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We give a field-theoretical derivation of the explicit probability distribution of photon emission by
identical N noninteracting atoIns (sources), which has been applied to study the tendency of photons to
form collimated beams. More precisely, given that each source emits one photon with some given ener-

gy, due to the same atomic transition, we derive the conditional probability that the N photons have mo-

menta in arbitrary directions. Each source is assumed separately to emit photons of momenta with uni-

form distribution for their directions, and no assumption is made on the sources being pointlike.

PACS number(s): 32.80.Wr, 03.50.De, 41.20.—q, 11.10.Ef

Much interest has been given in the literature (c.f.
Refs. [1,2]) to the tendency of photons to form collimated
beams. This result is attributed to the Bose character of
photons, giving them the tendency to travel in the same
direction. In a recent interesting paper [1], a measure of
this latter property was defined by introducing the angu-
lar correlation of photons as the average value of the
cosine of the angle between the directions of momenta of
any two photons. A positive correlation, as shown in
Ref. [1], then would give a clear indication of the tenden-

cy of photons to travel in the same direction. Here we
have N (for simplicity) noninteracting atoms (sources),
each of which emits one photon with a given energy as-
sumed to be due to the same atomic transition. To do
this an expression for the probability distribution of N
photon emissions collectively from the N atoms with ar-
bitrary momentum directions is necessary. The purpose
of this note is to give a field-theoretical point of view
derivation of this conditional probability distribution
based on the vacuum-to-vacuum transition amplitude
[3,4] for photons in the presence of the N sources. Each
source is assumed to emit separately photons with uni-
form distribution for the directions of the photons mo-
menta, and unlike Ref. [1] no assumption is made on the
sources being pointlike. We choose units such that
A= 1=c.

We work in the radiation (temporal) gauge A =0 for
the vector potential and consider the Lagrangian density

I. = ——'F" F + A'J'
4 I.LV

where i =1,2,3 and J' is an external source. This leads to
Maxwell's equation

(2)

(0+ ~0 & 1=exp —f (dx)(dx')J'(x)

XD'j(x —x')Jj(x') (5)

where

&Q(x —x')
D'j(x —x')= f (2n ) Q i e—gij Q'Q

QO

a~0+ . (6)

Equation (5) may be also rewritten in a covariant nota-
tion from the constraint on J in (2) as

(0+ ~0 & I =exp —f (dx)(dx')J"(x)D+ (x —x')J„(x')
2

(dQ) ig(x —x')
D+(x —x')=f, e —+0+ .

(2m ) Q —ie

We consider X sources

N

J(x)= g j,(x), j;(x)=j(x,x —R, ),

centered, respectively, at R, , . . . , RN, and otherwise
identical. Each source is assumed to give a uniform dis-
tribution for the direction of rnomenturn of each photon
emitted. Therefore we will write in general

-( 0 R) Q eig (x R)e —i-g x-(dfl)
(Zm)4

and for the Green function
=i&0, ~[w'(x)wj(x')], ~0 &,/(0, ~0 &,,

(3)

D'i(x —x')

(4)

Ia, (Q)l
(10)

where Q = ( Q0, Q) and a( Q),f ( ~ Q~ ) are arbitrary, and

ar(Q) =a'(Q) —Q' (11)

which leads to the vacuum-to-vacuum transition ampli-
tude (e.g., [4]) The probability that a given source j, emits n photons is

46 2962



BRIEF REPORTS 2963

f lf (IQI)I'd'Q&(2~)'2IQI

n!

Xexp —f 3 If(Ikl)l', (12)
d k

and hence provides a uniform distribution for the direc-
tions of the momenta of the photons. The situation is not
the same when dealing collectively with the N sources.
En particular, from (5), (9), and (10) we have for the vacu-
um persistence probability

d3
)I'=exp —& g f, lf(IQI)l'

(2~)'2 I Q I

Xexp [il Q I
n. (R,. —RJ )],

(13)
where Q=IQln, d Q=IQI dlQldQ, and the integrand
depends on the direction I of the momentum. The am-
plitude that the sources collectively create N photons
each with energy k, M, of which have momenta in direc-
tio»1, Mz of which have momenta in direction nz, and
so on, M, +M2+ . =N, is then [4]

M,—ikn -R.
1 ige

)N[f ( Ikl )]N
QM, !

—ikn .R.
2

M2

(14)

N
1 i

—ikn R.

QM, ! m . + +m =M
1 i

1
1 iN 1

Upon using the multinomial expansion
Ml

ikm
1

~ nl RN
N

]
—ikm. n Rli1 1 1

] [e
m„! m1; !

1 N

we have, for the amplitude that each source creates exactly one photon from (14) and (15), with M, = 1, . . . , Mz = 1:

( )"[f(I!rI)]"(o,lo
j=l m" + . +m" =1

Jt
1 JiN

—ikm, n . .Rl —ikm, n . .RN
(16)

where the summations are over all non-negative integers m, , . . . , m; such that m; + - +m, =1 for allJl 1

j =1, . . . , N, with the additional restriction that m„+mz, + . +mN; =1, . . . , m„+ +mN, =1 in each term
1 1 N

in the summand in Eq. (16), the expression

(i) [f(Ilail)] (0+I0 )zg exp[ ik[n; —Rz+ +n; Rz]j, (17)

where the sum is over all permutations of [i„.. . , i~ j of the set I 1, . . . , N j. Therefore giuen that each of the N
sources creates exactly one photon each with energy Ilail

=k, then the conditional probability density that the N photons
have momenta in the directions n„. . . , n~ is from (17)

1p(n„. . . , nz)= —g exp[ ik [n; .—R&+ +n; Rz] j
P

where

C= f dQ& f. . . f dQ& +exp[ ik[n; —R, + . +n; R~]j

(18)

(c ) = fdQ, f . fdQ~n;. njp (n, , . . . , nz) . (20)

For the application of (18) for various configurations of
the N atoms, see Ref. [1], where the universal positivity
character of ( c ) is also studied.

This paper treats the angular correlation of the mo-
menta of a pair of photons. Our recent theoretical devel-

and no assumption is made on a pointlike nature for the
sources. The angular correlation of two photons is
defined by

opment of localized photon excitations [5] in spacetime
opens the possibility for a study of correlation and in-
terference e6'ects of such a pair in configuration space
and is planned to be considered elsewhere. This in turn
will bring us in contact with an earlier study [6] in
configuration space, and a comparison with some of the
conclusions reached there with the ones from our analysis
will then be made.
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