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The frequency-dependent density-density response function for a semiclassical gas has been calculated
from its defining equation of linear-response theory. The particular form of the response function ap-
pears to be relevant to optic-data inversion using Kramers-Kronig relations. Also the zero-frequency
limit of the response function, being the static susceptibility, is a bounded function. The susceptibility
for the semiclassical gas model provides a unique opportunity to test the bounds analytically. This study
further suggests a slightly different derivation of the lower bounds, perhaps less abstract than by convexi-
ty theory via Jensen's inequality.

PACS number(s): 05.20.—y, 05.90.+m, 61.20.Lc

I. INTRODUCTION

We consider an assembly of identical noninteracting
particles. The positions and momenta of particles do not
commute, but obey the usual commutation relations.
The equilibrium state of this assembly is to be described
by the Boltzmann distribution. Hence, this system will

be termed a semiclassical ideal gas. This very simple
many-body model has been of interest in the theory of
thermal scattering [1—3]. If scattered by light, each par-
ticle in the assembly acts as a free independent scatterer.
When the particles become very massive, the model
represents scattering from single fixed atoms or nuclei.
In the scattering theory, this model has been called an
ideal Boltzmann liquid [2].

For this model the time evolution of the density opera-
tor is explicitly known [3]. That is, the Heisenberg equa-
tion for the density operator can be solved. Since the
equilibrium state of this gas is described by the
Boltzmann distribution, the scattering function Sk(co),
where k and ~ are, respectively, wave vector and frequen-

cy, can be analytically determined. It is, in fact, a simple
function of the frequency, allowing one to determine oth-
er dynamical quantities from it by means of linear-
response theory [4(a)]. The dynamics of this model can
be a first approximation to the behavior of more complex
interacting models, which are by and large intractable.

There are yet other dynamical quantities, which show
an added richness of the dynamics of this model, perhaps
not anticipated. In particular, it centers on the time-
dependent susceptibility which can be determined from
its defining equation of linear-response theory. Given the
susceptibility, one can study Kramers-Kronig relations

and deduce useful criteria for practical applications in,
e.g. , optic-data inversion. In calculating the refractive in-
dex from the extinction coefficient, one encounters the
problem of interpreting measurements given only in posi-
tive values of a variable (e.g. , frequency) as noted recently
[5(a)]. Also the zero-frequency limit of the dynamic sus-
ceptibility, being the static susceptibility, is a bounded
function. The bounds, especially the lower bounds, are
obtained by convexity theory via Jensen s inequality [6,7].
In spite of considerable activities during the 1970s and
the early 1980s, these bounds are seldom tested on mod-
els, then only numerically [8]. The semiclassical ideal-gas
model provides a unique opportunity to test the bounds
analytically. Furthermore, the knowledge of the spectral
function here permits us to view the origin of the lower
bounds somewhat di6'erently, perhaps less abstract than
as customarily presented by convexity theory. Finally,
this model sheds some light on Gaussian approximations
made in memory-function approaches to the study of
spectral line shapes in fluids and magnetic solids [9—11].

II. DYNAMIC SUSCEPTIBILiTY

Consider an assembly of N identical ideal particles of
mass m confined in a unit Uolume. The system is assumed
to be translationally invariant. The total energy of the

assembly is

H=(1/2m) g p, ,

where p is the momentum of the jth particle. Let p( r )

be the density operator at the position r, defined in the
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usual way

N

p(r)= g 5(r —r ) .

Then, for a wave vector k, we can define

pk
=f d r e'"'p(r) = g e'

from (10):

j(co)=f dt e ' 'y(t)=—y, (co)+ijz(co),
0

j,(co)=(1/&a )[D(y+ )
—D(y )],

2 2

j'z(co) =(&ir/4a )(e + —e ),
(3)

where

(12a)

(12b)

The conjugate variables, the position and momentum, of
a particle satisfy the commutation relation:
[r, ,p, ]=ifi5,,

The time evolution of the density pk for this model is
known [3]

and

y+ =(co+co0)/&4a

D(y)=e ~ f dxe'
0

(13a)

(13b)

where

J J

pk =e Pk
i/H/fr~ (0)

—i/HI%

(4)

Here D is Dawson's integral. Observe that
y+( —co) = —y+ (co) and D( —y ) = D(y )—. Hence, y, (co)
and yz(co) are, respectively, even and odd functions of co.

It is well established that such functions are connected by
Kramers-Kronig relations [4(b)],

(}z =k.p /m+coo, coo=irik /2m . gz(co')j,(co) =(1/m)P f dco' (14)

Observe that [r, q&/ )%0.
If spin statistics is ignored (i.e., the Boltzmann distri-

bution assumed), one can directly obtain the density-
density correlation function Sk ( t ),

(6)

where the angular brackets mean an ensemble average
over states of H using the Boltzmann distribution. To
obtain the second equality, translational invariance was
employed to remove j dependence from /p . [Observe
that Sk (t =0)=Sk = 1.] It follows then

Sk(co) =(1/2 )ifrdt e '"'Sk(t ) = (5(co—
q&) ) . (7)

itk.p. Im
[p/, (t ),p /, ]=2 sin(coat ) y e

J

Applying (9) in (8), we obtain

—at2 sin(coot )e ', t )0y„(t)=
0, t(0

(9)

(10}

where a=co0/PA'. Henceforth, for added simplicity, we
shall not indicate k dependence in the dynamic quanti-
ties, which is present through the recoil frequency
coo=Ak /2m, except where needed for clarity.

The frequency-dependent susceptibility g(co) follows

One can readily evaluate (6) and (7) by carrying out the
ensemble averages [3].

The time-dependent susceptibility yk(t) has the well-

known definition [4(a}]

iN '([pk(t), p k]) if t)0
0, if t&0.

In most models, pk(t } is seldom exactly known. Thus, it
is rarely possible to obtain the susceptibility from the
defining equation (8). For our model, using (4), we show
in Appendix A that

gi(co')
jz(co) = ( —1/ir)P f dco' (15)

where co and co' are real variables and P denotes the Cau-
chy principal value. Sirice yz(co) is odd in co, (14) may
also be expressed as

co gz(co )j,(co)=(2/ir)P f dco'
CO CO

(16)

The above has the advantage in that yz(co) is now limited
to positive values of co. The Kramers-Kronig relations
are easily verified when a —=coa/Piri-+0, for which [12]

lim y(co) =P
a~0

1 1

CO+ COO CO COO

+iir[5(co+co0) —5(co —coa)] . (17)

III. OPTICAL-DATA INVERSION

In their recent paper, Peiponen and Vartiainen [5] de-
scribe the use of (16) in optic-data inversion, in which
y(co) would represent the complex refractive index
R( )=coR, ( )+cioR ( )zcoLinear o.ptical constants satisfy
"crossing relations, " essentially equivalent to the symme-
try requirements imposed on y(co). That is, R', (co} and
Rz(co) are, respectively, even and odd functions of the fre-
quency. The extinction coefficient Rz(co)=/c(co), in their

If gz(co) obtained from (17) is applied to (16), only one of
the 5 functions contributes. If the other 5 function is de-
leted, the Kramers-Kronig relation (16) is still unaff'ected
even though yz(co) is now not an odd function. If a%0,
both parts of gz(co) extend in the interval of
co=( —~, oo ) and overlap. This behavior suggests a use-
ful criterion for the practical use of (16), where yz(co) is
often not precisely known. That is, the smallness of
yz(co) near co=0 is a more important consideration than
yz(co) is an odd function.
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notation, is measurable in positive real frequencies.
Hence, measured data for iii(co) may be used to calculate
hi(co) via (16).

They have chosen for h'z(co) an arbitrary non-odd func-
tion, now in their notation,

—(co—coo) /W'
~G(~)= ae (18)

y;(co)=y;+(co)+j, (co), i =1 or 2 (19)

then tcG(co)=ji (co) with $V=&4a and A =(1/&4ira ).
Hence, one can write down the "true" difference as

co gi (cd )
b,j', (cd)—:j,(co) —(2/n. )Pf dco' (20a)

where A, co0, and 8 are all some arbitrary constants.
They then compare h, (co), obtained by (14) and (16) using
(18) for 8'i(cd). Since the "trial" function is not an odd
function of co, strictly speaking one should not regard the
first result as "exact." According to their numerical
studies, the difference between the two results neverthe-
less becomes small when coo/W is large.

It is interesting to note that if (12a) and (12b) are writ-
ten as

Sk =1 (see Appendix B), is easily verified. Using (13b)
and denoting t =&u /2, we have from (21)

0
2 1 2 2

t2e —t d~ 2et x (
0

The small- and large-u expansions of the susceptibility
[(22) and (23}]are consistent with the result of the upper
bound.

There are two important lower bounds, referred to in
the literature as the weaker lower bound (WLB) and the
stronger lower bound (SLB), such that ywLB
These bounds were deduced from an argument based on
convexity, i.e., Jensen's inequality. To our knowledge
there is no proof that the SLB is the greatest possible
lower bound. Before testing the two bounds on our mod-
el, we shall first very briefly discuss their origin from a
slightly different but probably equivalent point of view.
It is well suited to our model, hence, possibly less abstract
since it can be all realized.

If (4) is applied to the definition of the static suscepti-
bility [29] y=X (pk, Pk ), the susceptibility sum rule re-
sults

co+i+(cd )
=(2/ir)P f dco' =j', +(co) .

CO CO

(20b)

y= f ~
dcoS(co)(1 —e ~ ")/(pirico)

~" )/(p&q))

(25a)

(25b)

Referring to the integral form of (20b), we see that
yz+(co) is peaked at co= —

coo, coo&0. Hence, pi+(co) =0
if co & 0. The magnitude of hy, (co) evidently depends on
nonzero values of gz+(cd) for co) 0. If a or W becomes
small, the magnitude of byi(co) becomes small. This is

precisely what Peiponen and Vartiainen have observed in
their numerical studies. Our dynamical susceptibility
through (11) and (12) thus provides an effective measure
of accuracy for these trial functions employed in practical
use of the Kramers-Kronig relations.

g= f(cd/2)+ —,
' f"( Cd/2)((g —Cd)')+ (26)

where (p) =coo=co, shown in Appendix B. Hence, since

f"(co)& 0, we obtain [35]

f( co /2 ) = ( 1 —e ""
) /( pflcd /2 ) =—gwLB (27)

= (( I —e -'"~")/(P~q /2) & =—(f(~/2) &, (25c)

where the second equality (25b) also follows if (7) is ap-
plied. Now if f(y/2) is expanded about g=coo, we ob-
tain

IV. STATIC SUSCEPTIBILITY AND BOUNDS

According to linear-response theory, y=y(co=0)/pi}i.
Hence, the static susceptibility may be obtained directly
from (12a),

g=(2/&u )D(&u /2), u =PAcdo . (21)

The k dependence, not indicated here, exists through
coo=fik /2m. Using the asymptotic forms of Dawson's
integral D [5(b)], we have

g=1 —
—,'u+ —'u ——„' u +, u 1

=2u '(1+2u '+12u + . }, u &) 1 .

(22)

(23)

These expansions are useful for observing the closeness of
the bounds to the susceptibility. The static susceptibility
bounds, first given by Falk and Bruch [6], later by Dyson,
Lieb, and Simon [7], and others [13—15], have been rarely
tested on models because exact solutions of the suscepti-
bility are difficult to obtain [8,16]. Our solution affords
an opportunity to test the bounds rather easily.

The upper bound gk /Sk =gk ( 1, where for our model

For our model the WLB is thus the susceptibility sum
rule evaluated at the recoil frequency.

Analogously, (25a) may also be expressed as

y= ( tanh(pfiq&/2)/(piity/2) )—:{g(y/2) ) . (28)

But since g "(co) is not necessarily non-negative, one may
not now expand g(p/2) about q&=cd to obtain a lower
bound. If it is still expanded about some other value, say
y=co, , then

y=g(m, /2)+(co —co, )g'(cu, /2)+ . - . (29)

(co, /2) tanh(Pkcoi /2) =co/2 .

Hence,

y & g (co, /2) = tanh(piilco, /2) /(ph'cd i /2)

(30)

+SLB

One can easily prove that g'(co) ~0. Hence, if co —co, ~0,
the first term on the right-hand side (rhs) of (29) is a
lower bound of y [36]. The condition co, &co can always
be satisfied if co, is a solution of



46 DYNAMIC RESPONSE FUNCTION AND BOUNDS OF THE. . . 3031

f2

f dse' )(1—e ' )/(2t ),
t 0

which may be reduced to

f dx e' ) (e' —e ' )/(2t) .
0

Let us define F(t ),

F(t)=f ds e' —(e' —e ' )/(2t) .
0

(32)

(33)

(34)

The inequality (32) means that F(t)&0, t &0. Since
F(t =0)=0, to pr'ove F(t ) & 0, it is sufficient to show that
F'(t ) & 0 for t )0. By differentiating F(t ), we obtain

F'(t ) =(e ' /2t')(e" —1 —2t') . (35)

For our model, the SLB is the susceptibility sum rule
evaluated at a frequency greater than the recoil frequen-
cy, determined by (30). In Appendix C the SLB is dis-
cussed from the point of view of a nonlinear transforma-
tion. Now we proceed to test the two lower bounds on
our model, i.e., (21).

Let us assume that y&yw„a. Introducing t =&u /2,
u =Pficoo, as before, we have from (21) and (27)

(b) u &)1:

gwta=2u (1 e ) (42a)

gsLa=2u ( 1 4e + ' ) (42b)

Comparing (41a) and (41b) with (22) and also (42a) and
(42b) with (23), we see the inequalities g & ysLa & ywLB are
indeed satisfied in these limits. For u ((1, the SLB is
reasonably close to y, but not close enough to suggest
that there may yet be even a greater lower bound than
the SLB.

Finally we note that the WLB approaches the upper
bound when the recoil frequency co0 vanishes, e.g., when
the particle becomes very massive. The merging of the
upper and lower bounds, first noted in the context of crit-
ical phenomena [6,16,17], occurs whenever
co= vs/2Sk ~0. Recall in our problem co=coo. It should

also be pointed out that there is yet another kind of in-
equality in the form y&y(co=0)/Pfi [18—21]. For our
model, however, y=y(co=0)/Pfi, which is proved in Ap-
pendix E. Also, the Schwarz inequality gives a lower
bound on y, which is discussed in Appendix G.

F'(t=O)=0, but manifestly F'(t)) 0 if t &0. Hence,
F(t ) )0 for t )0 and our assumption on the inequality
(32) is justified. The WLB is verified on our model.

Now turning to the other lower bound, let us assume
that y)ysLa. Then from (21) and (31), with t =&u /2,

2

f ds e' ) tanh(Pfico|/2)/(PA'co&/2) .
t 0

(36)

Introducing x =dice, /2, y =u /2, hence y =2t and

y =x tanhx, (36) may be rewritten as

V. DISCUSSION

A semiclassical ideal gas is perhaps the simplest many-
body model for dynamical analysis. Its simplicity evi-
dently stems from its Gaussian character. Yet it is not
without some richness as we have seen. As simple as this
model is, its time evolution behavior is still not entirely
elementary. The relaxation function R (t ), for example, is
expressible only in an integral form,

R(t)=N '(p„(t),p„)

ne~i2&y/2 2

0

Define E(x ),

(37)
(43a)

(43b)

It(x)=&2f ~
ds e' —x y e

0
(38)

Now K(x =0)=0. If K'(x ) &0, then E(x ) & 0 for x )0.
By differentiating E(x ), we obtain after some rearrange-
ments,

E'(x)=x(Q —1) e~i /2&y

where

(39)

Q =y(1+y )/x (40)

1 —Q +—Q
l 2 (41a)

Note that y+y x, hence, Q & 1. Evidently E'(x) &0
for x &0, hence, also E(x))0 for x &0. Again our as-
sumption on the inequality (36} is justified. The SLB is
verified on our model.

To see the closeness of the lower bounds to the suscep-
tibility itself, we shall compare their limiting forms.

(a) u ((1:

Still more complicated is the memory function M(t},
which is related to R (t ) via the differential-integral equa-
tion [11]

R(t)+ f dt'M(t')R(t t')=0. — (44)
0

In the spectral study of interacting systems, e.g. ,
liquids, magnetic solids, via a memory-function approach
[9—11], the relaxation and memory functions play a vital
role. Since these quantities cannot be exactly obtained,
one usually resorts to approximation, often motivated by
Lorentzian and Gaussian curves observed in the charac-
teristic spectral line shapes in nuclear magnetic reso-
nance, electron paramagnetic resonance, and other tech-
niques. A microscopic basis of approximation is made
through frequency moments, a few of which can be calcu-
lated for interacting models. For our ideal model, the
moments are calculable to almost any order. Hence, they
can provide a measure of validity for this approach.

Expanding R (t ) in powers of t, one can write (43a) as

(41b)

(it ) "v2„
R (t ) =R(t )/y= g

0 2n!Phy
(45)
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where

vo= piety,

((1 psy) n —1)

(46a)
e s[e",e ]=(s—s ')se" . (A2)

where s = exp(1/2[ A, B ] ), which is also a number.
Hence, it follows that

dcuS co 1 —e ~ co" ', n =2,4, . . . . 46b
Now consider using (4)

( t) P2M(t)= M—(t)/(v2/y)= g.=o 2n t
(47)

In Appendix B a few of these moments are given. The
memory function M(t) may also be given a similar ex-
pansion,

where x=tk/m. The terms inside the braces on the rhs
of (A3) are exactly in the form of the left-hand side (lhs)
of (A2). If we let A =ix p and B= ik r~,—then

s = exp(1/2[ A, B ])= e '. Hence,

where the coefficients p2„'s can be constructed from
vz„'s, for example,

[pi, (t),p &]= 2i s—in(coot) pe
J

(A4)

Substituting (A4) in (8), we obtain48aP'2 V4/V2 V2/V0

p4=v6/v2+(v2/vo) —2(v4/vo) . (2/N ) ein(ruet )
( X e

J

(48b)

The Schwarz inequality [see Appendix G, Eq. (G7)] re-
quires that these coefficients be non-negative. Parker and
Lado [9], for exainple, found that in certain resonance
data, v4/v2-10 and v6/v2-10', i.e., varying over large
numbers, yet p4/pz-4, which is very close to the Gauss-
ian value 3. Hence, they constructed a Gaussian memory
function

y k(t)= . (A5)—at=2 sin(coot)e ", t )0

0, t(0,
where a =coo/pA'. We have invoked translational invari-
ance to remove N in (AS). Observe that y(t~ co )~0 as
is required by linear-response theory [4(a)].

—P2t /2
M(t) =e (49)

p4/p2=1+8(u+3)/(u +6—2/y) (50)

which gives a good account of experimental data in
several systems.

For our ideal gas, with u =PS&coo,

APPENDIX B: SECOND AND HIGHER MOMENTS
OF THE RELAXATION FUNCTION

The second moment v2 (sometimes also known as the
first frequency moment or f sum rule) may be defined as
[29]

Hence, p4/p, z) —', . The minimum value (reached when

u =0) is nearly the Gaussian value of 3. It suggests that
when an interacting system is approximated by a Gauss-
ian memory function, it may be subsuming the dynamics
of an ideal system. A more penetrating dynamical
analysis can be given by the method of recurrence rela-
tions, in which the recurrants rather than the moments
are considered more fundamental [22]. This study will

appear in due course.
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Hence,

v&=6k /m =2mo . (B4)

That is, the second moment in this problem is twice the
recoil frequency of a particle in the scattering process.

Using (12b) in the fluctuation-dissipation theorem
[4(a)], g2(co) = ir(1 —e ~" )S(co)—, we obtain [4(a)]

APPENDIX A: TIME-DEPENDENT RESPONSE
FUNCTION

—(u —
coo j/4a

S(co)= e ', a =coo/pfi .
&4~a

(B5)

Let A and B be two operators such that the commuta-
tion relation between them [ A, B ]= AB —BA is a num-
ber. Then there is a well-known relation according to
which

A B A+B

The scattering function is peaked at the recoil frequency.
Observe that

f dao S(co)= f de(5(co —g) ) =1,
cp

=k-p/m +~o,
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i.e., Sk = 1. One can also obtain the second moment from
the relation v2=2co/Sk =2', where co is defined through
S(co},

co—= f dcoS(co)co= f dco&5(co —y) &co=& qr &=coo .

(87}

where

g(y) =g(q)/2), g(co) = tanhpirico/pirico .

From Appendix 8 we have

co=&p& =&Q(p)&„=fdcoS(co)Q(co),

(C3)

vi= f dco S(co)co(1—e ~"~)=
& (1—e ~"~)p& . (Bg)

It is easy to prove that &ye ~"~&= —&y&, which leads
to our result (84).

The third moment v3 may be similarly obtained,

v&= &(1—e ~"~)y & =0,
which follows from the relation

&e ~+y" &=( —)"&y"&, n =0, 1,2, . . . .

(89)

See Appendix F for the connection between the ensemble
and spectral averages. The second moment may also be
given as

where

Q(co) =co tanhpirico . (C5)

Now changing our variable co to Q we can write (C4) as

co= f d QX(Q)Q =Q, (C6)

(C7)

where p is defined by the requirement that [23]

where X(Q) can be determined from the transformation
(C5}. More simply, the normalization condition

fd QX(Q) =1 implies that in parallel to (Cl) one may

write

Note that co= Q= & P &„. (CS)

co = f dco S(co)co —
& Ip &

—coo+ 2ci (811)

Similarly, other "spectral" moments in terms of u =pficoo
are

Now we shall similarly transform the expression for y
given by (C2),

(C9)

&q) &=(u +6u )/(pR)

&q'&=( '+12 '+12 ')/(PX}',

&y &=(u +20u +60u )/(Pih')

&q'& =( +30 +180 +120 )/(PA')' .

where

(813) G(Q) =g {co(Q) } . (C10)

(814) Let us expand G(p) given in (C9) about p=Q,

(815) y= G(Q)+-,' G "(Q)& (y —Q') &+ (Cl 1)

The density-density response function S(t) may be ex-

panded in terms of the spectral moments. See (6) and
(F6).

Now generalizing (88,9), for n =1,2, 3, . . . , we define
the nth moment of the relaxation function

v„= & (1—e ~"~)y" '
&
=[I+( —1)"]& tp" (816)

where the second equality follows from (810). A few

nonvanishing moments are listed here:

(817)v~=2u/PA',

v~=2(u +6u )/(Pfi)

v6=2(u +20u +60u )/(PA)

(818)

(819)
APPENDIX D: CONVEXITY OF G(y ) =g(x(y ))

Since G"(Q))0 (see Appendix D), G(Q) is a lower
bound of y. From (C10), G(Q)=g(co(Q))=g(coi)
=g(co, /2), where Q=co=co, tanhPfico, [see (C5)].
Dyson, Lieb, and Simon [7] have shown that g(co, /2) is
the SLB, i.e., g(co&/2) )f(co/2). See (27) for the
definition off(co).

For this model, S(co} is explicitly known. Hence, it is
possible to realize X(Q) via the nonlinear transformation
(C5) and to obtain a lower bound of y. It is, however,
more tedious and less transparent than by the formal ap-
proach given here.

See Appendix G for their bounds given by the Schwarz
inequality.

APPENDIX C: STRONGER LOWER BOUND

For this model it was stated that

S(co)=&5(co—y) & . (Cl)

y=&g(y)& = f dcoS(co)g(co}, (C2)

Using this form for S(co},we can show that the SLB re-
sults from a nonlinear transformation. The susceptibility
is given formally as

Evidently g(x ) = tanhx/x is not a convex function of
x. If, however, x~y=h(x), where h(x) is some func-
tion of x, then g{x(y))=G(y) may be a convex function
of y. One such example is y =h(x ) =x tanhx. The proof
of this assertion is given by Dyson, Lieb, and Simon [7].
They prove the concavity of p(x )=x cothx, which is
equivalent to the convexity of g(x tanhx)= tanhx/x.
The equivalence is deduced from a certain necessary and
sufficient condition for convexity [24]. To our
knowledge, no one has given a direct proof of the convex-
ity of G(y ). We shall provide such a proof below, which
is also elementary.
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Noting that x =x (y ), we can write

d~6(y ) /dy2 —=G"=x' g"+x"g', (D 1)

For y ~0, one can obtain

(D15)

where a prime on a function means differentiation with
respect to its own argument (e.g. , x'=dx/dy, g'=dg/dx,
etc.). For y =x tanhx,

which also indicates that 6"(0)&0. (41b} is obtained
from (D15) by setting y = u /2.

x'=x/(y+x —y ),
x"=—2x' (x —y )(1—y)/x

Also for g = tanhx/x,

(D2)

(D3)
APPENDIX E: y =y(m =0) /PA FOR AN IDEAL GAS

Using (B5} in the susceptibility sum rule (25), we can
write

g'=(x —y —
y )/x

g"=2(y+y +y —x —x y )Ix

(D4)

(D5)
1 1

CO +600 CO 600

g= f dao S(co)(1—e ~" )lpA'cu

e
—co /4a(pg)

&4n.a
(El)

Substituting (D2) —(D5) in (Dl), we obtain after some
algebra

6"=2x x' [y —2(x —y )

+2(1—
y )(x —

y ) I(x +y —y ) ] . (D6)

One can readily show that the rhs of (D6) is well behaved
when x~0. Hence, it is sufficient to consider G" for
x)0. Upon further algebra, one can put (D6) in the
form

in which the rhs of (El) must be interpreted as principal-
value integrals.

Applying the well-known identity [25]
2

f dt e ' =(ie ' /2&m. ) f dt
2 iz —t ' (E2)

we can reduce (El) to

y=(2/&u )e "~ f dx e" =(2/V'u )D(&u /2),
0

(E3)

G"= [2x' /[(x +y —y ) cosh x ] j H(x ),
where

H(x)= sinh x/x + tanhx/x —2 .

(D7)

(D8)

where u =Phcoo and D is Dawson's integral. The rhs of
(E3) is identically y(co=0)/pfi, given by (21). Q.E.D.

The same result follows from (43) by setting t =0, i.e.,
R(t =0)=g, which is equivalent to the linear-response
relation y(co=0)=pky.

The prefactor of H(x ) in (D7) is positive since
x —y )0. Hence, to prove 6"&0 it is sufficient to
prove H(x ) )0 for x & 0. Now H(x ) may be further fac-
tored,

APPENDIX F: ENSEMBLE AND SPECTRAL
AVERAGES

H(x ) = [2(1+ cosh2x ) ']H, (2x ),
where

H, ( t ) = sinh t /t + i hstn/t —cosht —1 .

(D9)

(D10)

We prove that for our model the ensemble and spectral
averages are the same. Consider the susceptibility in
three dimensions given by

PS'= ((1—e ~"&)/p)

H, (r )=4 g jr'"+'/(2n+4}! ja„,
n=0

where

(Dl 1)

Then formally expanding H, ( t ) in powers of t, we obtain
—PR(p k/m+coo)

=Z fd,-. »"- -' '
P k/I +m0

(F1)

where Z =(2~m /p) . Writing out the angular integra-
tion, we can express the rhs of (Fl) as

a„=2 "+'—(n+1)(n+2) .

Now one can write

(D12)

where

d (e ~ )g( ) (F2)

e (2n+ 1) 1n2 1n(n+ 1)+ 1n(n+2)
n (D13)

If n ln2& ln(n+1), then also (n+1}ln2&ln(n+2).
Hence, it is sufficient to prove n ln2) ln(n+1) to prove
H, ( t ) )0. Now evidently,

2"~ n+1 (D 14}

for any non-negative integer n. Hence, we have proved
that G" &0. Q.E.D.

F(p)= f dv

—pA'(c v+ coO)
1 —e

e V+COO
c —=k/m . (F3)

By carrying out the integration by parts, we obtain
—PA(cp+ coo)

pAy=&p/2vrm f dp e
Qo CP +F00

(F4)
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which is the same as the ensemble average in one dimen-
sion [26]. Now changing the variable p to ro=coo+cp, we
obtain immediately

f dao S(co)(1—e ~" )/co, (F5)

where we have used (85) for S(co). Q.E.D.
Since averaging with the spectral function S(co) re-

quires but a one-dimensional integration, it is to be pre-
ferred over the ensemble averaging. For example, the
scattering function S(t ) [see (6)] is trivially evaluated,

S(t ) = ( e"'P
&
=e'

—at(t —i') Q —coo (F6)

I'"=f dc@(~—coo) S(co)=((ip—coo) ), (Fj)

Note the property S(t =0)=S(t =iPfi) =1, which is use-
ful for evaluating moments. See Appendix B. If A=O,
(F6) reduces to the classical ideal-gas form [27,28).

As an application, we shall derive another class of sum
rules known as the kinetic-energy sum rules for our ideal
gas for which the coherent and incoherent scattering
functions are identical [2]. Consider the following in-

tegral:

These one-particle kinetic-energy sum rules ("even"
moments) are unrelated to the frequency-moment sum
rules ("odd" moments) of Appendix B. Recall that the
odd moments are the coefficients of the short-time expan-
sion of the relaxation function R(t) which has even
powers of time only [22]. See (45). The family of the
even moments must thus provide another kind of infor-
mation about the relaxation function.

The kinetic-energy sum rules are applicable to interact-
ing systems if k~ ac. In this limit the coherent and in-
coherent scattering functions become identical. (For an
ideal gas the two are, as noted, identical at any k. ) The
kinetic energy sum rule (F9} is well known [31] and has
been used in many-body theory especially to obtain esti-
mates for the kinetic energy from experimentally or nu-
merically obtained scattering functions [32,33]. To our
knowledge, the higher kinetic-energy sum rules have been
seldom discussed [34].

APPENDIX G: THE SCHWARZ INEQUALITY

Another lower bound on the susceptibility g may be
obtained by the Schwarz inequality (SI). Our model pro-
vides an interesting application of the SI to an inner
product which is not at all elementary. If (P, Q) denotes
the Kubo scalar product of operators P and Q [29], the SI
states that

where we have used (7) for S(co). Now using (5), we can
further write the rhs of (F7) in d dimensions as (P,P)(Q, Q) ) (P, Q) (G 1)

(4coo/ft)
((k.p/m) )= (E«), (F8)

where (EKE ) means the average one-particle kinetic en-

ergy. In obtaining (F8), we have used the fact that the
distribution function is isotropic. Hence, the kinetic-
energy sum rule for our isotropic system may be stated as

(E«) = f" de(co coo) S—(co) .
4' 0/R

(F9)

BS(co=coo) =0.
Bco

Similarly,

Recall that coo is the recoil frequency which may also be
defined as

Let P= A and Q=L A, where L is the Liouville opera-
tor, i.e., LA =[K, A ]=HA —AH, H is Hamiltonian.
Then [30]

(A, A}(L A, L A))(LA, LA) (G2)

where we have used the identity ( A, L A )

(LA, LA ). —
If A =pk the density operator of (3), then ( A, A ) =y,

(LA, LA )=v2, and (L A, L A )=v4, where
v2„=v2„(PR) " ', n =1,2, . . . . See (46). Hence,

(G3)

where we have used (817} and (818) for the moments.
The above inequality may be explicitly stated using (21)
for y,

I = dQP Eo coo S co

(4coo/&)'
=((kp/ ) )= ((E ) ) .

Hence,

(F10)

t2

t o 2t +3
(G4)

where r =&u /2. Using our method of Sec. IV, one can
easily verify (G4).

Similarly, now let P =L A and Q =L A. Then,

((EKE)')=,f d~(~ —~0)'S(~) . (Fl 1)
(4coo/A')

(LA, LA)(L A, L A) (L A L A)

Again, if 3 =pk, then

(G5)

The generalization follows directly:

((E )")= „ f d~(~ —~,)'"S(~),n d+2n 2 ~ 2n~

(4coo/A)"

n =1,2, . . . . (F12)

)V2V6 V4 (G6)

Using (817)—(819), one can verify that the above inequal-
ity is satisfied.

In this manner one can generate inequalities for other
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moments. For example,

2n + 2 +2n —+2n +2n —2 — —+4/+2 —+2 +Q (G7)

where vo=y. See (46a). The bounds obtained by the SI

are purely mathematical in origin. Hence, they are
perhaps less interesting than, e.g. , gw„B, which is physi-
cally based. For example, gwLn)ys, if u ( ao. [ywLn
given by the rhs of (32).] As a result, gs, cannot merge
with the upper bound of y when u ~0.
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