with
(d, k, v) =(15,3,40)] of the projection algorithm in the finely sampled case. Starting from a 10% noise (20 dB ) Lorenz 0 time series,
output time series: (a) after first pass with delay 1 (/f =32.2 dB) and (b) after following up with a second pass with delay 10
(S'f =35.5 dB); (c) and (d), residual noise time series for (a) and (b), respectively. Note some small-amplitude, high-frequency oscilla-
tions are removed from the noise after the second pass of the algorithm.
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TABLE XIX. Lyapunov exponent results for Henon data. For d =4, the smallest of the four com-

puted exponents was chosen as the A,, entry and the largest as A, &.

Lyapunov exponents

(X= 10000)

Unsoiled data
10% white noise (20 dB)
Cleaned up (29.9-dB 4'f)

3.2% white noise (29.9 dB)

d=2

0.417
1.635
0.663
1.161

d=4

0.437
0.555
0.436
0.460

—1.608
—0.162
—0.455
—0.242

—1.618
—0.675
—0.924
—0.764

calculations the same way with d =3 and 4. Again A. ,
computed from the cleaned-up time series is closer to the
value computed from the unsoiled time series than that
for the data with an equivalent amount of white noise
(Table XX).

IX. ANALYSIS OF EXPERIMENTAL DATA

We have applied the noise-reduction algorithm to time
series produced by a magnetoelastic Metglas ribbon ex-

periment that has been used for studies of the control of
chaos [11]. The ribbon is vertical, free standing, and

clamped at the base. The ribbon buckles gravitationally
by application of a vertical oscillatory magnetic field
H =Ho+H, cos2mft, whose effect is to cause a variation
of Young's modulus [23]. The dynamics of the ribbon are
extremely nonlinear under the driving conditions of the

experiment. The data series we examine here are for re-
turn maps obtained from observation of a Fotonic sensor
voltage output. The voltage reading is a monotone func-
tion of the horizontal displacement of a point on the rib-
bon near its base. The return map is obtained by strobing
the sensor output at the frequency of the drive.

The observed low-dimensional behavior in the ribbon
experiments is certainly perturbed by dynamical noise

[24] as well as additive noise. Before presenting our
analysis of the ribbon data, we make a few theoretical re-
marks concerning the application of noise-reduction pro-
cedures to experimental data. In the previous sections,
we have benchmarked our studies only for additive noise,
and have used our knowledge of V(t) to perform our
measurements of SNR improvement. In an experimental
situation, in general, there will often be dynamical noise

(a)zoab 20 ()

0

—20

(b)(d, k, v) =(8,2, 40~)
N=10 000

(b)(d, k, v, A) =(15,
N=10 000

0( 0

2 (c)AT=0.05

g or

0.0

—20

—40 0 20

x(n)

FIG. 15. Henon attractor with N=10000: (a) with 10%
(20.0 dB) added Gaussian white noise; (b) after 5~=9.9 (dB)
noise reduction with (d, k, v)=(8, 2,40); and (c) original un-

soiled case.

FIG. 16. Phase portraits for Lorenz 3 time series, N= 10000:
(a) with 100% added Gaussian white noise; (b) after noise reduc-
tion $f =10.7 dB (5~ =10.3 dB). First 100 points of the time
series are shown in Fig. 13(b); and (c) the original time series.
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TABLE XX. Lyapunov exponent results for Lorenz 3 data. In d =4 cases the largest exponent computed is spurious for the un-

soiled data and the s entry is the second largest. For the noisy cases the spurious exponent is the third largest and the f entries are
the smallest in each case. (See Ref. [22] for discussion of these effects. )

Lyapunov exponents

(N= 10000)

Unsoiled data
100% white noise (0.3 dB)
Cleaned up (10.7-dB 4f)

29.8% white noise (10.5 dB)

d=3

0.758
37.9
6.58

29.2

d=4

0.750*
28.2

5.38
21.5

d=3
—0.032
30.1

—0.213
22.0

—0.042
22.9

1.24
16.6

d=3
—12.1

15.2
—9.87

6.97

A3

d=4
—12.2

1.39
—13.9
—5.57

and an underlying true signal V(t} will be unknown.
Moreover, in many cases, V(t) may not be uniquely
defined. For example, in the case of a map f:M~M in
the presence of dynamical noise, a random perturbation
of size e is added to each image point under f,
x, +,=f(x, ), x, &M, t =. . ., —1,0, 1,2, . . . . The per-
turbed image point is then mapped forward by f, its im-

age again being perturbed, and so on, thus creating typi-
cally an e-noisy orbit. When shadowing occurs, there are
likely to be (uncountably) many true orbits off "5 close"
to the e-noisy orbit. Any of these 5-close true orbits can

serve as generator of a corresponding V(t}=S(f'x),
XE.M. Similar remarks may be made for Bows. In this
setting, the proper object of measurement in the noise-
reduction effort, though not unique, can still be
identifiable to order 5 [25].

We have found in Secs. VI—VIII that there is consider-
able variation of 5' and nM with d, k, v, 5, dt, and r, for
given conditions of initial noise amplitude JV and trajec-
tory length 1V, and furthermore that specific quantitative
results are system dependent as well. As we remarked
earlier, it is easy to get less than optimal results. So for
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FIG. 17. Delay 6=1 phase portraits for white-noise time series with N=10000: (a) "pure" original; (b) after n =15 iterations
(5»=9 dB) for (d, k, v) =(10,2, 20); (c) blowup of (b); and (d) further blowup of (b) but portrayed as a flow (i.e., with time sequential
points connected).
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application to experimental data, we would like to have
some idea of how we are doing.

There does not appear as yet to be a general recogni-
tion or solution for this problem. There are a few things
we can do, however. %'e consider the following quantity,
which is measurable from an experimental time series:

X„=10 log&o
llv. II'

(43)

Assuming Eq. (31), we have also

X„=10 log&o (44)

For n (nM, llri„[l is falling, by Eq. (37). We might ex-
pect that for noise levels not too high llv„ll =

ll Vll, and
that as n rises toward nM, we would have

X„=10 log, o
——10 log,o, (45)II vll' ll vll'

where in the last step we have neglected t)„and used

llrl, ll= l. The right-hand side is the initial SNR. Thus,
we might hope to get an estimate of the initial noise level
present in the data through computing the quantity X„.

In fact, this expectation is pretty much met in the ex-
amples of Henon and Ikeda map cases where we have
computed X„.In calcu1ations we have done, X„falls rap-

idly at first with increasing n, as u„pulls away from U &,

but then quickly slows its rate of fall and becomes nearly
constant. This behavior of X„corresponds to the change
in the growth of 5„:initial logarithmic growth of 5„and
eventua11y slower than logarithmic growth as saturation
sets in [Fig. 3(b)].

Let d~„=d~„(k,v) be the value of the embedding trial
dimension for which 5M reaches its peak value for a given
choice of (k, v) and b, . The results in Table XXI suggest
that we may adopt n =15 as a convenient fiducial value
at which to perform the estimate in Eq. (45) without
incurring more than +2-dB error, typically. The results
in the table cover a wide range of (k, v) and b, values, two
orders of magnitude of initial noise amplitude 0-40-dB S;
plus a 6G-dB example, and include both Henon and Ikeda
map cases. There is also a very wide range of values of
nM. The mean difFerence Xt&

—S; is only +1 dB with
+ldB spread (standard deviation). We note that X~o
gives a little better estimate than X» for nl-—2 or more;
still X» is better than X&o even for low n~. The very
weak dependence of X„onn makes n = 15 a good choice:
Xto often gives unnecessarily high estimates especially for
large n~', on the other hand, X~o can be too small in low-
noise cases, especially where nl is small, i.e., when the
algorithm performance peaks quickly and the slow X„
falloff can fail at higher n.

The quantity X» exhibits an interesting dependence on

TABLE XXI. Behavior of g„for d „conditions for maps: X„=S;.((Xi&—g, ) ) =1.0+1.1 dB. Henon, d =d,& and 6, =1 except
where otherwise stated. g denotes maybe not peak 5~(d); e denotes an extrapolation of no more than 0.5 dB and accurate to 0.1 dB.

10000

10000
10000
3000

10000
10000
3000
3000

Cond&talons

(4,2,20)

(6,2,40)
(4,2,20)
(5,2,30)

(9,3,20}
(8,3,40)
(8,3,10)
(6,3,40)

g, (dB)

60.0

39.2
39.2
39.1

39.2
39.2
39.1
39.1

llM

19
15
26
14

X1P (dB)

61.0

39.7
40.5
39.2

40.3
40. 1

41.2
40 4

Xis (dB)

60.2

39.2
39.6
38.2

39.8
39.7
40.5
39.8

Esp (dB)

39.1*
39.0
39.3*
38.8

Xls gt (dB)

0.0

0.0
0.4

—0.9

0.6
0.5
1.4
0.7

6M (dB)

4.64

9.01
5.34
5.98

9.84
9.19
6.47
6.46

10000
10000
10000
3000

3000
3000
3000

10000
10000

10000
10000
10000

Ikeda
Ikeda
Ikeda

(10,4,20)
(10,5,20)
(5,4,30)
(8,4,20}

(5,2,20)
(6,2,30)
(9,3,10)

(10,2,40)
(12,2,20)

(7,3,20}
(7,3,10)
(8,3,20)

39.2
39.2
39.2
39.1

39.1
19.1
19.1

9.6
—0.8

40.0
40.0
20.0

49
121
64
43

15
13
81

8
13

10
24
34

41.0
42.3
45.1

41.4

21.2
20.2
22. 1

10.1
—0.3

41.3
42.6
22.0

40.4
41.4
43.9
40.7

20.5
19.8
21.1

9.8
—1.6

40.6
41.8
21.4

39.7
40.2
41.8
39.8

19.8

40.5*
20.5*

1.2
2.2
4.7
1.6

1.3
0.7
2.0

0.2
—0.8

0.6
1.8
1.4

9.87
8.90
3.81
7.54

5.86
9.07
8.54

9.08
5.37

5.79
5.66
8.37
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d which is general in nature. We can exploit this depen-
dence for the purpose of making educated choices of
(d, k, v). We assume we have found a choice for which X„
exhibits the behavior described above. We expect that to
be the case as long as we did not choose so badly that X„
fails to have a very slowly falling region following its ini-
tial rapid fall from X,. As d is increased, 5M first rises to-
wards its value at d~z while n falls (see Figs. 5 and 7).
For large enough d, beyond the peak of 5 vs d, perfor-
mance degrades drastically and the alogorithm produces
negative improvement after at best only a few iterates.
Correspondingly, for these high d values nsr~0. These
effects show up in the behavior of X„for any fixed n: in

particular, X&5 falls as we raise d, and just beyond the
value d z, it plumrnets precipitously [Fig. 18(a)]. Graphs

45

of X&z vs d such as the ones shown in Fig. 18(a) thus can
be used to supply an estimate of the best d to choose for
enhanced algorithm performance. At the same time, by
Table XXI, the corresponding X&5 value X»(d~l, ) gives us
our estimate for 4;.

This approach has produced clear results for the rib-
bon data [Fig. 18(b)]. We chose k =3 and 4 to implement
the algorithm based on the following considerations. A
reasonable low-dimensional phenomenological model for
the ribbon dynamics is a parametrically driven DuSng
equation, which is three dimensional. Since one of the
degrees of freedom is time (mod2n /f ), M should be
something like S' XR, or maybe T XR which requiresI for an embedding. In a previous experiment on the
same system under physically similar driving conditions

[23], the flow data analysis showed that all evidence of
transverse self-intersections were absent by d =5, and
very probably by d =4. Moreover, a Poincare section
was found distinct from the trivial one based on the
periodicity of the drive, so M = T XIR could be inferred.

40
3.0

(a)

35

+ 2.0—

30
4 5 6 7 8 9 10 11 12

d 1.5—

1.0
1.0
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1.5 2.0
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tb)

2.5—

45
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d

12 13 14 15 2.0—

FIG. 18. (a) X» (dB) vs d plots for a few cases of known
maps. All cases have initial 1% noise (-40 dB). 0: Henon,
N=10000, (k, v)=(3,20); f: Ikeda, N=10000, (k, v)=(3,20);
5: Henon, N=3000, (k, v) =(3,30). The points circled corre-
spond to where peak 5M were achieved in their individual cases.
(b) X»(dB) vs d plots for the ribbon data. Each line corre-
sponds to a different choice of (k, v) values: ~: (3.10); 0:
(3,20); 0: (3,30); 0: (4,15); A: {4,25); and 6,: (4,40). The
points circled indicate the optimal choice of d values which is
determined by one back from the sharp drop of X». These d
values are the choice for best 5M performance for the'ir corre-
sponding (k, v) values.

1.5—

1.0
1.0

I

1.5 2.0
x(n)

I

2.5

FIG. 19. The image of the embedded attractor (a) for the rib-

bon data, and (b) for a cleaned-up data set, both projected into

the first two components. The reduction was done for 15

iterates with (d, k, v)=(9,3,20). This choice of parameters is

determined from Fig. 18(b).
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the 6~ vs d plot.
On the other hand, if the 38-dB estimate is right, the

result of experiment A should look more or less like the
result we have just described for experiment B, and the
result of experiment 8 should remain the same [26].

We first test these ideas on a Henon time series having
57-dB 4, as our "toy" D (t). For our "noisy" time series
u(t) we add to D(t) white noise with JV=0.07%. We
used three reference time series: (1) D(t), (2) D„(t)ob-
tained from D(t) after 15 iterations of the algorithm, and
(3) V(t), the original unsoiled Henon time series that we
used to produce D(t). The results are precisely those de-
scribed above for experiment A and experiment B [Fig.
20(a)]. The "noisy" time series shows little or no im-
provement relative to D (r) but large and nearly equal im-
provements relative to D„(t)and V(t). These results
confirm all the theoretical expectations described in ex-
periments A and B. Results for the ribbon data [Fig.
20(b)] show clear consistency with the 54-dB 1; estimate
and are inconsistent with the 38-dB estimate.

There is an obvious possible explanation for the
discrepancy between our calculation and the noise as-
sumed in [11]:projection effects can give misleading im-
pressions regarding the presence of attractor structure.
The strandlike appearance of the attractor in a delay one,
R construction [Fig. 21(a)], shows features not present in
Fig. 19. The thin region of the attractor marked C in
Fig. 19 is resolved into clearly separated filaments in this
R picture, while region A is seen edge on. In addition,
there is a good deal of twisting in the strand, so that C,
for instance, instead of curving towards the viewer as A

does, curves away. Let us now look down the D(t +1)

10-- 12--

(b)10--8--

8--

4
6--

5 6 7 8 2 2---2--

-4--
1 124 5 6 7

-2--

FIG. 20. (a) 5M (dB) vs d plots for Henon data. Three refer-
ence time series were used. (1) ~: Henon data with 0.14%%uo noise
(57 dB); (2) Cl: cleaned-up time series after 15 iterates with

(d, k, v) =(5,2,20) from the 57-dB time series (the conditions for
this reduction were not chosen to be optimal); (3) 1: the origi-
nal unsoiled Henon time series. (b) 5~(dB) vs d plots resulting
from experiments A and B for the ribbon data. Two reference
time series were used for both an additive 0.07% noise case and
a 1% noise case. The following is the notation for reference
time series. : the cleaned-up ribbon data [15 iterates
(d, k, v)=(9,3,20)l; ~: original ribbon data. The two plots that
are close together are 1% cases. There the cleaned-up and orig-
inal ribbon data D„(t)and D(t) both look squeaky clean to the
"l%%uo-noisy" time series.

Thus we expect that m =2 for the data depicted in Fig.
19(a},and they may require d =3 for an embedding. Our
choice of k is to allow for the possibility of m = 3 and to
avoid doing damage to the data by projecting it into a
space of lower dimension. Such caution may be unneces-
sary, but we have not studied effects of projecting into
spaces having k (m.

To estimate 4,- from the computations depicted in Fig.
18(b}, we average the six X» values for the circled points
and deduct 1 dB. The result is 4, =54.2 dB (JV=0.20%).
The authors of [11]have estimated a dynamical noise am-
plitude of +0.005 V since any structure below this scale
on the attractor [Fig. 19(a)] was blurred out. For our rib-
bon time series

~~
V~~=0. 42V, which gives a noise size

JV=1.25% (eV;=38 dB}. This is well outside the 1-dB
standard deviation from our results (0.9 dB for X» fluc-
tuations from the six values above, and 1.1 dB overall
fluctuation from Table XXI).

Our 4; estimation procedure has been reasonable, but
it is still largely empirical in nature. We can develop an
independent check of our result as follows. Let
D(t)=x(t) denote the experimental ribbon data time

series, and D„(t)the time series resulting from fifteen
iterations of the algorithm for some choice of (d, k, v) like-
ly to give reasonable improvement, e.g. , (9,3,20) [Fig.
19(b)].

Numerical experiment A. Suppose we now generate a
new "noisy" time series u (t}by adding 1% white noise to
D (t). We can evaluate the SNR of u (t) two ways: (1)
with D (t), regarded as a reference, i.e., as the "true" time
series, and (2) with D„(t)as a reference. Apply the algo-
rithm to u (t) and iterate to maximum 5M according to
each measure. For example, with respect to D (t), the ini-
tial SNR is precisely 40 dB since the noise added to D (t)
is 1%. Fixing (k, v), we can generate 5M vs d plots for
each case. Suppose our high 54-dB estimate for the true
SNR of the original data D (t) is correct. Then we expect
D (t) and D„(t)to look almost noise-free to the relatively
much noisier time series u(t), and most, if not all, of its
cleaned-up versions u„(t)as well. The two 5M vs d plots
should then be close together, and the one with D„(t)as a
reference should lie higher since the cleaner signal should
be farther away from the noisy one (~~u„—D„~~

Numerical experiment B. Let us imagine a second nu-
merical experiment just like this one but with the "noisy"
time series now formed by adding a low-amplitude white
noise to D(t), JV=0.07%. This is somewhat less than
the 0.20% implied by our assumed 54 dB, and gives a
combined noise amplitude JV'=0. 21%. The 6, values
should be different from those of experiment A since the
"noisy" time series u(t) now lies close to D(t) As the.
iterations proceed, u„(t)should pull away from D (t) and
approach the true signal V(t). Since the SNR measures
the ratio of the l norm of the reference time series to the
l distance of U„(t)from the reference time series, we ex-
pect 5M computed with D (t) as a reference to be small
and the maximum to be reached quickly, i.e., the corre-
sponding n~ also should be small. In contrast, when

D„(t)is used as a reference we should see a strong peak in
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axis (y axis) [Fig. 21(b)], which is exactly the same as the
projection into I of a delay 2 embedding. The flat band
8 in Fig. 19 is seen edge on, while the previous edge-on
view of C is now showing a band.

To get upper and lower bounds initial noise in the rib-
bon data we focus on region 8, shown enlarged in Fig. 22.
To get an upper bound, we assume the region of the box
in Fig. 22(a) is an edge-on view exactly. The vertical
spread is then an upper bound on the noise. For the 179
points in the box, the standard deviation is 24 mV, so
JV~ 0.6% and S; ~ 45 dB.

A blowup of the region in the box [Fig. 22(b)] after ap-
plication of the algorithm reveals fairly flat upper and
lower boundaries, with only a few outliers. This suggests
that the view is not quite edge on. For the 178 points in-
volved, the standard deviation is now 18 mV. We can get
a lower limit on the initial noise by assuming the error in
the cleaned-up case is zero. Then 3 mV = —,'(24 —18) mV
would be a minimum value for the initial noise, i.e.,
IV~0.07% (63 dB). We conclude that our estimate for

:: (a)

the initial noise %=0.20% (54 dB) is in reasonable agree-
ment with the properties of the actual data, and is essen-
tially correct.

X. SUMMARY AND DISCUSSION

We have presented a local geometric method for noise
reduction that is applicable to time series produced by
chaotic systems. The basic idea of the method is related
to the local singular value analysis technique for estimat-
ing topological dimension due to Broomhead, Jones, and
King [8]. Using the delay coordinate construction, we
(typically) obtain an embedded orbit from a scalar time
series which lies on the embedded image M' of the under-
lying manifold M. We identify the best local linear ap-
proximation H of the embedded manifold M' near a point
p lying in (or close to) M' by solving an eigenvalue prob-
lem of a matrix X formed of unit vectors from p to near-
by points of the embedded orbit. Noise reduction near p
is achieved by averaging these points with their projec-
tions into H. We have introduced the measure-ordered
cover to organize the noise reduction globally. The phys-
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FIG. 21. (a) A three-dimensional view of the ribbon attractor
embedded in R . (b) Projection image of the ribbon attractor
similar to that of Fig. 19 except now we have delay 6=2.
Another way to get this picture is to take a three-dimensional
image starting from the position of Fig. 19 and rotate —90'
around the horizontal axis.

1.360
1.64

I

1 66 1.68
x(n)

I

I 70 1.72

FIG. 22. The blowup of the boxed region B in Fig. 21(b) for
(a) the ribbon data and (b) the cleaned-up time series shown in
Fig. 19(b).
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ical replacement time series produces an optimal data
state vector time series that is realizable as a delay coor-
dinate construction. This PRTS is the input for the next
iteration. We have presented results of extensive sys-
tematic studies of algorithm performance for the Henon
map with additive white noise. These studies consisted of
iterating the algorithm until the SNR improvement
achieved a stable maximum 5~ after nM iterations. 6M
and nM data were collected for a wide range values of the
parameters of the method d, k, and v, and for different
trajectory lengths, different initial noise levels, and
different noise and orbit realizations. We have explored
algorithm performance for a wide range of physical sam-

pling intervals hT for the Lorenz system, several orders
of magnitude of additive white noise and under a range of
embeddings produced by different delays. We have inves-

tigated comparison of performance of time series behav-
ior under the algorithm with those resulting from a linear
local averaging filter. A few calculations for the Ikeda
map and Rossler system were done to test system depen-
dence. We have also explored limits of the method for
very low initial noise, including the theoretically impor-
tant baseline noise (0%) case. We have achieved good
improvements for very high levels of initial noise for the
Henon map (9-dB gains for 10-dB I; and a nonoptimal
6-dB gain for —1-dB S;). For Lorenz 1 (b, T=0.005)
cases with JV= 100%, under a variety of conditions where
(d, k, v) choice was not optimized, good results were also
achieved, 17 dB in one instance. For the coarsely sam-

pled Lorenz 5 time series, %=100%, we found 5M =6 dB
where again the (d, k, v) choice was not optimized. Final-

ly, we have analyzed data produced by a Metglas ribbon
experiment and found a method to allo~ a quantitative
estimate of the noise present in the data. Our analysis
has resulted in a large revision downward of the estimat-
ed noise of [11].

Two aspects of the present work appear noteworthy to
us. First, the local projection technique for noise reduc-
tion requires no prior dynamical information for its im-

plementation, and no general dynamical properties of
maps and Qows, such as hyperbolicity, are used. The
method is purely geometric. The combined point of view

of signal processing theory and dynamical systems theory
has provided insight into the operation of our method.

Since we do not use dynamical information to perform
noise reduction, an important indicator of the perfor-
mance of our algorithm will be how well dynamical quan-
tities, such as the Lyapunov spectrum, attractor dimen-

sions, etc., are correctly reproduced from the cleaned-up
data. We have explored this issue briefly, in Sec. VIII,
with a couple of sample calculations, and found that
recovery of dynamical information was good. But more
systematic studies still need to be done.

Another interesting direction for future work is to pur-
sue the optimization of (d, k, v) choices for coarsely sam-

pled flows. Baseline noise calculations can provide a
guide here and a relatively fast way to assess time series
length requirements for various AT. A related problem is
performance against correlated noise, e.g. , colored or
1/f-like scale invariant noise.

The second point we wish to note is the remarkable cir-

cumstance laid out in Sec. IX allowing us to estimate the
initial noise level for a given time series, and even to esti-
mate the best d =d &(k, v) value to implement the algo-
rithm. The systematics of X» provide a good guidance
for an educated guess for values of (d, k, v) for good noise
reduction. Thus in analyzing data with only limited in-

formation about its origin, we do not have to proceed
blindly.

The algorithm has done surprisingly well considering
the crudeness of linear local modeling by the 0&. An ob-
vious extension of the method is to include manifold cur-
vature effects by means of local polynomial fits. This im-

provement may be most useful for low noise, high delays,
and coarsely sampled flow cases since it should result in

reduced levels of baseline noise. On the other hand, this
also could have far-reaching effects in the case of coarsely
sampled flows even for very high noise. Short of local
polynomial modeling, there may be significantly better
choices off than the 0.5 value chosen in this paper.

Although we have described a basic theoretical frame-
work for the scheme, we have not produced a theoretical
formulation for the algorithm performance, e.g. , an ex-
pression for 5„,which might enable us to provide ex-

planation for the logarithmic growth at low n. An out-
standing issue for the method is the saturation of 5„.We
believe that significant increases in 5M wi11 be possible
with future developments of the local projection method.
We think this is especially true for the high-noise case.

Note added in proof Since thi.s work was completed we

have investigated several issues not addressed or ade-

quately treated here. We have performed systematic
studies of effects of sampling time and trajectory length
on algorithm performance for the Lorenz system [27]. In
Ref. [28] we performed multiple iterate baseline noise (at-
tractor stability) studies. In Ref. [29] we investigated al-

gorithm performance against dynamical noise for the
Henon map. And in Refs. [28,29], we examined k (m
effects for the Lorenz system.
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APPENDIX A

Consider Q(u)=u Xu, X symmetric and ~~u~~= 1. Let
the eigenvalues of X be ordered A.

&

~ A, z
~ . . - ~ A, &. Writ-

ing u in terms of the eigenvectors w;, viz. u=g,",u'w;,
we have
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d

Q(u)= g A, , (u')

Since gd, (u') =1,
d —1

(Al)
the singular vectors of A as given in Theorem 81.
Denote by E,j=1, . . . , n the sequence of linear spaces
of dimension n —j+ 1 given by

E, = &w, , . . . , w„&=I",
Q(u)=Ad+ g (A,;

—Ad)(u') ~)(d=Q(wd) . (A2) E,=&w„.. . , w„&,

d

A, (r).
j=k+1

(A4)

APPENDIX B

The singular value decomposition for an arbitrary
m Xn matrix is given by the following theorem of linear
algebra.

Theorem Bl: Let A be an arbitrary (real) m X n matrix.
Then there exist an orthogonal m Xm matrix U and an
orthogonal n Xn matrix W such that U A W=X is an
m X n "diagonal matrix" of the following form:

D 0
0 0

D=diag(o, , . . . , o„),o, ~o, ~ ~o„&0.
Here, o.„.. . , o „arethe singular values of A, and r is the
rank of A.

The decomposition A = UXW is called the singular
value decomposition of A. The corresponding row vec-
tors of U and column vectors of W are called the singular
vectors. Notice that these singular vectors form bases of
their corresponding Euclidean spaces. A simple conse-
quence is the following.

Corollary B2: An m Xn matrix A has rank r if and
only if A has r positive singular values.

Let v, , . . . , vI be arbitrary vectors in IR". We denote
by &v&, . . . , vI & the linear subspaee spanned by vectors
v&, . . . , v~. Also denote by ~( (~

the 1 norm in R". Then
the singular values can be viewed as the measurement of
the excursion of the column (or row) vectors of A into
the directions of the corresponding singular vectors.

Proposition 83: Let A be an arbitrary m Xn matrix.
The n X n matrix W=(w, , . . . , w„)has all its columns

Thus
d

D(r, Hk)= g u Xu
j=k+1

d

Q(u, )
j=k+1

d —1

Q (u, )+Q(ud )
j=k+1

d —1

Q(uj )+Ad(r),
j=k+1

where in the last sum u E & wd &, the orthogonal comple-
ment to & wd &. Repeating the procedure,

d —1

D(r, Hk ) ~ g Q(u) )+Ad(r)
j=k+1

E„=&w„&.

Then the singular values cr. of A are the positive square
roots of the extrema of the Rayleigh quotients

vEE. ,v&0 V

and the maximum is achieved at v =w .
Denote by w; and u; the singular vectors of A. Notice

that fori &n

Thus the singular values can be viewed as the measure-
ment of the excursion of columns of A into the direction
of the corresponding singular vector.

The A, of Theorem 2 in Sec. III are the squares of the
singular values of the d X(v+1) rectangular matrix R
since X=RR . The A, measure the excursions of the
v+ 1 column vectors of R, viz. , x;, i =0, 1, . . . , v, into the
directions of the respective w. , while D in Eq. (13) mea-
sures their "total" excursion into the space
&wl, +&, . . . , wd &. Minimizing D amounts to estimating
as best Hk, the local linear space containing most of the
corresponding local x; collection.

In a single iteration of the algorithm described in Sec.
V on a time series of 10000 points, for example, there
will be typically 500 such matrices X when v=40, one for
each element of the cover for the set A'. Correspondingly
there will be 500 such locally determined %k each
"pointing" in its own locally determined "direction, "viz.
that of w1, . . . , wk.

This is in sharp contrast to the analysis of Ref. [2],
which is based on properties of a single d XN trajectory
matrix S formed of the entire time series. The X columns
of S are the data state vectors p( t), t = 1, . . . , N, from the
time series U(t). The collection of N vectors whose ex-
cursion along a given singular vector direction in IR" is
measured by the corresponding singular values is now
formed of the entire time series p(t). That excursion is
actually just the (square root of the) variance of the tra-
jectory matrix in the corresponding singular direction.
The square of S, O=SS", is accordingly called the co-
variance matrix for the orbit. For further contrast we
note the indexing of the columns of S is precisely the time
itself while for the v+ 1 columns of R the indexing is ar-
bitrary. %'ere these to be time ordered, for some given
neighborhood, say, the corresponding times would be
scattered throughout the collection of X available values.
To emphasize the geometrical interpretation given above
for the matrices X (and their eigenvalues) we have called
them local excursion matrices (Sec. III).
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