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Topology changes in quid membranes

David H. Boal and Madan lao
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada VSA lS6

(Received 18 February 1992)

Shape changes of a fluid membrane with fixed area modeled by a curvature Hamiltonian and a bound-

ary line tension are investigated. The zero-temperature energetics are studied using a variational princi-

ple in the space of axisymmetric shapes. For zero spontaneous curvature, the only energy minimizing

shapes are the disk and the sphere. The energy barrier heights between these configurations are deter-
mined as a function of the Hamiltonian parameters. Thermal fluctuations of the shape are studied by
means of a Monte Carlo simulation. The "phase transition" from open to closed topology is determined

as a function of the rigidity and line tension at nonzero temperature. The transition is found to persist
even at zero membrane rigidity. The energetics of the transition are shown to be related to the branched
polymer scaling behavior of the fluid membrane.

PACS number(s): 05.40.+j, 82.65.Dp, 64.70.—p, 87.22.8t

I. INTRODUCTION

The properties of fluid membranes have application to
fields ranging from biology to particle physics [1]. Bio-
logical examples include lipid bilayer membranes which
spontaneously self-aggregate in aqueous solution to form
closed two-dimensional surfaces [2,3]. Open bilayer
configurations can be stabilized by introducing edge-
reactant salts [4,5]. Closed vesicles with spherical [3] and
toroidal [6] topology have been studied experimentally.
From the theoretical point of view, biological systems are
low-temperature systems in the sense that the bending en-
ergy scale is many times kz T, where T is the temperature
and kz is Boltzmann's constant. Hence, many theoreti-
cal studies [7—12] have been carried out to determine the
energy minimizing (zero-temperature) shapes of axially
symmetric vesicles with fixed topology in three dimen-
sions subject to the constraints of constant surface area
and enclosed volume.

At finite temperature, computer simulations and other
studies of closed surfaces have been performed for rings
embedded in two dimensions [13—16] and surfaces em-
bedded in three dimensions [17—27]. Of particular in-
terest in elementary particle physics are the properties of
random surfaces, which may play a role as regularizers of
string theory [26—31]. While particle physics research
first focused on infinite-temperature surfaces, interest has
since broadened to include finite-temperature properties
as well.

A model for the energy of an open fluid membrane
based upon the so-called spontaneous curvature model [7]
1s

E[S]=( /t2c) f dA (C, +C2 —Co)

+~,f d A (C, C )+Xfdl .

In the above expression, C, and C2 are the local principal
curvatures and the parameter Co is the spontaneous cur-
vature. For closed topologies, the integral over the

Gaussian curvature C, Cz is equal to a (topology-
dependent) constant, independent of the configuration.
The bending elastic coefficients are a, and Kg The last
term is the line tension energy and is proportional to the
perimeter of the boundary fdI . In biomembranes, the
line tension modulus [4,5] originates from the interac-
tions of the amphiphilic molecules at the edge of a bi-
layer.

The parameters which appear in Eq. (1) are "effective"
parameters appropriate for mesoscopic problems. They
may not be similar to values which apply to microscopic
(molecular) phenomena. In biological systems, lipid mol-
ecules may relax on a molecular scale at the edges of a
membrane sheet, thus modifying the effective line ten-
sion. Thus, the numerical values of the model parameters
appearing here may not be simultaneously applicable to
lipid bilayers and microemulsions, for example [32].

The origin of the spontaneous curvature term Co in
biornernbranes has been investigated by a number of au-
thors, a recent summary can be found in Ref. [33]. An
alternate model Hamiltonian for bilayer systems is the bi-
layer coupling model [8], which maintains a constant
area difference between the monolayers. Neither model
describes all of the shape change features of biomem-
branes, and a true description may involve a hybrid of the
two models [34].

In this paper we investigate the characteristics of open
and closed membrane configurations, and the transition
between them, in three dimensions. The transition is
driven by the line tension A.. In Sec. II we determine the
ground-state (zero-temperature) configurations. We show
that there is a first-order transition between the open and
closed topologies. For some regions of parameter space,
one topology is metastable with respect to the other. We
solve a set of Euler equations to determine the energy
barrier between the topologies by assuming that the bar-
rier has axial symmetry.

In Sec. III a Monte Carlo simulation is introduced to
determine the nature of the transition at nonzero temper-
ature. A novel feature of the simulation is that it allows
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changes between open and closed topologies. Sample
configurations of the open and closed topologies taken
from the simulation are shown in Fig. 1. We show that
the transition persists even at zero bending rigidity. %e
also find that the branched polymer scaling of the vesicle
shape determines the value of the line tension required to
close the membrane at zero rigidity. Finally, our con-
clusions are summarized in Sec. IV.

II. GROUND-STATE CONFIGURATIONS

We begin our discussion of open vesicle ground states
by considering spherical-cap configurations in Sec. IIA.
Spherical-cap configurations, which are axisymmetric
configurations with a constant radius of curvature, have
been used previously to estimate open membrane energet-
ics [4,5,35]. In Sec. II B we relax the constant-curvature
condition and examine the general problem of axisym-
metric shapes. We find that the ground-state
configurations are extreme spherical-cap config-
urations —either the disk or the sphere. However, the in-
termediate spherical-cap configurations are shown to
overestimate the energy barrier between metastable and

ground states compared to the barriers found for general
axisymmetric shapes.

A. Spherical-cap configurations

Our zero-temperature investigation begins with a vari-
ational study of a restricted set of "spherical-cap"
configurations. The configurations have a constant cur-
vature C, and boundary radius r. The area of a spherical
cap is thus

A =2 C [I+(I—C )' ] (2)

where the choice of sign depends on the position of the
boundary with respect to the center of curvature. It is
generally useful to work in terms of reduced quantities

In this section, we confine our analysis to zero spon-
taneous curvature Co=0, for which the energy of a
spherical cap is

E„p=4~(1 re )(2—a, +v )+2vrAR (3)

The disk (R =sr '~
) and the sphere (R =0) are at the

boundary of the space of spherical-cap configurations and
at least one of their energies is lower than that of any oth-
er shape in this space. Tuning a parameter
a=A/[4m' (2a., +~g)], we find that a= —,

' represents a
"phase transition" between an open disk (a~ —,') and a
closed sphere (a~ —,'). These results have been presented

previously using different parametrizations f4,5,35].
This first-order phase transition corresponds to a topol-

ogy changing transition. The jump in the perimeter (for
finite area) is given by (4' A )'~ . For 0 ~ a & 1 one of the
disk or sphere configurations is metastable in the space
of spherical caps. The energy barrier heights from
the sphere and the disk configurations are
bE,„„„,=4rra (21', +x ) and bEd;,„=4~(a—1) (2»,.

+vs), respectively. These results are summarized in Fig.
2, which shows the energy of the sphere and disk
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FIG. 1. Simulated membrane configurations at low tempera-
ture showing open (a) and closed (b) topology. The white beads
lie along the edge of the membrane.

FIG. 2. Energetics of the ground-state configurations, given
in terms of the ground-state sphere energy. The barrier energies
are shown for both spherical-cap and Euler equation solutions.
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configurations, and the barrier height between them, as a
function of a. The energies are normalized to the energy
of a sphere E,„„,=4m(21~, +x ). The figure shows both
the barrier height for spherical-cap configurations and
also the barrier predicted by the Euler equation solutions
which are described in the following section. It can be
seen from the figure that the spherical-cap barrier heights
cannot be used reliably to estimate passage times between
boundary shapes because spherical-cap calculations
significantly overestimate the barrier heights obtained
from a more general variational principle.

B. Axisymmetric con6gurations

4[S]=E[S]+oA [S), (4)

where cr ("surface tension") is a Lagrange multiplier in-
troduced to fix the area.

Since we are dealing with equilibrium shapes of a sim-

ply connected open membrane, the boundary must be
varied in considering variations of 4. Axisymmetric sim-

ply connected open surfaces can be generated by rotating
a curve z(x) about the z axis, where (x,z) form an or-
thogonal coordinate system. However, it is more con-
venient to use the arc length s as the independent variable
describing the curve, since it is monotonic in x. The
free-energy functional written in terms of s is

4[S]=ma, fx(si.nO/x +O' —Co) ds

+2m' f 8'sinOds+2mo fx ds+2nA, f x'ds

+ fp(x' —cosO)ds,

We now extend our variational analysis to include a
larger class of two-dimensional surfaces, namely surfaces
of revolution. The zero-temperature equilibrium shape of
the membrane is obtained [7] by minimizing the energy
functional (1) subject to a constant area constraint. This
is done by introducing the "free-energy" functional

ural boundary conditions" which the Euler solutions
must satisfy (tc has been set equal to zero, for conveni-
ence),

x(s )=0 or C~(s )+C2(s )=Co,

ox(s )+Adx/ds(s =s )=0,
(9)

(10)

and

C*=C/p, S' =pS, A.*=A,/p, cJ"=o/p (12)

where C is one of the curvatures. For the remainder of
this section, A, , 0., and p are expressed in units of ~„as
suggested by Eqs. (7)—(11).

For each of the j Euler solutions that satisfy the above
boundary conditions, one can construct an "energy
sheet" E ( A, A, ). It is clear that these Euler-shape sheets
are only a subset of all axisymmetric-shape sheets, which
include boundary shapes like disks, spheres, and multi-
spheres. The ground state is the lowest-energy sheet at

p(s ) = —2~A, .

The numerical procedure we use for constructing solu-
tions is as follows. The coordinate system is chosen such
that x (s =0)=0 and 8(s =0)=0. Values are chosen for
two of the other quantities [for example, p(s =0) and
8'(s =0)] and Eqs. (6)—(8) are used to integrate the
values of x, 8, and p. The integration stops at s, deter-
mined by Eq. (11). The solution is checked against the
constraints (9) and (10), and the procedure repeated with
a new initialization until Eqs. (9) and (10) are satisfied to a
chosen accuracy. The configuration area A is then an
outcome of the value chosen for 0.. Obviously, there are
many variants of the above procedure, depending on
which variable is of greatest interest. However, one can
always rescale the solution parameters to find a particular
value of a chosen observable. For example, the solution
set (C, s, A, , and 0) for area A is related to the set (C',
s", A, ', and o") for area A "=p A via

where 0 is the angle which the tangent to the curve
makes with respect to the x axis. The integrals are evalu-
ated along the arc length to its maximum value s
Primes beside a symbol indicate derivatives with respect
to s. The Lagrange multiplier p is introduced to enforce
the condition

14

SOLUTIONS
~ SPHERE OR DISK
~ EULER [A = 1]

x' =cosL9 (6)

and varies along the arc with s.
In terms of the arc length s, variation of Eq. (5) yields

the same set of nonlinear autonomous Euler equations as
are obtained for closed vesicles [7] at zero pressure.
Three equations which allow one to integrate the set of
variables x, 0, and p from their initial values at s =0 are
Eq. (6) plus the Euler equations

0 E

p'=m. ~, (8' —Co) —m.~, sin 8/x +2mo,

8"=sinOcosO/x +p sinO/(2vrir, x)—8'cosO/x .

(7) -14
10

Variation of the boundary (s ) gives rise to a set of "nat-

FIG. 3. Partial parameter set for solutions to Euler equations
with area A =1 and ag =0. The quantities A, and o. are quoted
in units of a,
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each point (A, A, ). Our "phase diagram" in the (A, A. )

plane should append smoothly onto the zero-pressure line
of the phase diagram for closed membranes [7—10]. Once
the surface closes, there may be an additional constraint
keeping the enclosed volume fixed.

Let us analyze the Co =0 solutions first. The boundary
condition Eq. (9) implies that the only spherical caps
which are Euler solutions are disks or spheres. It is easy
to see that spheres of any radius are Euler solutions when
cr =0. This is a consequence of the scale invariance of the
Hamiltonian. %e can further show that if A. =O, then the
only Euler solution is a disk. From a numerical solution
of the Euler equations, we are able to find axisymmetric
solutions consistent with the boundary conditions (9) and
(10) for o ~0 and A. &0. A partial solution set corre-
sponding to A +1 is shown in Fig. 3. Other than the
sphere and disk, these configurations are not ground
states but are the minimum energy states for passing be-
tween the disk and the sphere.

Except for the boundary shapes, the Euler solutions
are not the same as the spherical-cap configurations.
Two sample solutions are shown in Fig. 4. One can see

the tendency of the boundary to curve away from the axis
of symmetry in both solutions, whereas the spherical-cap
configurations have the same curvature at the boundary
as they do in the "interior" of the solution. The appear-
ance of the Euler solution boundaries is a reflection of
Eqs. (9) and (10).

The energies of the Euler solutions are shown in Fig. 2,
in which an Euler solution for a given area is compared
with a spherical cap of the same area. The energy barrier
between the sphere and the disk configurations is sub-
stantially lower than what is obtained from spherical
caps. In fact, there are some regions of parameter space
where a configuration is metastable in the space of spheri-
cal caps but unstable or marginally stable in the space of
Euler solutions. The spherical configuration for a less
than about 0.3 and the disk configuration for a greater
than about 0.7 appear to be unstable in the space of Euler
shapes, to our numerical accuracy.

Hence, the transit time for decay of a given metastable
configuration is overestimated if a spherical-cap
configuration is used for the energy barrier height. For
example, the maximum barrier in both solutions sets is at
a= —,'. Suppose we use the usual Kramers argument to
estimate the decay of a metastable state as the product of
an attempt rate times exp( PbE) whe—re b,E is the bar-
rier height. Assuming Pa, =20 for a lipid bilayer, then
the Euler shape lifetime at a= —,

' is lower by a factor of
e compared to the spherical-cap lifetime.

When Co/0, the condition for a section of a sphere to
be an Euler solution is that the radius R,~h„, of the

sphere should satisfy

(Co+2o )/2CO =R,.„i'„„,. (13)

This obeys the boundary conditions Eqs. (9) and (10) only
at A, =o =0 (where a spherical cap with radius 2/Co has
zero free energy 4). Spherical solutions [whose radius

R»h,„,is given by Eq. (13)]exist at all values of o. Multi-

ple sphere configurations with the radius of each sphere
given by Eq. (13) exist at cr =0 (this is a consequence of
the "kissing condition" defined in Refs. [9] and [10]). For
closed surfaces with o. fixed, there exists only one length
scale; thus all the spheres in the multiplet have the same
radius.

If we fix the area at 4n ir(2/Co ) =n AH, where n is an

integer, then the membrane will spontaneously form n

multiplet Helfrich spheres of radius 2/Co with zero
(infinitesimal) neck radius. This costs no energy [9] and is
therefore the ground state (for positive A.). Thus as A in-

creases, Helfrich spheres are sprouted out periodically
with period A&.

III. SIMULATIONS AT FINITE TEMPERATURE

A. 1VIonte Carlo model

FIG. 4. Sample solutions to the Euler equations for A =1,
Kg 0, and ( X, o., s ) of (8.75,—12.53,0.63) for (a) and

(6.02, —4.09,0.79) for (b). The curvature of the solution near
the open boundary is opposite to that obtained for spherical
caps. The quantities k and o. are quoted in units of ~, .

In Sec. II we show that for a given fixed area A and
fixed rigidity ~„the disk is a lowest-energy solution for
A. (X, =4@,(ir/A )', where there is a "first-order transi-
tion" to a sphere (which is the ground state beyond k, ).
At nonzero temperatures, the transition to closed topolo-

gy has to overcome the entropy associated with fluctua-
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tions of the membrane boundary. We investigate this
finite-temperature topological transition using a Monte
Carlo simulation.

In our simulations, the membrane is treated as a two-
dimensional, self-avoiding, tethered manifold consisting
of hard spherical beads (vertices) linked together by flexi-
ble tethers (bonds). The fixed connectivity tethered mod-
el developed for the study of elastic membranes [17] is
inappropriate for the study of fluid membranes.
Baumgartner and Ho [20] have developed an algorithm
for bond reconnection which simulates a fluid membrane
of fixed topology. Here, we introduce a bond creation
and removal algorithm (described briefly in [23]) which
allows for topology changes in the fluid membrane.

In our simulations, the number of vertices N is fixed
but the number of bonds is not. Because of the tethers,
the total membrane area is not a constant and can change
by up to 50% around the mean. Vertices which define
the edge of the sheet are called external, as are bonds
linking two external vertices. All other vertices and
bonds are internal. Corresponding to Eq. (1), we use the
discretized Hamiltonian

H=k„sg (1—n; nj. )+k„„P, (14)

where each n is a unit vector normal to the plaquette
plane formed by three vertices which are all nearest
neighbor to each other. The sum is over plaquettes i and
j which share a common tether. The perimeter P is a
sum over the distance between nearest-neighbor external
vertices. In addition to Eq. (14), the vertices are subject
to potentials which enforce the self-avoidance constraint:
the vertices are infinitely repulsive at distances less than
the bead diameter a (for all vertex pairs) or greater than
&3a (for vertices connected by tethers). In the continu-
um limit, the tension parameter k„„corresponds to X
and the energy of a sphere is equal to 4mk„s/&3 (in
terms of the discrete rigidity parameter k„.s) or
4n(2K +Ks ) (continuum).

A set of appropriately weighted sample configurations
is generated using the usual Metropolis Monte Carlo
technique in which trial moves are made on the vertex
positions and connectivity. A sweep across the mem-
brane involves the following steps: (i) An attempt is
made to change the position of each vertex (sequentially
by vertex label) by choosing a new position randomly
from within a cubic box of length 2l to the side centered
on the old position. (ii) An attempt is made to reconnect
every internal bond. Each bond is defined by its two end
vertices u, and v2, and its two "opposite" vertices u, and
v&. The move consists of reconnecting the bond to v, and
vb with v, and u2 becoming the new '*opposite" vertices.
(iii) An attempt is made to remove each external bond
(which defines the boundary), reducing the total number
of bonds by one while converting two internal bonds into
external bonds. This procedure has the effect of increas-
ing the perimeter. (iv) An attempt is made to convert
each external vertex into an internal vertex by adding a
new external bond directly between its two external
nearest neighbors. This move decreases the perimeter
since two external bonds are made into internal bonds,

reducing the total number of external bonds by one. Our
simulation forbids the total number of external bonds
from decreasing below four, so that we can observe the
evolution of the boundary.

Each trial move in (i)—(iv) is accepted or rejected ac-
cording to the Boltzmann weight exp( Pb—H), where P is
the inverse temperature and AH is the energy change as-
sociated with the move from Eq. (14). Procedure (ii) was
introduced by Baumgartner and Ho [20] to simulate fluid
membranes, while procedures (iii) and (iv) are new. In
procedures (ii) —(iv), the connectivity of any vertex is not
allowed to decrease below 3 or increase above 9. Further,
connectivity checks are made to ensure that the mem-
brane retains the simple connectivity of a single sheet:
remote parts of the sheet are not allowed to become con-
nected nor are holes allowed to develop in the sheet. We
accomplish this by forbidding a given bond to be shared
by more than two triangles defining the membrane sur-
face. This implies that all triangles defined by nearest-
neighbor vertices exist on the surface of the membrane,
and that the surface is determined completely by such tri-
angles.

Two sample configurations are shown in Fig. 1 for rigi-
dity x„=8,where we define a„=Pk„anda.„„=Pk„„
We emphasize that x„;sand ~„„(discrete)contain the in-
verse temperature whereas K„Ks,and A, (continuum) do
not. A total of 100 sample configurations is generated at
each (K s, Kt „)combination. Each configuration is
separated by a "Rouse time" ~=N/I Monte Carlo
sweeps, where we use l =0.1. Before sample collection,
each initialization is allowed to relax for 10~. For the
lowest temperatures (a.„=2)we check that both open
and closed membrane initializations reach the same equi-
librium configurations. For K

g 4, equilibrium may not
be reached near the transition point for much longer than
10~.

B. Topology change at T & 0

With our Hamiltonian and discretization, the zero-
temperature topology transition occurs at
E (N) = &3[P (N)/4n. ][a.„„/a„]= 1, which is the
discrete equivalent of a= —,

' in Sec. II A. Because of the
system size and connectivity, we use P(N)
=(12N —3)' —3 of a hexagon as a reference perimeter
which is less than 5% different from an equivalent disk
perimeter. The behavior found in the simulations at
moderate temperature, 1/K

g z
is shown in Fig. 5. One

can see that the average perimeter (P ), drops sharply to
a value of 4a as a function of a„„.In Fig. 5, (P) has
been divided by P(N) to show the similarity of the
change as a function of X. The transition does not occur
precisely at K(N) =1 because of finite-temperature fluc-
tuations.

Finite-temperature effects show up in two different
ways in Fig. 5. The first is the magnitude of the change
in perimeter AP at the transition point. If the open mem-
brane looks like a circular disk near the transition point,
then we would expect AP=N'~ . However, Fig. 5 clearly
shows that the scaling of AP is much closer to N' than
N'~ [recall that the reference perimeter P(N) scales like
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FIG. 5. Expectation of the scaled perimeter (P)/P(N)
shown as a function of the scaled line tension
&3[P(N)/4m][a„„/~„s].See text for definition of symbols.
The perimeter is shown for K 'g 2 and N =37, 91, and 271.

N'/ ]. Other simulations [22,23,36] show that an open
membrane scales like a self-avoiding branched polymer
(SABP), so that far away from the transition, P=N.
Thus, SABP scaling predicts that near the transition hP
should scale like N, with 5 close to unity, and this be-
havior is observed in Fig. 5.

A second aspect of finite-temperature fluctuations is
the magnitude of the line tension ~,*,„required to close
the membrane. From Fig. 5, v,*,„)a„„,where
irt, „=4rrir„;s/[&3P(N)] is the zero-temperature value
corresponding to K(N)=1. Further, v„„increases with

rig

FIG. 7. Topology boundry parameters (K 'g Kt „)shown as a
function of membrane size ¹
N. A larger value of ~,*,

„

is required at finite temperature
because surface fluctuations raise the energy of the closed
configuration above the energy of the sphere, 4na„;s/&3.
The magnitude of finite-temperature corrections to the
zero-temperature boundary can be seen in Fig. 6, where
K(N) at the transition is plotted against I/a„. The
figure shows that the value of K(N) at the transition
tends towards the expected value of unity as the tempera-
ture 1/K

g
vanishes, but is larger than unity at finite tem-

perature and increases with X as expected. We return to
the magnitude of these changes below.

In general, we find that the value of ~„„requiredfor
membrane closure increases with x„,as one would ex-
pect; a summary is shown in Fig. 7. Further, the transi-
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FIG. 6. Temperature dependence of topology boundary,
shown as a function of N. The scaled quantity
K(N) = &3[P(N)/4m. ][v„„/v„]at the boundary should be uni-

ty at zero temperature.

ten

FIG. 8. Expectation of the energy as a function of line ten-

sion in the region of the open-closed transition. The energy is

normalized as (E) /NE, „,„„whereE,„„,is the ground-state

energy of the sphere.



46 TOPOLOGY CHANGES IN FLUID MEMBRANES 3043

tion is present even when K 'g vanishes. At a„=O,the
line tension only has to overcome the entropy of the per-
imeter vertices, and we find that a,*,„=1for the transition
independent of N. In the following section, we argue that
this value for ~,*,„canbe obtained from a random surface
model. The figure also shows little evidence for systemat-
ic finite-size effects at ~„g& 1.5.

The energy at the transition point shows a sharp
change which increases with N, indicating a first-order
transition. The behavior of the energy at K 'g 2 is shown
in Fig. 8 as an example. First note that in the figure, the
energy has been normalized by the number of vertices N
and the sphere energy 4na'„s/~3. One sees that the de-
crease in (E ) at the transition sharpens with increasing
N, and that the magnitude of the decrease increases at
least as fast as N'. This exponent indicates that the de-
crease in energy is not that due to the decrease in the
edge energy of a circular disk, which should scale as
N' . If the open membrane scales like a branched poly-
mer right up to the transition point, then we expect (P )
scales like N', so that h(E ) scales like N'. Indeed, Fig.
5 shows that the change in the perimeter at the transition
point scales more like N' than N' . Further, the magni-
tude of b, (PE ) from Fig. 8 is somewhat less than, but ap-
proximately equal to, a«„(EP) obtained from Fig. 2.
Hence, we conclude that the main contribution to the en-
ergy difference is from the changing edge energy, which
scales like N'.

Not only is there more edge energy than what one
would expect from the ground-state disk, there is also
more rigidity energy in the "bulk" of the membrane. Let
us define a quantity e = ( (PE ) a«„(P ) ) /E—,~h«, with

E»h,„,=4m'„ /&3. If the bulk energy of the closed
configuration is just that of a sphere, then we expect
E' = 1. For ~„.

g
=2, e changes from roughly 1.5 to 2.5

across the transition point for N =37 and from 10 to 14
for N =271. In other words, the bulk energy of the open

10.0

8.0

membrane is more than just a„„.(P), and it costs more
energy to close up the vesicle than simply E,ph„,.

The variation of the bulk rigidity energy with tempera-
ture is shown in Fig. 9 for a completely closed vesicle.
For temperature 1/v„near zero, the energy of the closed
configuration is close to E, h„, the curves in Fig. 9 ex-
trapolate smoothly to unity as 1/K 'g goes to zero for all
N. However, for the lowest temperature considered in
our open membrane simulations (a„=2),fluctuations in
the membrane surface lead to energies which are much
larger than E, h„,. The energies shown in Fig. 9 are con-
sistent with the changes in e found from Figs. 5 and 8.

C. Sealing and the topology transition

In the previous section, it is shown that ~„„requiredto
close the membrane has a value close to unity when
~„g=0.This value can be obtained by considering fluc-
tuations of the boundary and the surface. Previous work
[22,23,36] has suggested that fluid membranes scale like
self-avoiding branched polymers at large values of N.
That is, the radius of gyration of the open or closed mem-
branes scales like (RG ) ~N and the volume of the closed
vesicle scales like ( V) ~N. This scale behavior is the
same as that of self-avoiding random surfaces (SARS} on
a lattice, which has been investigated by Glaus [25].

Glaus considers two ensembles of square plaquettes on
a cubic lattice in three dimensions. One ensemble, E&,
consists of all surfaces whose boundary is in the set of sin-
gle self-avoiding loops in three dimensions. This set is
constructed by imposing the constraint that each pla-
quette shares at least one edge with a neighbor but that
the surface defined by the plaquettes is self-avoiding. The
second ensemble, E2, includes all surfaces whose bound-
ary is empty: the plaquettes used to define the surface
have no free edges. At zero rigidity, our open membrane
is the analog E

&
and our closed vesicle the analog of E2.

%e argue that the transition from the open to closed
membrane at zero rigidity can be regarded as a competi-
tion between the entropy of a SARS model and the line
tension at the boundary. Since the two phases (open and
closed) coexist at the first-order point A, *, the free ener-
gies of the two phases are equal at k*. At zero rigidity,
the free energies are given by

6.0

A
Fg 40

VESICLES
~ N=74
~ N= 182
~ N =S42

and

F,p,„=k,(P ) —TS, ,„

(isa)

(15b)

2.0

0.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 9. Energy of a closed vesicle with the topology of a
sphere as a function of the rigidity. The energy is compared
with the ground-state energy of a sphere.

Self-avoidance terms only enter the entropic part of the
free energy, since all allowed configurations are non-self-
intersecting and therefore contribute zero energy.

In Glaus's simulations [25], the entropy So,
„

is given
by In[C&, ], where Cz &

is the number of configurations of
a self-avoiding random surface having N plaquettes in the
E& ensemble. This is proportional to p, N, where
Glaus finds p = 12.798+0.025+0.018 and 0= 1.48
+0. 12+0.05 (the first uncertainty is systematic and the
second is statistical}. Similarly CN2 is the number of
configurations of a self-avoiding random surface having
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X plaquettes in the E2 ensemble. This is proportional to
pz Ã . Again, Glaus finds pz = 1.733+0.005+0.006
and (b= l.51+0.10+0.15, the values of (b and 0 indicating
that the E, and E2 ensembles belong to the same univer-
sality class.

Let us evaluate the free energies within Glaus's self-
avoiding random surface (SARS) lattice model, assuming
that adding a line tension does not change S,„,„butjust
adds A(P , ) to the free energy as in Eq. (15a). The perim-
eter (,P ) =2N with a 2% uncertainty in Glaus's data. To
lowest order in X, the SARS model predicts
F,&„,z

= —TN in(AM2) and F, ,„=2XN—TN ln(lt& ). Since
F

p
F ] Q at k* = T~t „,we obtain, to leading order in

X, ~,',„=1.00 with a 2%%uo uncertainty. Within errors, this
is the same value as we find in the simulation. While
there are a number of assumptions involved in applying
Glaus's results to ours, nevertheless the agreement is re-
markable.

IV. CONCLUSION

We investigate the shapes of a Quid membrane with a
curvature Hamiltonian and boundary line tension. Our
zero-temperature analytical work shows that there is a
sharp first-order transition between a Hat disk and a
spherical closed vesicle as a function of line tension. For
some regions of parameter space, the sphere and disk
configurations are metastable with respect to each other
in the space of axially symmetric configurations. The en-

ergy barrier confining the metastable state is found to be

lower in the space of axially symmetric configurations
than it is in the space of spherical-cap configurations. In
fact, there are some values of the line tension in which a
configuration is metastable in the space of spherical-cap
configurations, but unstable in the space of axially sym-
metric configurations. The lower barrier greatly reduces
the lifetime of metastable states by factors up to the order
of 10 for biomembranes.

A computer simulation is used to investigate the transi-
tion at finite temperature. The transition persists at all
values of the bending rigidity and connects smoothly to
the zero-temperature transition point. The behavior of
the membrane energy is found to be consistent with a
first-order transition at all temperatures. The transition
persists at zero rigidity. Using results from a self-avoiding
random surface simulation [25], the tension at the zero ri-

gidity transition is shown to be that required to overcome
the entropy of the membrane boundary. The scaling be-
havior of the perimeter and energy change at the transi-
tion is found to be consistent with what is expected from
self-avoiding branched polymer scaling.
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