
PHYSICAL REVIEW A VOLUME 46, NUMBER 5 1 SEPTEMBER 1992

Exact solution to the time-dependent Schnidinger equation in two dimensions
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With a view to obtaining an exact analytic solution to the time-dependent Schrodinger wave equation
for noncentral harmonic and anharmonic potentials in two dimensions, we make use of an ansatz for the
eigenfunction in conjunction with the methods of Burgan et al. [Phys. Lett. 74A, 11 (1979)] and Ray
[Phys. Rev. A 26, 729 (1982)]. While the method is found to work well for a restricted class of harmonic

potentials, its limitations in the case of anharmonic potentials are pointed out.
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I. INTRODUCTION

In recent years the study of dynamical systems involv-
ing an explicit time dependence has attracted great in-
terest from the point of view of both classical and quan-
turn mechanics, particularly because such studies can
prove to be useful in various branches of physics [1] and
chemistry [2]. While at the classical level the studies are
mainly restricted [3,4,5] to the construction of invariants
(since the Hamiltonian in this case does not remain a con-
stant of motion) and their possible physical interpreta-
tions [6],attempts have been made [7,8,9,] to use these re-
sults in obtaining exact analytic solutions to the
Schrodinger wave equation at the quantum level. In oth-
er words, the invariants, if they exist and become avail-
able for a given time-dependent (TD) system, not only
help in solving the equations of motion in the classical
case, but also offer a deeper understanding of the solu-
tions to the Schrodinger equation (SE).

One of the various approaches [3,4, 10,11] used to in-
vestigate TD systems is the Lie-algebraic approach
[10,11]. This approach, in terms of time-evolution opera-
tors introduced [5] for the TDSE, although offering a
deeper mathematical insight into the problem, becomes
rather difficult to deal with, especially with either Hamil-
tonians of order higher than quadratic or of higher di-
mensions. On the other hand, the method of Ray [9], a
generalization of the group-transformation method of
Burgan et al. [7], can offer an exact solution to the prob-
lem not only in higher dimensions, but also for nonqua-
dratic Hamiltonians.

The method of Ray [9] is essentially carried out in two
stages. In the first stage one performs a scale and a phase
transformation of the dependent variable and a scale
transformation of the independent space-time variables,
thereby converting the TDSE to a more complicated
form. The arbitrary functions occurring in the transfor-
mation are then fixed by setting some of the additional
terms in this new equation equal to zero and subsequently
by demanding the form of the TDSE to be invariant un-
der the above transformation. This is done by modifying
the potential term. In the second stage, another phase
transformation of the dependent variable converts this
new TDSE into a time-independent (TID} SE in one of
the standard forms whose exact solutions are normally
known in advance. It is interesting to note that the Ham-

iltonian analog of this final TIDSE turns out to be a con-
stant of motion, which, in turn, is found [9] to have a
connection with the corresponding classical Noether in-
variants.

Recently, we have studied [12] the quantum mechanics
of noncentral TID potentials in two dimensions. In par-
ticular, the ansatz used for the eigenfunction has provid-
ed an exact solution to the TIDSE for a large variety of
noncentral potentials. Coincidentally, our ansatz in its
generalized form resembles that of Ray [9] or of Burgan
et al. [7]. With a view to enlarging the list of exactly
solvable TD potentials in quantum mechanics, we return
to the method of Ray here, particularly with reference to
the two-dimensional systems. Burgan et al. , however, in-
vestigated a similar problem as a special case of their
studies of a multidimensional TD harmonic oscillator,
but with a limited utility in the sense that they used a re-
stricted form of the transformation. In the present work,
we generalize the method of Ray to investigate a class of
TD systems in two dimensions, from which the results of
Burgan et al. can be recovered as a special case. In the
next section, we employ the method to study the TD sys-
tem V(x,y, t). As an example, the case of a shifted TD
harmonic oscillator is discussed in Sec. III. In Sec. IV,
we attempt to apply the method to noncentral anharmon-
ic TD potentials and subsequently discuss the possible
limitations of the method. The results are discussed and
summarized in Sec. V.

II. GENERAL TREATMENT

For the system V(x,y, t) we wish to solve the TD
Schrodinger equation (A'=p, = 1),

+ + V(x,y, t) 4(x,y, t)=i, (1)
Bx Bg 9t

where for the function 4( y,xt), we make an ansatz [7,9],
4( y, xt) =B(t)exp[i/( y, xt)]P(x,y, t), (2)

with B(t) a TD normalization. Now, following Ray [9],
we perform the scale transformation of the space and
time variables as

C, (t) ' ' C, (t)
x'= + A, (t), y'= + A2(t), t'=D(t) .

(3)
Using the ansatz (2}and the transformation (3) in (1), one
obtains
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iBQ Q Bpzp+2i p ztj + g +iBJ Q Bpyp+2i pygmy
+

2 Qyy + VB

C) . Cz
=iBQ B—ztz, g+iBDQ, , +iB —x + A i g„.+iB —y + Az 1(, , (4)

1 z

where various notations are the same as Ray's [9],except that A, , C,. (i = 1,2) are now introduced corresponding to two
space dimensions, thus increasing the number of TD arbitrary functions. Since we wish to retain [9] the form invari-
ance of the Schrodinger equation (1) under the transformation (3), we compare the coefficients of g„and f, on either
side of Eq. (4), implying two expressions for the arbitrary function P(x,y, t):

1 C) . 1 Cz
x —A i C,x+e,(y, t ); (() =— y —A2Czy+02(x, i),

1 z

where the arbitrary functions of integration o, and 02 can be conveniently chosen to provide a unique expression for (ti

as

1 Ci z
C

p(x, y, t)= — x + y —(A, C,x+A2Czy) .
2 C) Cz

Further use of this expression in (4) and subsequent rearrangement of various terms lead to

1(„„+ g + VCi C2+ —C2Cix +—CiCzy —Ci C2(2A i Ci+ A i Ci )x —Ci C2(2A2C2+2A2C2)y
2 2

——(C, C2+C, C2)+ —C, C2(A iC, +A 2C2) i C—, C—
2 P=iDC, C2$, .

J

To ensure this equation again represents the standard
TDSE in terms of primed space-tiine coordinates (i.e., the
form of the SE remains invariant) along with a modified
real potential V ', we should have

I

If, in addition, Ai(t)=0, then one can arrive at the re-
sults of Burgan et al. [7]. In the next section, we use
these results to solve the TDSE for a shifted rotating
harmonic-oscillator potential in two dimensions.

Cz a=1, DCC =1,
Cz C)

' ' ' 8
which, in turn, imply, say,

C, (t)=C2(t)=C(r),

and subsequently

C1Cz+ C& C

2C) Cz

(7a)

III, EXAMPLE; V(x p t) =b2p& + bppp

+b)px+bp)y+bp

Here we apply the results obtained in Sec. II to the po-
tential

V(x,y, t)=b20(r)x +b02(t)y

t'=D(t)= jdr C'( r)

B (t)=1/C(t),

it(x, y, t)= ——(x +y )
—C(A, x+ Azy) .

(7b)

(7c)

(7d)

+bi0(r)x+b0i(r)y+b0(r) (10}

which is a case of a shifted rotating harmonic oscillator
in two dimensions. Using the inverse of the transforma-
tion (3) in (10), the potential V'(x', y', t') can be comput-
ed from (9) as

V'=C3(b20C+ zi C)x'2+C3(b02C+ zi C }y'2

Note the difference in the expression for B(t) as com-
pared to that of Ray [9]. Finally, Eq. (6) reduces to the
form

—
—,'(g„, +itz ~ ~ )+ V'(x', y', t')/=i itz,

+C [(b,0
—A i C —2A, C) —2A i(b20C+ —,

' C)]x'

+C [(b0, —A2C —2A2C)

—2A2(biizC+ —,
' C )]y'+F(t' },

where the potential V' is now given by

V'= VC + —,'CC(x +y ) —C ( A i C+2A i C)x

—C (A2C+2A2C)y+ —,'C (A, + A 2) . (9)

By setting y =0 and Az(t)=0 in (3) and (9), one can
easily recover the results of Ref. [9] for one dimension. +b0C + —,'C (A, +

A 2) . (12)

with

F(t')= A, C [A, (b20C+ —,'C) —(b,0
—A, C —2A, C)]

+ A, C [ Az(b02C+ —,'C) —(b0, —A2C —2A2C)]
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For the arbitrary functions C(t), A&(t), and Az(t), we
make the following choices: Let C(t) satisfy

with t ' given by (7b). Here c „are constants determined
from

k) .. k2
C +2b 20 C C +2b 02 C (13a)

c „=(u (x')u„(y'), 1i,(x',y', 0)),

and A, and A,„are given by
where k, and k2 are arbitrary constants related to the po-
tential parameters b20 and b02 by =(m+ —,')Qk„ A,„=(n+—,

' }Qkz . (20)

2(boo —bo»C'=ki —kz . (13b) Finally, the exact solution to Eq. (1) for the potential (10)
can be written as

In other words, Eq. (13b) determines the function C(t)
in terms of the potential parameters and the constants k

&

and k2. Note that for the case when b2o=bp2, one needs
only one arbitrary constant k (=k, =kz ). For setting the
arbitrary functions A&(t) and Az(t), we equate to zero
the coefficients of x' and y' in Eq. (11),leading to

1 . (f')
'P(x, y, t) =—exp i — F(v )dr

Xexp [C(x'+y ) —C'( A ~x+ A~y )]

2A)C A)k)
A)+ +

C4
bio

(14a)
X g g exp i ( A— +A, ,„)f z

dt

m n
C2

2A2C A2k2 bp
A + + =0

2 C C4
(14b) Xu (x/C+A, )u„(y/C+A~),

(21)
As a result of using Eqs. (13) and (14) in expression (11)
for V', the latter takes the form

V'= —,'k)x'~+ —,'k~y'~+F(t'), (15)

with

F(t')= —
—,'k, A i

—
—,'k~A~+ —,'C (A, + A q)+boC

The TDSE to be solved now becomes

—
—,'(1i,„.„+g, }+—,'(k, x' +k~y' )f,=i'„, (16)

where g& is obtained from f through a phase change [9]
as

I

P( x', y't')= exp —J F(r)dr g, (x',y', t') . (17)

For k&, kz )0, Eq. (16) can be realized as a TIDSE for a
TID harmonic-oscillator potential in two dimensions. As
a special case, the free-particle problem in two dimen-
sions corresponding to k, =k2 =0 can be discussed in the
same way as Hartley and Ray [8].

As in Ref. [9], if we define the operator
r

I'= —— + +—k, x' +—kzy', (l8)
a' a'
x' c)y'

where C(t), A, (t), A~(t), and F(t), respectively, can be
obtained from Eqs. (13b), (14a), (14b), and (12). The func-
tions u and u„ in (21) turn out to be the Hermite poly-
nomials computed at the points (x /C+ A, ) and
(y /C+ A z ), respectively.

It may be mentioned that if we have a coupling term of
the type b»xy present in the potential (10), then a term of
the type C b»x'y' also appears finally in the potential V'

[cf. Eq. (15)] and hence does not allow the TDSE to
reduce to a TID form like (16) even after carrying out the
phase transformation (17). No doubt the transformations
(2), (3), and (17) have converted the TD problem to a TID
one, but only for a limited class of harmonic potentials.
For example, if the inverse harmonic and/or coupling
terms are also present in the harmonic oscillator, then the
present method fails. Also, the method does not allow
the inclusion of anharmonic terms in the potential. %e
highlight some of these difhculties encountered with the
method in the next section.

IV. CASK OF ANHARMONIC POTKNTIAI. S

In this section, we demonstrate the limitations of the
present method with reference to anharmonic potentials.
In particular, we consider the solution to the TDSE for a
potential with quartic type anharmonicity, namely

V(x,y, t}=b4ox'+bo4y'+b»x'y'+bpox +bogy'
then the general solution to Eq. (16) can be written as

+b»xy +b ipx +bpiy +&0 (22)
—i(k + A.„)f,'

P,(x',y', t')= g g c „e " u (x')u„(y'),
m =On =0

(19)

where bp and the b, 's are functions of t. In this case the
potential V' from (9), after using the inverse of transfor-
mation (3), becomes
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V ~ )=C (b4px' +bp4V' +b2zx'V' 4—b4pA, x' 4—bp4AzV' —2bzzA, x'V' —2b22A2x' V')

+C (4C b~2A, A2+b„)x'V'+C (6C b4pA, +C b2~A2+Cb2p+ —,'C)x'

+C (6C bp4A2+C b2z A &+Cbpz+ —,'C)V' —C (2C b~p A &+2C b22 A, A22+Cb» Az

+2Cb2pA)+ A )C+CA )+2A, C b—)p)x' C—(2C bp4Aq+2C b22A )A2+Cb)) A )+2CbpqA2

+CA2+CA2+2A2C —
bp, )V'+C [C b4pA, +C bp4A2+C b22 A, A2+Cb„A, A2

+ A2(Cb2p+ —,'C)+ A p(Cbp2+ —,'C)+ A, (CA t+2A, C b,p—)

+ A2( A2C+2A2C bp1)+T~C( A ]+A ~) Cb)) A) A~]+bpC

(23)

In dealing with this form (or for that matter any other
anharmonic form in general), the difficulties in reducing
Eq. (8) to a TID form of the type (16) can be outlined as
follows: Since the potential now necessarily contains
anharmonic terms, it is not possible to reduce the TDSE
with the potential (23) to a TIDSE with a harmonic po-
tential unless the transformation (3) in space variables be-
comes nonlinear. This will, however, lead to other com-
plications in applying the present method. Alternatively,
one can assume the coefficients of the anharmonic terms
in V(x,V, t) to be TID and the time dependence mainly
appears in the quadratic and linear terms only. In this
case, however, one will need the exact solution to the
TIDSE with the corresponding anharmonic potential,
and such a solution is not often available in the literature.
Although the exact solution to TIDSE for a limited class
of anharmonic potentials is now known [12],the difficulty
in applying the present method to these cases still
remains. This is mainly because these anharmonic poten-
tials are found to admit an exact normalizable solution,
provided they necessarily contain inverse harmonic terms
and/or cross-terms. In such a situation the present
method for the available exactly solvable anharmonic po-
tentials does not remain as transparent as for the har-
monic potentials.

V. DISCUSSION AND SUMMARY

The group-transformation method of Burgan et al. [7]
as generalized by Ray [9] is applied to obtain an exact an-

alytic solution to the TDSE in two dimensions. The case
of the shifted rotating TD harmonic oscillator is dis-

I

cussed in detail as an example. As far as the connection
of the solution with TD invariants for this case is con-
cerned, it can be deduced in the same way as Ray [9] for
the one-dimensional case. An invariant has also been re-
cently constructed [13] for a particular type of shifted ro-
tating TD harmonic oscillator i.e., with bp2=b2p ~ It is
noticed that, while the present method works successfully
for TD harmonic potentials in one or higher dimensions,
it exhibits limitations, not only for TD anharmonic po-
tentials, but also for other varying forms of the harmonic
potentials involving inverse harmonic and/or coupling
terms. This latter class of potentials has been studied
[14] recently at the classical level.

The difficulties in obtaining exact solutions for the
anharmonic potentials within the framework of the
present method are explicitly pointed out in Sec. IV. As
far as the extension of the present method to three-
dimensional TD systems is concerned, it can easily be
carried out in a straightforward manner. But, again, re-
stricted class of TD harmonic potentials, as in two di-
mensions, can be studied. For the case of anharmonic
potentials, it becomes desirable to look for other alterna-
tive methods to solve the problem.

ACKNOWLEDGMENTS

The author wishes to thank Dr. D. Parashar for several
helpful discussions. University Grants Commission, In-
dia, is gratefully acknowledged for providing the
Research Scientist Scheme under which the present work
has been carried out.

[1]G. Dattoli, A. Reniere, A. Torre, and J. C. Gallardo,
Phys. Rev. A 35, 4175 (1987); F. Ciocci, G. Dattoli, A.
Reniere, and A. Torre, Phys. Rep. 141, 1 (1986);J. M. Cer-
vero and J. D. Lejarreta, Quant. Opt. 2, 333 (1990).

[2] B. Gazdy and D. A. Micha, J. Chem. Phys. 82, 4926
(1985);I. Benjamin, ibid. 85, 1511 (1986).

[3] M. Lutzky, Phys. Lett. A 68, 3 (1978).
[4] J. R. Ray and J. L. Reid, J.Math. Phys. 20, 2054 (1979).
[5] F. Wolf and H. J. Korsch, Phys. Rev. A 37, 1934 (1988);

F. M. Fernandez, J. Math. Phys. 30, 1522 (1989).
[6] H. R. Lewis, Jr. and W. B. Riesenfeld, J. Math Phys. 10,

1458 (1969); C. J. Eliezer AND A. Gray, SIAM J. Appl.
Math. 30, 463 (1976); S. C. Mishra, Ph.D. thesis, Delhi
University, 1985 (unpublished) ~

[7] J. R. Burgan, M. R. Feix, E. Figalkow, and A. Munier,

Phys. Lett. A 74, 11 (1979).
[8] J. G. Hartley and J. R. Ray, Phys. Rev. A 24, 2873 (1981);

D. C. Khandekar and S. V. Lawande, J. Math. Phys. 20,
1870 (1979).

[9]J. R. Ray, Phys. Rev. A 26, 729 (1982).
[10]J. R. Ray and J. L. Reid, Phys. Lett. A 71, 317 (1979);J. L.

Reid and J. R. Ray, J. Phys. A 15, 2751 (1982); C.
Athorne, Phys. Lett. A 159, 375 (1991).

[11]R. S. Kaushal and H. J. Korsch, J. Math. Phys. 22, 1904
(1981).

[12]R. S. Kaushal, Ann. Phys. (N.Y.) 206, 90 (1991).
[13]R. S. Kaushal, D. Parashar, and S. C. Mishra (unpub-

lished).
[14]R. S. Kaushal and D. Parashar, Mod. Phys. Lett. A 6,

2887 (1991).


