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Orientational order in random packings of ellipses
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By means of Monte Carlo simulations, we examine the behavior of random packings of hard ellipses
formed by pouring into a two-dimensional container. The particles pack so that their semimajor axes
are preferentially aligned with the horizontal, and their orientational alignment increases with increasing
aspect ratio. This self-organizational effect is accompanied by a corresponding reduction in the transla-
tional order of the centers of masses of the particles. For sufficiently elongated particles no translational
order is present: The packings are amorphous, but still exhibit long-range orientational order. We call
this state a "nematic glass. " We find that the orientational order also increases as the rate of deposition
is reduced. The orientational order decreases if the packings are shaken. The behavior of the packings
can be explained heuristically as being the result of competition between two local-potential-energy-
minimization processes. The relevance of our results to materials science and petroleum engineering is

discussed.

PACS number(s): 05.40.+j, 81.35.+k, 81.20.Ev

I. INTRODUCTION

There has recently been considerable interest in ran-
dom packings of particles in two and three dimensions.
Random packings of disks (in two dimensions) and
spheres (in three dimensions) were at first constructed un-
der the influence of a central potential to model liquid
structure [1,2]. As work progressed, it was realized that
these systems comprised a better model of amorphous
materials than of liquids [3,4]. More recently, random
packings constructed in the influence of a uniform gravi-
tational field have become the object of scrutiny. These
packings are used to model the macroscopic arrangement
of granules in powders and porous materials, and can be
employed to make predictions about the porosity, struc-
ture, and stability of granular media [5,6]. This area is
multidisciplinary in nature, providing insight into prob-
lems in physics, sedimentology, petroleum engineering,
materials science, and process engineering.

In all likelihood, a random, closely packed metastable
state will result when a collection of identical particles is
poured into a container, rather than the regular "crystal-
line" arrangement in which the lowest energy is achieved.
Significant work has been done towards characterizing
the structure of these random packings over the past two
decades. Initial work was directed towards the definition
and analysis of random monodisperse sphere and disk
packings. Berryman has shown that there is a distinction
to be made in three dimensions between loose and close
random packings, but in two dimensions the distinction is
not as clear [7]. There is also evidence that the random
densely packed structure of disks in two dimensions may
be unstable [7]. As a result, it may be that in two dimen-
sions, by applying a suitable set of perturbations, a ran-
dom dense packing can be reduced to a crystalline array.
In contrast to the two-dimensional (2D) case, three-
dimensional (3D) packings of spheres form stable dense
random packings. The difference is that the 30 system

exhibits frustration, while the 2D system does not. Sim-

ply stated, frustration is a result of competition between
local and global minimization of potential energy [8].

An algorithm introduced by Visscher and Bosterli to
construct packings of spherical particles in the influence
of a uniform gravitational field has the benefit of being
fast enough that large systems can be constructed [9]. In
the Visscher-Bosterli model, spheres are dropped one at a
time and fall straight down from random release points
above the packing. Once a particle has reached the sur-
face of the aggregate, it rolls without slipping along the
surface until it reaches a point of mechanical stability. It
then moves no further. The Visscher-Bosterli model is
strictly valid only in the limit of zero deposition rate
since there is no interaction between the particles during
deposition. Moreover, because the particles are frozen in

place once they have reached a stable resting place, the
model does not allow for collective motion within the
packing. Since the particles are dropped from random
positions, the packings have a random character.

Real systems are composed of particles that are po-
lydisperse [10]. Even if random deposition of mono-
disperse spheres (or disks) could form a crystalline pack-
ing, a polydisperse distribution of sizes will destroy that
possibility [11]. Also, if the smallest particles are smaller
than the pores in between the larger particles, the small
particles will pack within the pores of the large particle
packing, leading to a much larger overall packing frac-
tion [12]. Most of the work that preceded that of Viss-
cher and Bosterli dealt with monodisperse spheres (or
disks). In order to examine the effect of polydispersity,
Visscher and Bosterli also constructed a packing with a
range of disk sizes.

Visscher and Bosterli attempted to simulate shaking by
dropping an ensemble of particles at each step and choos-
ing the particle that had the minimum potential energy.
This accomplishes the goal of forcing the packing to form
a more dense, lower total potential-energy packing, but
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ignores the fact that shaking is a complex dynamic pro-
cess and that particle interactions during relaxation are
important. In particular, if one shakes a random packing
composed of spheres of more than one size, size segrega-
tion takes place [13]. The Visccher-Bosterli model exhib-
its no such effect. In order to overcome these difficulties,
Rosato et al. performed a Monte Carlo simulation of
pouring and shaking that treats each macroscopic parti-
cle as an independent random walker in a gravitational
field [14,15]. This model allows for particle interactions
during relaxation, and can be used to examine the time
evolution of the aggregate during shaking. Another ex-
ample of the importance of particle interactions is found
in the flow of elongated particles in a gravitational field.
In a cellular automaton model of such a granular flow,
the particles tend to flow with their long axes along the
vertical [16].

We see that as work has progressed, refinements have
been added to the original model of monosized spheres
packed in a gravitational field. It was recognized that in
real systems the particles are not all the same size and
that this fact has a significant effect on the properties of
the packings. Particle interactions also play an impor-
tant role in determining the properties of the aggregates.
However, most models with these improvements still use
spheres or disks as the constituent particles.

It has long been known that for most granular media
the particles are not identical spheres. For example,
sandstones are formed from particles with a variety of
shapes and sizes [10]. Since sandstones are important
reservoirs for oil, water, and natural gas, the porosity of
these packings is of great economic importance [17].
Empirical studies have shown that the porosity of a pack-
ing depends on both the shapes and sizes of the particles
that compose the packing [18]. In ceramics processing
and metallurgy, a wide range of materials are formed by
sintering powders composed of polydisperse aspherical
particles [19]. Finally, it has recently been shown that
granular conducting polymers can be formed from
aspherical dispersions [20—24]. In the case of polyaniline
[23,24], the polymer microparticles are prolate ellipsoids.
In short, there are a range of granular materials in which
the granules are aspherical. Despite this fact, random
packings of aspherical particles have received only limit-
ed theoretical attention [25,26].

In this paper we present the results of our Monte Carlo
simulations of freely rotating aspherical particles poured
under the influence of gravity. The simplest perturbation
to a sphere is the elongation of a preferred axis, which
naturally forms an ellipsoid. Since our studies have been
confined to two dimensions, we have worked with el-
lipses. We expect that much of the behavior in packings
of aspherical particles will be affected by particle interac-
tions during the pouring process. Indeed, as we shall see,
the properties of these packings are strongly affected by
the deposition rate. This suggests that we base our simu-
lation method on the work of Rosato et al. rather than
that of Visscher and Bosterli.

Our simulations show that the properties of packings
depend strongly on the shape of the constituent particles.
We find that for packings of identical ellipses, the ellipses

exhibit orientational order and that the degree of orienta-
tional order depends on the aspect ratio, as well as the
deposition rate. The final porosity of the aggregate is
also dependent on the aspect ratio. The amount of
translational order present decreases with increasing
elongation. For particles with sufficiently large aspect ra-
tio, the packings are amorphous but still exhibit orienta-
tional order. Finally, we find that, as with the shaking of
spherical particles, the properties of packings of ellipses
change with shaking. For polydisperse spherical pack-
ings, the packing goes from a uniform spatial distribution
of sizes within the packing to a size-segregated distribu-
tion as shaking progresses. For ellipses, the orientational
order decreases with shaking.

The paper is organized as follows: In Sec. II we de-
scribe our pouring algorithm in detail and explain our
methods of analysis. The results of our simulations are
presented and discussed in Sec. III. In Sec. IV we give
our conclusions and suggest directions for future work.

II. COMPUTATIONAL METHOD

In this paper we describe the results of our simulations
of the concurrent deposition of a relatively large number
of two-dimensional elliptical particles in a box. All of the
particles are identical. The ellipses are taken to have
semimajor axis with unit length, and aspect ratio a
defined by

(semimajor axis length)
(semiminor axis length)

Naturally, with this definition, a is always greater than or
equal to 1. The simulation program keeps track of the
center-of-mass location of each particle, and the angle 8
that its semimajor axis makes with the x axis.

To simplify the simulations, we discretized the particle
positions and orientations. The centers of mass are
represented by points on a square lattice or grid. The lat-
tice spacing is chosen to be small enough that the discret-
ization does not significantly alter the properties of the
final packings, but large enough that the simulations run
in a reasonable amount of time. The orientations of the
particles are chosen to be integral multiples of 2~/N&.
Here, N& is the number of orientations the particles can
assume. Again, N& is chosen so that the properties of the
packings do not change significantly as we increase N&.
For all of the results presented here, the semimajor axis is
32 grid units long, and N& =60. As a check, we examined
packings with semimajor-axis length 64 and N&=120.
The results are essentially the same as obtained using our
usual discretization. To show that our results on orienta-
tional order are not due to the fact that 0=0 is one of the
allowed angles in the discretization, we also examined
packings with angular discretizations of the form
8=(2mlN~)ne+(vrlN&), where no=0, 1, . . . , N& 1. —
We find that the properties of the final packing are not
significantly altered.

Our simulation method is based on the technique intro-
duced by Rosato et al. [14,15] in their simulation of the
pouring and shaking of disks. We begin by randomly
placing N particles in a box. The size of the box is chosen
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so that the final packing will be roughly square, and so
that the average density of the initial distribution of par-
ticles is y. Since the particles are placed randomly and
uniformly, y is simply the fraction of the total box area
covered by the particles. In a real experiment it would be
difficult to arrange the particles randomly in a vertical
box and then allow them to fall. A more likely scenario
would be to pour particles into the top of a box at a given
rate. The parameter y can be thought of as being analo-
gous to the rate of pouring. The walls of the box are tak-
en to limit the motion of the centers of mass of the parti-
cles but not their orientation. These boundary conditions
are discussed in detail below. The particles are randomly
distributed within the volume of the box with the con-
straint that the great circles of the particles may not
overlap, i.e., the centers of mass of each pair of particles
must be separated by a distance of at least 1. Therefore,
there are absolutely no orientational correlations at time
t =0.

After all of the particles have been placed within the
simulation volume, the pouring procedure begins. The
pouring is simulated using a variant of the Monte Carlo
method [27]. In the standard Monte Carlo algorithm we
would start by randomly choosing a particle, and then
randomly choosing a translation vector and an angle to
rotate the particle through. Next, we would compute the
change in energy and hence the probability of accepting
the trial move. Since the particles are macroscopic and
the temperature is taken to be comparable to room tem-
perature, we exclude all upward movements of the parti-
cle, and accept all downward movements with equal
probability [15]. As a result, we may simply choose our
translation vector so that the z coordinate of the particle
will decrease or stay the same. In the standard algo-
rithm, if the new position and orientation do not cause an
overlap, we move the particle into the new configuration.
However, if we simply move the particle to its new posi-
tion and orientation, we introduce the possibility of
"jumping" over a forbidden configuration and arriving at
a configuration that is allowed, but unreachable. The
probability of generating a forbidden "jump" increases
rapidly with increasing aspect ratio. To avoid this possi-
bility, we instead "propagate" the particle through the
system.

To propagate the particle, we compute the angular ve-

locity needed to place the particle in the correct final
orientation when its center of mass reaches its final posi-
tion [28]. The sense of the rotation is randomly chosen.
We take advantage of the fact that the positions and the
orientations of the particles are discretized by requiring
that the particle does not change either its angle or its
center-of-mass position by more than one discretization
step at a time.

We continue stepping the particle along the trajectory,
one grid point at a time, until the particle collides with
another object, collides with one of the walls, or reaches
the maximum translation distance. If a collision occurs,
the particle is restored to the position it had just before
the collision and the propagation is ended.

The walls in our simulations are defined in order to
reduce the finite-size effects on the orientational order.

—
y
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FIG. 1. A packing of 1200 ellipses with a=4. The shading
of each particle is proportional to ~8 —m/2~, where 8=@/2 is
represented by black and 8=0 is represented by white. This
shading makes it easier to see oriented domains. The initial
density in this simulation was y =0.25.

We require the centers of mass to remain within the box,
but permit the orientation of a particle in contact with a
wall to be arbitrary. This means that there is no forced
alignment between the walls of the box and the long axis
of the particles. Figure 1 is a representative packing for
o, =4 particles with these boundary conditions. Col-
lisions with other particles are detected by means of an
overlap criterion. We employ the Vieillard-Baron cri-
terion [29], which is an analytic test that reveals whether
two ellipses intersect. In all of our simulations the max-
imum translation distance was taken to be three times the
semimajor axis length. We choose this length to limit a
single particle to motion within its local environment be-
fore being rerandomized, and yet still allow a reasonable
rate of propagation. Increasing the maximum translation
distance is similar in effect to increasing the pouring rate,
and the role of the pouring rate is discussed in detail
below.

We continue to move the particles using the algorithm
just described until the system is close to a metastable
state. Figure 2 shows the total potential energy as a func-
tion of the number of attempted moves for a test run of
3 X 10 attempted moves. The total potential energy of
the system is within 0.7% of its asymptotic value by the
1X10 attempted move. In all the simulations that fol-

low, we simply end the simulation after the 1X10 at-
tempted move.

When we began this study, we determined overlaps by
a bitrnap criterion which turned out to be unreliable.
This method explicitly uses the fact that space and angles
are discretized. We computed a set of bitmaps to
represent the ellipses at each of the discretized angles.
The bitmap is simply an object that contains a binary
"true" for each element of the grid that is within the inte-
rior of the ellipse. By using fast logical operations, we
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FIG. 2. The total potential energy as a function of the num-

ber of attempted moves for the simulation that yielded the pack-
ing shown in Fig. 1 ~ The total potential energy has come close
to its asymptotic value by the 1 X 10 attempted move.

could determine whether two ellipses overlap.
One attractive aspect of the bitmap method is that it

allows us to construct packings of particles with arbitrary
shapes. However, it turns out that the discretized-
overlap criterion has an inherent difficulty. When a
curved object is discretized onto a square lattice the ob-
ject will still be, to a good approximation, curved. How-
ever, the discretization introduces flat edges near the
points along the curve where the curve is tangential to a
lattice direction. This phenomenon has the effect of con-
verting the curved object into an approximately curved
object with a number of flat edges. Although this ap-
proximate object behaves similarly to the original object
for the most part, there are some significant differences.
In particular, a discretized ellipse may stand on end. We
must consider the bitmaps to be an unreliable representa-
tion of a real, continuously curved object. As a result, we
have used the Vieillard-Baron criterion to generate all of
the results presented here.

In order to simulate pouring and shaking, we begin by
creating a packing by pouring the particles into a box us-
ing the above procedure. After the pouring process has
been completed, we simulate a vertical shake by rigidly
translating the entire packing upwards by a specified am-
plitude and then quickly lowering the entire box back to
its original position. Finally, we perform a Monte Carlo
simulation of the particles' fall to the base of the con-
tainer using the same rules that we use to pour the parti-
cles into the box. The only difference between a pouring
simulation and the pouring phase of a shaking simulation
is the initial state of the packing.

In analyzing the orientational order in our packings,
we have found two techniques to be of particular utility.
First, we define the orientational order parameter. This
allows us to assign a single number to a given packing
that indicates how much orientational order is present.
The order parameter that we have defined is

N6—:—g cos(28; ) .
i=1

Here, N is the number of particles in the packing and 0,-

is the angle of the ith particle. Because cos(28) is sym-
metric about 8=m. /2, each particle contributes to 6 ac-
cording to its absolute angular displacement from the
vertical without regard to the sense of the displacement.
This means that a particle that is leaning an angle P to
the right of vertical contributes the same as a particle
that is leaning P to the left of vertical. Note that a uni-
form distribution of angles will result in 6=0, while, if
all particles lie fiat, Q =1.

We will also make histograms of the particle popula-
tion versus the folded angle. The folded angle is given by

8 for 0&8&~/2
8—:8 nf—or .m/2&8&3m/2

8—2n. for 3n./2&8&2m. .

Rotating an ellipse by m radians about its center of mass
gives us the same ellipse, and we use the folded angle to
correctly account for this fact. Using the folded angle
has the effect of folding the angles into the range
[—m/2, n/2). To form the histogram, we count the
number of particles whose angles fall between the top and
the bottom of a given bin. Finally, we plot this distribu-
tion. This allows us to visually inspect the angular distri-
bution of particles for peaks. The presence of a peak in-
dicates that there is a preferred orientation.

In order to characterize the degree of translational or-
der in the packings, we compute the structure factor of
the centers of the particles. The structure factor is
defined as

S(k)= f d x p(x)e'"'*
2~

where

N
p(x)—= g 5(x—x;),

(2)

and I; is the center-of-mass position of the ith particle in
the packing for i E I 1, . . . , NI. S(k) is proportional to
the intensity pattern that one would obtain if one per-
formed a scattering experiment on the centers of mass of
the particles. Several types of scattering patterns can re-
sult from this calculation. A pattern with well-defined
spots arranged in a lattice corresponds to a crystal with
long-range-order. Rings can also occur, in which case
the packing is polycrystalline (Fig. 3). Finally, the inten-
sity pattern can exhibit no structure whatsoever, and this
corresponds to an amorphous packing (Fig. 4).

As we will see, our packings have scattering intensities
that can be classified as either polycrystalline or amor-
phous. The scattering pattern depends on the aspect ra-
tio of the ellipses a and their initia1 density y. To deter-
mine the crystallite size within the polycrystalline pack-
ings, we take the scattering intensity averaged over all an-
gles,

I(k)—= f d8kS(k, 8k),
277 0

and plot it as a function of the magnitude of the wave
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FIG. 3. The scattering pattern for a typical packing of 600
disks. The rings indicate that the packing is polycrystalline.
The initial density in this simulation was y =0.25.
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FIG. 5. The scattering intensity I(k) (arbitrary units) plotted
vs k. This is the intensity from the scattering pattern shown in

Fig. 3. The crystallite size of the packing is proportional to the
inverse of the width of the first peak.

vector k = ~k~. This always leads to a radial scattering
pattern with a peak at small values of k (Fig. 5). In order
to compute a crude estimate of the full width at half max-
imum of this peak, we fit the top of the peak to a quadra-
tic. We fit the quadratic to the points in the peak that
have an intensity that is greater than the average of the
maximum intensity of the peak and the next minimum.

, A I I I I I
' r,a, , a,e A ,

'I ',
I tt

Ak is the full width of the quadratic at half of the rnax-
imum intensity. Then,

b,x =2~/Ak

is a reasonable estimate of the average diameter of a crys-
tallite in the packing.

Also of interest is the packing fraction g. The packing
fraction is simply the area of the particles in the packing
divided by the total area under the surface of the pack-
ing. Explicitly, g is de6ned by

as I„I'a'e
I a ~ I

e &» ~Ia~ L I,ae

N~a
W

h„
n=0

(4)

I'I I aL

I ~ a

I ~

~ e aa
~ e,

Here, h„is the highest point in the packing at the nth

grid point along the x axis, and W'is the width of the box
in units of the grid lattice spacing.

III. RESULTS OF THE SIMULATIONS
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FIG. 4. The scattering pattern for a typical packing of 600 el-

lipses with aspect ratio a=8. This scattering pattern has no
structure, indicating that the packing is amorphous. The initial
density in this simulation was y =0.25.

We used the total potential energy to indicate when the
packing has reached a rnetastable state. Although the to-
tal potential energy is the most obvious characteristic of
the packing to monitor as a function of time, it is also
rather uninteresting as a final result. Figure 6 shows 6
for the test run as a function of the number of attempted
moves. The orientational order parameter is the parame-
ter of greatest interest and is close to its asymptotic value
when we halt the simulation. In fact, Q is within 1% of
its asymptotic value at the 1 X 10 attempted move.

The orientational order parameter has attained a
stable, nonzero value at the termination of the simulaee

tion. This indicates that the packing has a nonuniform
distribution angle. In order to establish that long-range
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FIG. 6. The orientational order parameter Q as a function of
the number of attempted moves for the packing shown in Fig. 1.
As for the total potential energy (Fig. 2), 6 has settled down to
its asymptotic value by the 1X10 attempted move. Note that
the initial state has close to zero since the particles' angles are
initially randomly and uniformly distributed.

orientational order is present, we also need to show that
this distribution is peaked and that the effect does not go
away as we increase the system size. Figure 7 shows a
typical angular distribution of particles for a large pack-
ing of a=4 particles. The distribution is strongly peaked
about 8=0, which indicates that the packing contains a
significant number of particles aligned or nearly aligned
with the horizontal. Figure 7 also shows that there are
no other preferred orientations.

FIG. 8. The orientational order parameter Q as a function of
1/N for a=4 and y=0.25. The points are averaged over six
simulations for N(800. For N) 800 the points are averaged
over four simulations.

Figure 8 shows the orientational order parameter Q as
a function of 1 iN for a=4 and y=0. 25. We note that
although the results are somewhat noisy, there does not
seem to be a significant trend. 6 almost certainly does
not tend to zero as N~00. It appears that the finite
orientational order parameter we observe is not merely a
finite-size effect, and we can be confident that the orienta-
tional order persists in the limit N ~ ao.

Figure 9 shows a packing formed in a box with a ran-
dom, jagged bottom. Although 6 is different for this
packing than for a similar packing in a box with a Hat
bottom, it is still nonzero. We also observe that the num-
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FIG. 7. Histogram of the particle population for each discre-
tized angle 0. This histogram is for the packing illustrated in
Fig. 1. The angle 8=0 corresponds to particles aligned with the
horizontal. The peak about zero indicates that the particles'
semimajor axes are preferentially aligned with the horizontal.

FIG. 9. A packing of 600 particles with a=4 in a box with a
piecewise linear random bottom. 6 in 0.254 for this packing.
The initial density in this simulation was y =0.1726.
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ber of particles that lay flat increases as we move up in
the packing. This indicates that the dependence on the
shape of the bottom is merely a finite-size effect. In par-
ticular, the orientational order we observe in packings
constructed in rectangular boxes is not merely a result of
the fact that the bottom of the box is horizontal.

As the system increases in size, the large-scale fluctua-
tions in the surface height will increase in magnitude, and
we might expect the orientational order to be disrupted.
However, in the limit that the system becomes large and
y~0, the system has perfect orientational order, even
though the surface exhibits large-scale fluctuations. This
indicates that large-scale surface fluctuations have little
effect on the orientational order. In fact, it is the small-
scale fluctuations (the fluctuations on the order of the size
of a particle) that most strongly effect the orientational
order in the system.

We have demonstrated that 6 is a good measure of the
amount of orientational order present in these packings.
From this point on we will use 6 as our primary charac-
terization of the final state of the packings.

We have attempted to determine the dependence of the
orientational order on the aspect ratio a. As we will see,
a is not the only parameter in the model that affects the
orientational order of the final packing. The initial densi-
ty y is also important.

As a result of computer-time constraints, it was not
feasible to map out the entire (a, y) space. Instead, we
decided to pick a particular value of y and vary a. Simi-
larly, we chose a particular value of a and varied y.

Figure 10 illustrates the growth of the orientational or-
der parameter 6 with increasing aspect ratio a. Each
point in the sequence shown in Fig. 10 corresponds to the
average over five simulations with 600 particles each.
The simulations were run with initial density
y=0. 25+0.00005 [30]. The sequence is for a=32/n,
where n is an integer in the range 4, . . . , 32. It is clear
from this figure that orientational order is augmented by
increasing the aspect ratio of the particles involved in the
pouring sequence, albeit only up to moderate aspect ra-

tios, and then the increase in 6 begins to saturate. We
note that 6=0 for a = 1, as expected.

It is easy to understand why 6 is nonzero for a ) 1 and
why it increases with increasing aspect ratio. Each parti-
cle "wants" to minimize its gravitational potential ener-
gy. This means that each particle would "like" to posi-
tion its center of mass as low in the box as possible. As a
first approximation, assume the particles fall one at a
time onto a well-defined surface. Particle orientations
other than horizontal incur a potential-energy "penalty. "
As we increase the aspect ratio, we increase this energy
"penalty, " and as a result, the particles are more likely to
lay flat.

We can also understand why Q saturates at larger
values of a. First, we must realize that pouring is a none-
quilibrium, dynamic process. Our model does not allow
for collective motion in the sense that one particle cannot
cause another particle to move, and so each particle
"tries" to minimize its own potential energy without re-
gard to whether or not the global minimum will be
reached. If the packing is in an intermediate state of the
pouring process (a "partial packing"), and the partial
packing is fairly dense and still settling, it is clearly in any
given particle's "best interest" to have its sernimajor axis
parallel to gravity. This allows the particle to present the
smallest cross-sectional area to the rest of the packing, so
that it will be able to wiggle through small holes and
better minimize its potential energy [31]. However, since
the packing is fairly dense, the particles are not always
free to realign their long axes parallel to g. As the pack-
ing finishes settling, the orientational disorder is partially
frozen in. A larger aspect ratio will make turning paral-
lel to gravity more favorable in a dense partial packing,
because the change in cross-sectional area increases with
increasing a. As a becomes large, the tendency of the
particles to turn parallel to g prevents any further in-
crease in 6, and 6 reaches a plateau.

As we see from Fig. 11, the orientational order param-
eter 6 increases with decreasing y. In particular, 6 be-
gins to grow at a value of y that corresponds to a low
enough initial density that the particles have very little
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FIG. 10. A plot of the orientational order parameter 6 as a
function of the aspect ratio o.. Each point is the average of five

simulations of 600 particles. These simulations were run at con-
stant initial density, y =0.25+0.00005.

FIG. 11. The orientational order parameter Q as a function
of initial density y for aspect ratio a=4. Each point is an aver-

age over four simulations of 600 particles each.
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FIG. 12. The characteristic crystallite size Ax as a function
of a. These data were obtained from the same set of simulations
used to construct Fig. 10.

interaction with each other as they fall. This means that
on average, the particles hit the bottom of the box a few
at a time. As y decreases, the pouring becomes more and
more like sequential deposition. In contrast to the dense
partial packing described above, for small y the particles
are settled onto a well-defined surface. We see that for
y —+0 our "first approximation" described above is real-
ized. In this case, the goal of minimizing the single-
particle potential energy is the same as minimizing the
global potential energy. Each particle will align with the
surface in order to minimize its own potential energy.
The surface is relatively flat, and so each new particle
added to the surface will tend to lay flat. Thus, as we de-
crease the initial density, we remove the competition de-
scribed above and Q will tend to 1. We also expect that
for smaller values of y the plateau in the Q-versus-a
curve will be found at higher a.

Figure 12 shows the crystallite size hx as a function of
a. The crystallite size decreases rapidly with increasing
aspect ratio, and so the packings composed of higher-
aspect-ratio particles have less translational order. For
a ~2, the packings are polycrystalline. When u ~2, the
crystallite size is less than the semimajor-axis length, and
so the packings are "amorphous. " To be precise, for
a ~ 2 the centers of the particles have no translational or-
der. In spite of this, there is long-range orientational or-
der in the packings. We note that the crossover value
a =2 is approximate, and should not be taken as exact.

In contrast to 3D sphere packings, the lack of transla-
tional order in 2D packings of ellipses cannot be attribut-
ed to frustration. This can be seen by taking a regular
close packing of disks and stretching it along one of the
lattice directions. By doing this we form a packing of el-
lipses for which the potential energy is a global
minimum. The microparticles are arranged in a triangu-
lar lattice. The unit cell for the triangular lattice is the
configuration for which the particles take up the least
volume, and so this is the local-potential-energy
minimum as well. Since the minimization of the local po-
tential energy and the minimization of the global poten-
tial energy is compatible, there is no frustration. Howev-
er, the reduction in the translational order with increas-
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FIG. 13. The characteristic crystallite size hx of the pack-
ings as a function of y. These data were obtained from the same
set of simulations used to construct Fig. 11.

ing aspect ratio can be readily understood. First of all,
when we increase a, we decrease the energy penalty for
stacking in a square lattice as compared to stacking in a
close-packed triangular lattice. This means that the par-
ticles are more likely to form packings that are mixtures
of the two different lattices. Secondly, for a) 1, there is
always some orientational disorder. For large a, small
perturbations in the orientational order lead to large per-
turbations in translational order. The combination of
these two effects quickly destroy the translational order
as we increase a.

When we examined the orientational order for pack-
ings with a=4 as a function of y, we saw that the order
increased with decreasing y. Will we see a corresponding
increase in the translational order if y is decreased? The
answer appears to be yes, as can be seen in Fig. 13. This
indicates that random packings composed of high-
aspect-ratio particles may form translationally ordered
packings if deposited sufficiently slowly. However, in the
regime that we studied, the crystallite size is still smaller
than a single-particle semimajor-axis length.

A nematic liquid crystal is a system of rod-shaped mol-
ecules in which the centers of mass are randomly distri-
buted (as in an ordinary liquid), but the long axes of the
molecules are preferentially aligned along a certain direc-
tion [32]. Our packings are "glassy" for a ~2, and yet
still exhibit long-range orientational order. In analogy to
nematic liquid crystals, we propose calling an amorphous
packing with orientational order a "nematic glass. "

Figure 14 shows that the covering fraction g initially
increases as a function of a, and then decreases sharply.
There is much confusion in the literature as to how the
porosity of a random packing depends on the shape of
the constituent particles. It may be that this confusion is
a direct result of the fact that the porosity is not a simple
monotone function of a, and that different studies have
examined different regimes [10,33,34].

The value g =0.76+0.02 that we obtain for a = 1 does
not fall within the range of 0.82 ~ g ~ 0.84 quoted by Ber-
ryman for random packings of disks. Moreover, Rosato
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data were obtained from the same set of simulations used to
construct Fig. 10.
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FIG. 16. 6 for an aggregate of +=4 particles as a function of
shaking cycle for shaking amplitude A =2 semimajor-axis
length. For this simulation, y =0. 14 and %=400.

et al. I14,15] obtained g=o. gl for their random disk
packings. However, we know that the final properties of
the packings are strongly dependent on the simulation
dynamics, and so there is no inconsistency. In particular,
since the spatial coordinates and angles are discretized
and the particles do not "jump" in our simulations, our
dynamics are not exactly the same as those used by Rosa-
to et al. The discreteness of space has the effect of
lowering the final packing fraction because the particles
cannot necessarily get as close to each other as in a simu-
lation in continuous space. By not allowing the particles
to "jump, " we further decrease the final packing fraction
because we do not fill voids that a particle could "jurnp"
into, but cannot propagate into.

Figure 15 shows the covering fraction g as a function
of y for +=4. As we can see from this figure, the final
covering fraction is not very sensitive to either the initial
density y or the exact final configuration of the packing,
in direct contrast to 6, which is sensitive to both. This
lack of sensitivity is expected, because there are obviously
an enormous number of configurations that have nearly

the same potential energy.
Our preliminary results for the shaking of random

packings of ellipses indicate that shaking of the aggregate
reduces the orientational order present. Figure 16 shows
6 for an aggregate of a=4 particles as a function of
shaking cycle for shaking amplitude 3 =2 semimajor-
axis length, while Fig. 17 is for shaking amplitude A =1
semimajor-axis length. A larger shaking amplitude
causes the orientational order to diminish more quickly.
This is not surprising, because a larger shaking amplitude
allows more movement, so that the packing can change
its configuration faster. The reason for decreasing order
in the aggregate is easily understood in terms of the com-
petition between the particles' tendency to stand up on
end and the tendency to lie fIat. The tendency for a parti-
cle to stand up on end is strong in the dense partial pack-
ing formed during the shaking process. As a result, the
system loses orientational order, and the more the system
can change between each shaking cycle, the faster the
system will lose orientational order.
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FIG. 15. The packing fraction g as a function of y. These
data were obtained from the same set of simulations used to
construct Fig. 11.
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FIG. 1'7. 6 for an aggregate of a =4 particles as a function of
shaking cycle for shaking amplitude A = 1 semimajor-axis
length. For this simulation, y =0.25 and %=600.
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IV. CONCLUSIONS

We have seen that pouring ellipses in a gravitational
field forms a packing with a degree of orientational order.
This order is self-imposed in that we did not individually
manipulate the microparticles to form the aggregate.
The degree of ordering grows with both increasing aspect
ratio and decreasing initial density (or, more physically,
decreasing pouring rate). Both of these effects can be un-
derstood in terms of local minimization of potential ener-
gy. The initial density controls how much interaction
there is between particles as they settle. In the low-
density, low-interaction limit the particles tend to align
their long axes perpendicular to gravity as they fa11 to the
surface of the aggregate. When the initial density is high,
some particles will turn parallel to gravity in order to
minimize the cross-sectional area presented to the rest of
the particles. These two tendencies compete with each
other as the initial density is increased. Decreasing the
initial density removes the competition and increases the
orientational order present in the packing.

We have also shown that the packings are polycrystal-
line in the a~1 limit, and that the mean crystallite size
swiftly decreases with increasing a. Since the aggregates
are amorphous for a & 2, but nonetheless exhibit orienta-
tional order, we have dubbed these packings "nematic
glasses. "

Finally, our preliminary results indicate that shaking
these aggregates tends to reduce the orientational order.
Thus we can make a simple prescription for a materials
scientist wishing to pack elongated objects in a way that
will ensure the highest degree of orientational order: De-
posit the objects as slowly as possible, and then disturb
them as little as possible before you fix them in place.

There are a number of granular media composed of
aspherical particles in which orientational order would be
a desirable attribute. For example, recall that in the case
of granular polyaniline the microparticles are prolate el-
lipsoids [23,24]. The polymer chains are believed to be
aligned with the long axes of the polymer granules. As a
result, these microparticles have large (approaching me-
tallic) conductivities along their long axes, and are poor
conductors along their short axes. If the long axes of mi-
croparticles could be aligned, the bulk material would
have very high conductivity and would become an attrac-
tive candidate for a number of applications.

We close by discussing directions for future work.
Two extensions to this work which would be quite in-

teresting are 3D systems and more complicated particle
shapes. We expect that particles with higher symmetry
(e.g., polyhedra or rounded polyhedra) will, in general,
exhibit more peaks in their angular distributions. In par-
ticular, one expects that packings of particles that have
fiat faces will exhibit peaks in the angular distributions
corresponding to orientations in which a face is parallel
to the horizontal. The strength of each peak will prob-
ably be related to the area of the corresponding face. We
have done preliminary work with "spherocylinders" in
two dimensions and find that the peaks are indeed local-
ized about the orientations in which the Rat edges are
parallel to the horizontal. We also find that the peaks are
narrower and stronger than the associated peak in the
distribution for ellipses. Detailed results of this work are
planned for a future paper.

We are currently extending our work to packings of
aspherical particles in three dimensions. Even with sim-
ple objects like ellipsoids of revolution, the additional de-
gree of freedom introduces a number of complications.
We expect different types of ordering for prolate and ob-
late ellipsoids. For prolate ellipsoids, the long axis of the
ellipsoid will tend to align with the horizontal, but its
projection onto the x-y plane wi11 be uniformly distribut-
ed. For oblate ellipsoids, the short axes should be prefer-
entially aligned with g. We plan to publish the results of
a simulation of pouring ellipsoids in three dimensions in
the future.

Clearly, more work needs to be done to understand the
effect of shaking on packings of ellipses. We have
presented preliminary results that suggest that, for pack-
ings of monodisperse ellipses, shaking decreases orienta-
tional order. We expect that size segregation will take
place in packings of polydisperse ellipses, but the segrega-
tion velocities and low-shaking-amplitude behavior may
be different than in packings of circles.
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