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Field-theoretical view of the angular correlation of photons
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We give a field-theoretical derivation of the explicit probability distribution of photon emission by
identical N noninteracting atoms (sources), which has been applied to study the tendency of photons to
form collimated beams. More precisely, given that each source emits one photon with some given ener-
gy, due to the same atomic transition, we derive the conditional probability that the N photons have mo-
menta in arbitrary directions. Each source is assumed separately to emit photons of momenta with uni-
form distribution for their directions, and no assumption is made on the sources being pointlike.

PACS number(s): 32.80.Wr, 03.50.De, 41.20.—q, 11.10.Ef

Much interest has been given in the literature (c.f.
Refs. [1,2]) to the tendency of photons to form collimated
beams. This result is attributed to the Bose character of
photons, giving them the tendency to travel in the same
direction. In a recent interesting paper [1], a measure of
this latter property was defined by introducing the angu-
lar correlation of photons as the average value of the
cosine of the angle between the directions of momenta of
any two photons. A positive correlation, as shown in
Ref. [1], then would give a clear indication of the tenden-
cy of photons to travel in the same direction. Here we
have N (for simplicity) noninteracting atoms (sources),
each of which emits one photon with a given energy as-
sumed to be due to the same atomic transition. To do
this an expression for the probability distribution of N
photon emissions collectively from the N atoms with ar-
bitrary momentum directions is necessary. The purpose
of this note is to give a field-theoretical point of view
derivation of this conditional probability distribution
based on the vacuum-to-vacuum transition amplitude
[3,4] for photons in the presence of the N sources. Each
source is assumed to emit separately photons with uni-
form distribution for the directions of the photons’ mo-
menta, and unlike Ref. [1] no assumption is made on the
sources being pointlike. We choose units such that
fi=1=c.

We work in the radiation (temporal) gauge 4°=0 for
the vector potential and consider the Lagrangian density

L=—L1F"F,+A47", (n

where i=1,2,3 and J' is an external source. This leads to
Maxwell’s equation

9, Fr=—J" JO=—(3,)7'8,;J', (2)
(—O8Y+d'8/) A(x)=Ji(x), O=2a%3", (3)
and for the Green function  DY(x —x’)
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which leads to the vacuum-to-vacuum transition ampli-
tude (e.g., [4)

— i i
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where
B iolx—x") [ inj
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Equation (5) may be also rewritten in a covariant nota-
tion from the constraint on J? in (2) as

(0,]0_),=exp éf(dx)(dx’)J”(x)DAx —x'M,(x") |,
(7)
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We consider N sources
N

Jx)= 3 ji(x), j(x)=jx%x—R;), 9)

i=1

centered, respectively, at R,,...,Ry, and otherwise
identical. Each source is assumed to give a uniform dis-
tribution for the direction of momentum of each photon
emitted. Therefore we will write in general

j(x°,x—R)=f 1dQ) i Q(x—R)p —iQx"

(2m)*
a(Q)
X —=—f(1Q]), (10)
farton 1€
where Q =(Q°%Q) and a(Q), £ (|Q|) are arbitrary, and
aj(Q=allQ—@ 22 (1

The probability that a given source j; emits # photons is
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and hence provides a uniform distribution for the direc-
tions of the momenta of the photons. The situation is not
the same when dealing collectively with the N sources.
In particular, from (5), (9), and (10) we have for the vacu-
um persistence probability
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where Q=|Q|n, d°Q=|Q|%d|Q|dQ, and the integrand

depends on the direction n of the momentum. The am-
plitude that the sources collectively create N photons
each with energy k, M| of which have momenta in direc-
tion n;, M, of which have momenta in direction n,, and
soon, M, +M,+ - -+ =N, s then [4]
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Upon using the multinomial expansion
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we have, for the amplitude that each source creates exactly one photon from (14) and (15), with M, =1, ... , My=1:
N N N —-ikmﬁ n;- *ikmjiNnj-RN
FOkDIMoslo), [T 3 e , (16)
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Jiy Jin
where the summations are over all non-negative integers mj ,...,m; such that m; +--- +m; =1 for all
1 N 1 'y

Jj=1,..., N, with the additional restriction that my;, +m2,~1 + - tmy =1,...,my + +mN,-N=1 in each term
in the summand in Eq. (16), the expression
ON £ (kDI 0, |0 )13 expf ——tk[n R+ '+n,-N-RN]} , (17)

P
where the sum is over all permutations of {i,...
sources creates exactly one photon each with energy |k|
have momenta in the directions n,, . . . ,ny is from (17)

plng,...,ny)= izexp{—zk[n ‘R, + -

where

c=[do,[... fdQN(zexp{—ik[n,-l-Rﬁ—
P

and no assumption is made on a pointlike nature for the
sources. The angular correlation of two photons is
defined by

(c)=fdﬂ1f - [dQyn;mp(n,, ...

For the application of (18) for various configurations of
the N atoms, see Ref. [1], where the universal positivity
character of {c ) is also studied.

This paper treats the angular correlation of the mo-
menta of a pair of photons. Our recent theoretical devel-

,nN) . (20)

iy} of the set {1,..

“tn; Ryl} ?

., N}. Therefore given that each of the N

=k, then the conditional probability density that the N photons

- +n; Ryl ’2 : (18)

, (19)

opment of localized photon excitations [5] in spacetime
opens the possibility for a study of correlation and in-
terference effects of such a pair in configuration space
and is planned to be considered elsewhere. This in turn
will bring us in contact with an earlier study [6] in
configuration space, and a comparison with some of the
conclusions reached there with the ones from our analysis
will then be made.
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