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Cone emission from laser-pumped two-level atoms. II. Analytical model studies
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We establish a mechanism, which supports Cherenkov-type radiation, as a source of cone emission.
This can be considered as an additional mechanism to the previously discussed four-wave mixing (4WM)
and initial encoding and follow-up refraction effects. The radiation source is provided by spontaneous
emission of the driven atoms at the frequencies of interest. Due to the medium dispersion, the pump
field propagates faster than the phase velocity of the 6eld that is generated at the Rabi sideband at lower
frequency. Cherenkov radiation is then possible if the source has a long correlation length, which is
indeed the case despite the random nature of spontaneous emission. Coherent superposition of the
source for the lower-frequency 6eld is in an off-axis direction given by the Cherenkov radiation condi-
tion. Differences between 4WM and Cherenkov-type models are consequently resolved.

PACS number(s): 42.50.Lc, 42.65.—k
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In spite of the fact that cone emission was first ob-
served over a decade ago [1,2] there is still no generally
accepted theory of the efFect. In the present paper we de-
tail a mechanism [3] which supports Cherenkov-type ra-
diation [4] due to vacuum fiuctuations as a source of cone
emission. This can be considered as an additional mecha-
nism to the previously discussed four-wave mixing
(4WM) [5], and initial encoding and follow-up refraction
effects [6,7]. Due to the medium dispersion the pump
field propagates faster than the phase velocity of the field
which is generated at the lower-frequency Rabi sideband.
Coherent superposition of the radiation from this source
then forms the cone. The source of this radiation has
been identified in the preceding paper [8] (hereafter re-
ferred to as paper I), where it is shown to be provided by
spontaneous emission of the driven atoms at the frequen-
cies of interest. Cherenkov radiation is then possible if
the source has a long correlation length (contrary to Val-
ley et al. [9], where such a source is assumed to be 5
correlated}, which is indeed the case despite the random
nature of spontaneous emission. This radiation source
enters into the equations for the fields in the same form as
the source generated by four-wave mixing and therefore
might be considered as a "spontaneous four-wave mix-
ing, ' since the photons emitted in the Rabi sidebands are
correlated. However, in general, in more complicated
systems (e.g. , a three-level A-type system) or when col-
lisions are present, such a source exists even in the ab-
sence of 4WM.

In paper I [8], we formulated the theoretical treatment
of the problem. %'e treated the strong pump field classi-
cally and found that its equations of propagation coupled
to the steady-state equations of the atomic operators are
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All notation and symbols are the same as in paper I,
except here we have neglected the + indexing of copro-
pagating sources because we only discuss one-way propa-
gation. The dependence on ~ has also been suppressed,
since we only discuss the steady-state limit (r~ 00 ). The
noise terms in the above are proven to have a long coher-
ence length compared with a typical cell length employed
in most experiments, and we have

(P, (r)P, (r')) =g (co, )~2),'+'~ D, (r, r'),
&P4t(r)P4(r')) =g'(~4)ln4' 'I'D, (r, r'),

(1.3
(p, (r)p4(r') ) =g(co, )g(co4)2),'+'2)4' 'D, (r, r'),
(P4(r)P, (r') ) =g(co, )g(co4}(2)',+'2)', '}*D,(r, r'),

These equations allo~ us to solve for the pump field
first, and then find the steady-state values of the atomic
operators. To first order in the generated fields, we have
the following steady-state propagation operator equations
for the slowly varying copropagating quantum fields of
interest:
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and

(I3,(r)P,(r')) =g'(co, )I2),'+ 'I'D, (r, r'),

(P, (r)j3, (r') ) =g (~, )Il),' 'I D4(r, r'),
1.4)

(P~(r)P, (r') ) =g(co, )g(co~}2),' 'Xl~+ D4(r, r'),

(P, (r)P&(r') ) =g(~, )g(co4)(2),' 'X)4+') D4(r, r') .

Q', 'pz = ' f'f ', e
—(ia, /2k, ) z —z')

—i [k, ~ p
—p'

~
/2(z —z') ]Xe

propagation direction (note that the imaginary part will
contribute to the gain or loss of the field). This equation
can then be solved (see Appendix A), and the solution is

X exp
2[ik, (z —z')+k, a ]

Under the paraxial approximation (PA),

Id, il' ~' 1D.(r, r') =-
A' (2~c)3 rJ lkJ(z —z')+ki2a2

(1.5)

XP, (p', z ')dz 'd p' (2.2)

with the boundary condition Q,' '(p', 0)=0. As defined
(+ —)in paper I, 0,'+ ' describes the generated quantum fields,

consequently this boundary condition rejects the fact
that 0,' ' is zero at the input face. However, the total
field at this frequency is, as required, Q,' '+Q,'„,', [from
Eq. (6.44) in paper I], therefore

In this paper we point out that a Cherenkov-type emis-
sion mechanism not considered by Valley et al. [9]
should also be taken into account when discussing cone
emission. This effect relates to the initiation and genera-
tion of the frequency-shifted beams and is intrinsically
quantum in nature. It comes from the spatial correlation
at different positions of the polarization of the medium
generated by spontaneous emission at the relevant fre-
quencies as we described in paper I. In that paper we
showed, by explicit calculation, that due to the interac-
tion with the electromagnetic field, the polarization of the
medium has a large correlation length, contrary to the 6-
correlated assumption of Valley et al. [9]. Our results
show that the source, i.e., the P in the above equations,
although quantum in nature, is effectively a coherent
source. This permits us to give a clear physical picture of
the cone emission and also unifies most of the previous
simple model studies. The differences between 4WM and
Cherenkov-type radiation models can then be clearly
defined.

This paper is organized as follows. In Sec. II model
studies without 4WM are described to elucidate the
significance of the long-coherence-length quantum noise
and a physical picture of Cherenkov-type cone emission
is presented. In Sec. III model studies are conducted to
explore the role played by 4WM. In Sec. IV we compare
the present results with previous models on cone emis-
sion. Conclusions are presented in Sec. V.

II. MODEL STUDIES WITHOUT 4WM

In most of the cases, we are not interested in the inten-
sity at the exit window of the medium, instead we observe
the intensity in the far-field limit. We also assume that
the field propagates to the far field from the exit window
according to the Huygens principle [10],then

QI '(p, z)- f" IR—p, Le,I—
XQ', '(p L)e ' dp, , (2.4)

where A is the area of the cell exit window (A ' being the
cross section inside the cell). The geometry gives (see
Fig. 1)

R=(Z+L)e, +pe (2.5)

We are only interested in the region where Z ))L and
Z ))p', then

and
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We obtain

[Q,' '(p, z )+Q,' „,',(p, z ), Q', + '(p', z') +Q,'„,',(p', z') ]%0 .

(2.3}

To gain some insight into the solution of Eqs. (1.2), we
first study them perturbatively. Neglecting the mixin~
with the wave Q4, we can write the equation for Q,

~ ~ A
(

as

V T 2ik, —Q,' '(p, z) = —a, Q', '(p, z)+P, (p,z),' az

(2.1)
~

( )which describes the generation of 0,' ' field via y' ' in-
duced by the pump (i.e., the a, coefficient in the above
equation). We take a, to be a real constant because we
are interested in the phase which determines the spatial FIG. 1. Far-field geometry.
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Now we can transform to the dimensionless coordinates

z ~zL, Z ~ZL, p —+pp0,

where L is the length of the cell, and p0 is the Gaussian waist of the pump beam.
We also define the following:

2L 2L a,L
2

=
2 (Fresnel number), (T, =

2k,

(2.9)

(2.10)

With the change of variable l —z'~z', we obtain

(2.1 1)

with

—i(ip —
pi~ /V, Z) i 1 —i(x,

' zi(~pi ——pi) /&, z')~

A 0 A'Z
(2.12)

The intensity distribution in the transverse direction in the far field is then given by

I,(p, Z)- (0,' '(P, Z)Q,'+'(P, Z) )
—i(IP —Pi) /P, Z)+i(~P —

P2~ /P, Z)
dpidp2

xf
o z&zz

—
&(Ip&

—p&I~/P, z
&

)+&(lp —
p2l /P, zz)X

A, A,
e 'dpldp2(p, (p),zl )P, (pz, z2) (2.13)

P, (p, z)=e ~P, (p, z) . (2.14)

We now perform model studies to determine how the
cones are generated.

Here ( ) represents the quantum expectation value.
The source is present only in the region illuminated by

the pump, and therefore has finite transverse dimension,
which is governed by the prefactors $1—' in the P due to
w'(r) and &z)(r), etc. They are determined by the shape
of the transverse pump field. We assume that in the self-
trapped filaments, the transverse shape is Gaussian.
Then we can put

exponential in Eq. (1.5) will be small, and an adequate ap-
proximation close to the axis will be

4 ld2)l' ~2 1
D =—

& (2irc) f, ik, L(z —z')+k, a

which can be further approximated by

(P, (p,z)P, (p', z') ) = const,

(2.15)

(2.16)

for lz —z'l & k,po/L, which is the (scaled) Rayleigh
length. This approximation will be more fully tested nu-
merically. Thus we first assume it to be a coherent source

A. Coherent source P, (p, z)= const (2. 17)

The correlation function under the PA is given in Eq.
(1.5). For a long sample whose transverse dimension is
determined by po, we would expect the source P, to be
present only along this filament. The coarse-graining ra-
dius a can be of the same order of magnitude as the waist
p0 of the pump beam in the self-focusing medium. For a
relatively long cell, we would expect contributions from
all along the filament, consequently the argument in the

—ia z' —
&(Ip&

—
p&Ii/&X —,e 'e

0 A'Z
I2

Xe P dz'dp', , (2.18)

independent of p and z provided lz —z'l & k,p02/L.
We can work with the field directly, then Eq. (2.12)

reduces to
—i(l —

I /v z)
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since Z ))z' E [0, 1] (see Appendix B). We obtain

n ( z)-e'p, -e e (2.19)

where

(2.20)

When g= mod(m, 0), we have series of maxima. The
first maximum is at g =0. Therefore the angular distribu-
tion of radiation has the form of a cone with the cone an-

gle (see Fig. 2),

8, = =+a, V, —=+a, /k, =+2(n, —1) . (2.21)
ppo po

B. White-noise source

Here n, (co, ) is the phenomenological index of refraction
of the s wave; the index of refraction at the frequency of
the pump field has been taken to be 1. We will compare
this simple formula with various other models in Sec. III.
(Of course the intensity also contains a Gaussian prefac-
tor which will give the overall amplitude of the profile.
In fact, the intensity resulting from Eq. (2.15) contains
factors associated with ~z

—z' (k/po/L from the z and z'

integrals which gives a prefactor of approximately Lk po
on axis. The intensity is modulated by the diffraction
pattern associated with the exit aperture of area 3 =~pp,
which gives the first minimum at Hd =1/(k, po). Of
course, we require 0, (Od for observability of the cone. )

The intensity does not depend on the transverse vari-
ables, which indicates that the angular distribution is flat
(apart from the overall modulation due to the diffraction
pattern associated with the exit source of area 3 =mpo).
This is of course due to the oversimplification of this
model calculation. However, we emphasize that Eq.
(2.22) is equivalent to the initiation of the noise proposed
by Valley et al. [9]. It illustrates that the cone obtained
in case II A is due to the coherence of the dipole polariza-
tion throughout the medium.

A different approximation has also been made to e. As
is often valid in optical fibers, we put a(p)=ao(1 —

p ).
The field equation can still be solved for the 5-correlated
case as in Eq. (2.22), but again no cone structure is found.

C. General partially coherent source

To obtain an understanding of the effect of the coher-
ence length, we treat the case of a partially coherent
source. We emphasize, however, that case II A is actual-
ly the physically relevant approximate result for the
problem under consideration in this paper. We then take

We have demonstrated numerically that in the far field
a conical distribution is a generic feature. To simplify
analytical calculations, we assume Eq. (2.24) is factoriz-
able into transverse and longitudinal directions; then we
have

We now assume that P, is a 5-correlated incoherent
source. This is generally not applicable for the realistic
case, and we discuss it here only for comparison. Then
with

(2.22)

we obtain (Appendix C)

(P, (p, z)P, t(p', z')) —e e ~l

' ', (2.25)

with k~ and A.
~~

in units of po and L, respectively.
We obtain (Appendix D)

7r3V2Z
I, p, Z—

2(1+Z)
(2.23)

I, (p, Z)-AZ,

with

(2.26)

0.5— Xjo 2 PP e ' P'dP',
S

(2.27)

0.0
—2 0

,n(a b. units)

1 —i(a —
p /7 Z )(zl —z2) —(1/A~ )lzi

0 0

FIG. 2. Typical cross section of the cylindrical symmetric
far-field intensity distribution of the redshifted field due to a

noise source with long correlation length.

where J7 is a slowly varying function of Z and p. Chang-
ing the integration variables to z', and z' =z

&
—z', , we ob-

tain
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(2.28)

with $=2tan '(gA, ~~).

This expression indeed reduces to the previous two
cases when we put A, ~~~ oo for a coherent source [Eq.
(2.16)], and A, ~~~O for a white-noise source [Eq. (2.22)],
respectively.

The cone will appear around rl+P(rl)=0. As g~0,
P(q )~0, and this will give

8, =+2(n, —1), (2.29}

III. MODEL STUDIES WITH 4WM

which is the same as previously obtained. In general we

expect cones, but their contrast against the background—1/A.
(Idecays rapidly (roughly as e "). For the completely

coherent source (A, ~ oo), the contrast of the cone is

largest. In Fig. 3 we have plotted the far-field intensity
distribution Eq. (2.26) versus correlation length A,

~~,
with

the Z as given by Eq. (2.28), and the overall Gaussian
profile given by % as in Eq. (2.19), which corresponds to
gg~ 00 .

Z[O(z}]=O(q)=f "e ~O(z}dz,
0

V[0(p))=O(k~)= f e ' O(p)dp,2'
X[SO(p,z)] =0(k~, q)

f "e ~'dz f e'"''
O(p, z)dpdz,

27T 0

(3.1}
A( ) A(+) A Af

where 0 represents any one of Q, , Q4, P„or P4.
Again take a„a4, K,*, and K4 as real constants. With the
appropriate boundary conditions, we get the following
algebraic equations:

( 2ik,—q —k j )Q', '(k~, q)

= —a, Q,' '(kj, q)+@404+'(kj, q)+P, (k~, q),
(3.2)

(2ik4q —k~ )Q4+ (kj, q )

= —a404+'(kj, q)+a,'0,' '(kj, q)+P4(k~, q) .

To examine the differences due to 4WM in more detail,
we consider a simple model study including the 4WM
perturbatively. The coupled equations (1.2) can be solved
by combined Fourier transform (9) of the transverse
coordinates (p) and Laplace transformation (L) of the
longitudinal coordinate (z),

The solution is

Q,' '(k„q)

Q4+ '( k~, q )

P, (kg, q)
=M

—2ik, q
—kz+a,

2ik4q —k ~+a4K~

2ik4q —k~+a4
1

det(M) —2ik, q kx+aS

Here M ' is the inverse of M, and

(3.3)

(3.4)

(3.5)

C3.
1 O where

O. 1

0 01—5.0 —2 5 0 0 2 5~(arb. units)
5 0

Ks K4
det(M)=4k, k4 q +q(q, +q4)+q, q4

s 4

(3.6)

FIG. 3. The dependence of the far-field intensity distribution
on the correlation length of the noise source. with
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—k~+n,
q =I

S

—k~+o:4
(3.7)

The above solution is, in general, too complicated to
invert into real space. In order to gain an understanding
of the initiation process, we look at the weak-coupling
limit, defined by

II,' '(k~, q) = [( 2ik—4q
—k~ —cr4 )P, (k~, q )

det M

+a@4(k~,q)] . (3.8}

We see in general that the 0,,' ' field comes from both
source terms due to 4WM. It is given explicitly by

Then we obtain

4k, k4(q+q, )(q+q„) '

(3.10)

(3.11)

To avoid complications due to the presence of both the
Cherenkov-type source P, and the 4WM source term P4
for 0,' ' field, we will put P, =0, and focus on the 4WM
source P4. In fact the first term in Eq. (3.8) will repro-
duce all the results discussed in Sec. II. Then

1

(q+q, )(q+q4)

—
q, z —q4z

e ' —e

q4
—

q,
(3.12)

Now the inverse of the Laplace transform (X ') can
be carried out explicitly as [11]

'(k~, q) = ~t34(q, k~) .
det M from which we get for the field3.9

—
q, (z —z') —q4(z —z')

0,' '(p z)= fdz'f e ' dk~
q4

—
q,

In the paraxial limit, we have ~a, ~ ))q, and ~a4 ~
))q4. Then

f e ' dp'P4(p', z') . (3.13)

q4
—

q, =—i
—k +a* —k +a

2k4 2k,

a4= —i + = const .
2k4 2k,

(3.14)

We therefore get the following after the integration over the angle of k~ relative to p —p':

0,' '(p, z) — f dz' f dp' f (e ' —e ' )Jo(k~~p —p'~ )kzdk&P&(p', z') . (3.15}

The integration over k~ is of exactly the same form as Eq. (A8), and appropriate substitution will give us the follow-

ing solution:

QI '(p, z) =Q,,', '(p, z)+A, ~ (p, z), (3.16)

where (for z ( 1)

a, (z —z') k, ~p
—p'~

0,', '(p, z)- f dz' f dp', k, exp i i—,
—P~(p', z'),

A' Z Z 2k, 2z —z'

a4 (z —z') k4 ~p
—p'~

0,'z '(p, z) — dz' dp', k4 exp i +i, P4(p', z') .
A' Z Z 2k4 2(z —z')

(3.17)

We can repeat the same procedure as employed in Sec. II
to calculate the far field using the Huygens principle. It
is obvious that only appropriate substitutions are needed
because of the exactly similar functional forms. We as-
sume, as in Eq. (2.14),

P~ (p, z)=e ~/34(p, z) . (3.18)

A. Coherent source

We will take the following for P4 as in Eq. (2.17),

P4 (p, z) = const . (3.19)

Then the far field can also be written as a sum of two
parts
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2 2—p /(v, z),„/2 sing/2
s& P~ se e 7

7l

( )
—p /( p z )2 —p( q /2) sing4/2

Q, z (p, Z)-k4e * e
94

with

(3.20)

4&M source are intimately connected in a two-level
atomic medium. The observations always contain both
efFects.

B. White-noise source

Now we can also study the white-noise case as in See.
II Eq. (2.22), with

a*I.4
4

sP

(9;Z)
(P (p, )P (p', ') ) -&( —')&(p —p') .

We obtain

I,(p, Z)=I„,+I, 2+I, i +I, i,

(3.22)

(3.23)

Under the approximation n4=1, the second term will

peak on axis, and gradually decrease in the transverse
direction. However, the erst term wi11 give a conical
structure exactly as in Eq. (2.19) but due to the presence
of the second term, the contrast of the cone will now be
reduced. Nevertheless, with the same coherent source,
the angle we obtain from the pure 4%M is the same as
from the pure Cherenkov radiation condition. In fact, as
explicitly given in Eqs. (1.3) and (1.4), the quantum noises

A$
P, and P4 are correlated and both have the long coher-
ence length. Thus the Cherenkov-type source and the

I

with

I,ii —(Q,'i '(p, Z)Q,'+, '(p, Z) ),
I,zz- (Q,'2 '(p, Z)Q,'z '(p, Z) ),
I,iz- (0,'i '(p, Z)Q,'2 '(p, Z) ),
I.z] =I.]2 & Q'2 '(p»)Q'i '(p») &

(3.24)

I,]] and I,zz will give terms similar to Eq. (2.23), which
are essentially Hat in the transverse direction. The in-
terference term is

I z(p Z)- f f exp i — +i dp]dpz f,z
e ' ' 'dz' fA A SZ .Z

. ~p]
—p]~'

Xexp —i
PzZ ]

. ~pz pi~ —2p",—i e 'dp) .
9zZ

(3.25)

The integration over p] can be performed first as in Eq. (B2), while the integration over pz will be the same except for
the substitution of —Z for Z. Then we obtain

] 1, i(a, z) +az—)z] 2, ,2 zi[p~P, zI /(P, Z) ] —2p]I.iz P Z)
0 A'Z1

/2) sin(ri, 4/'2)
2e

9s4
(3.26)

where

2p Vz
'9s4= aa +a4

(V, Z)

and similarly for I,2, .
The far-field intensity is then given by

sing, 4I, (p, Z)-m. 9, 1—

(3.27)

The first maximum will be roughly given by

with the corresponding angle at

g —
(

]
)

1 /2
[(

—+ 3 ~ )p ]
1/2

c —
ZL 2 ~ I

(3.30)

Is4
(3.28)

Under the approximation n4=1, we will see that the in-
terference terms will give a minimum corresponding to
I, (p, Z) =0 along transverse direction at

(3.29)

5n, + 3m.

2k, L,
(3.31)

As seen from Fig. 4, the distribution does not look like
a cone. However, the overall radial intensity variation,
due to the diffraction envelope of the exit window, could
make the resulting intensity distribution look something
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'I .0

0.5—

0.0
—2 0

p,'a-b. units)

FIG. 4. Cross section of the far-field distribution resulting
from the white-noise 4WM coupling. (The observed distribu-
tion is obtained when this result is multiplied by the diffraction
envelope due to the exit aperture. )

v&,t

FIG. 5. Pure Cherenkov radiation scheme. The dashed line

is the coherent-wave phase front.

the possible generated field and the group velocity of the
pump field, respectively. With 5n =0, the above can be
reduced to

hke a "cone," with the cone angle given by Eq. (3.32). In
most cases this "cone angle" is smaller than Eq. (2.21)
which has an additional &2 factor. Since Valley et al.
[9] used white noise in their calculations, we think this
could be one of the reasons that the computed cones they
obtained are about 20% smaller than the experimental
ones. As we showed earlier, the 6-correlated noise in the
E, field equation will not give a cone. However, as seen
from the above calculation, the 5-correlated noise in the

4WM
E4 field equation enters the equation for E thr h h

term, which effectively filters the white noise. This
becomes in some sense a colored-noise source for the E,
field, and the spatial phase matching then leads to a
modulation in the spatial intensity which under some cir-
cumstances has the appearance of a cone. We should
also stress that Valley et al. [9] also explicitly included
detailed transverse propagation effects which are known
to give rise to cones in their own right.

IV. COMPARISON WITH OTHER MODELS

Since its experimental observation more than a decade
ago, many theoretical and experimental works have dealt
with the phenomenon of cone emission [1—7,9, 11—20].
Some are highly numerical [9,12], with which we hope to
compare in a future publication. However, many of the
theoretical models are so simple that compact analytical
formulas have been given. We compare them with our
results in this section, and try to clarify some misunder-
standings. We will write n =n( c)u=1+5n =1
+An(co ).

The cone angle we obtain is

"p cup dn(tu)

n, n dc@
P

=+2(5n, 5n )—

=+25n, . (4.3)

8, =+2(n, +nz 2n )=—+25n, . (4.4)

Again under the same approximations n =n4=1, this
reduces to Eq. (4.1).

LeBerre-Rousseau, Ressayre, and Tallet [14] obtained
the same formula as Eq. (4.1) by a propagation study
based on the transient atomic response. Their perturba-
tive treatment for the field, when examined closely ca

e seen to be equivalent to a long-coherence-length
Cherenkov-type source.

Skinner and Kleiber [15] proposed a simple parametric
4WM m~&model. Two additional parametric components
were proposed to 4WM with the pump E and redshifted
E fi'elds. In such a process, if the fields involved are
plane waves, energy and linear momentum conservation
leads to

CO
—

CO& +CO
~ +602,

k, =k +k, +k2,
(4.5)

Th'his is consistent with our physical picture since our
long-coherence-length source is equivalent to the Cheren-
kov source of Ref. [4]. Essentially the same formula was
obtained by Plekhanov et al. [13]. They also studied the
propagation of the field, which they attributed to a
Cherenkov-type radiation, by requiring spatial phase
matching with respect to the longitudinal coordinates
they obtained,

0, =+2(n, —1)=+25n, .

Golub et al. [4] obtained a cone angle

g P
U h(cu, )

u s, ( cup )

(4.1)

(4.2)

where k(tu) =n(cu)rulc, with n(cu) being the refractive in-

dex at co. They assumed that the redshifted component is
the only one that will travel off axis (consequently linear
momentum is not conserved in the transverse direction).
With n( )c=u1 and n(co )=12, they obtained

5 w
according to the Cherenkov radiation condition (see Fsee ig.

), where u ph(cu, ) and us, (cup) are the phase velocity of

CO~
—

CO& +Cc)~+CO~,

n(co, )co, cosO, =n(co )cg

(4.6)
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With their assumption of 5n, = —5n and co, =co, the
above gives a cone angle

8, =2+5n, . (4.7)

8 =(8 +25n )' (4.8)

with 00 the internal angle within the trapped filaments
due to self-focusing or diffraction of the P, field itself. It
was assumed that inside the filaments, the index of refrac-
tion is 1 because of saturation. Again if further self-
focusing is neglected (corresponding to E, traveling al-

most along the axis in the filament) we may put 8&=0.
Then Eq. (4.8) reduces Eq. (4.1) (see Fig. 6).

However, a pure plane-wave 4WM of the Rabi side-
bands (see Fig. 7) would lead to

2'& —N +N4,

n(co, ) sin8, =n(co4) sin84,

2n(m )co =n(co, )co, cos8, +n(co~ko~cos8z,

which can be solved to give

71s COs

64= 0, ,
n 4CO4

1/2
2(5n, cu, +5n~co~ 25n ro )—

& ~s
n, co, +

n 4CO4

(4.9)

(4.10)

=+5n, +5n ~ 25n—
Here we have assumed that the pump field is propagating
along the axis, and the self-focusing effect has been
neglected. With 5n~ =0 and 5n~ =0, Eq. (4.9) gives

8,= +5n, , (4.11)

which is a factor of &2 smaller than Eq. (4.1). Similar
formulas from 4WM were obtained for the two-photon
pumped conical emission [16].

We can see that the pure plane-wave 4WM is not in
agreement with the other models. Because unjustified ap-

1+6n,

n, =1

This seems to be &2 too big; however, if they had taken
the same approximation n = 1, they would have obtained
the same result as Eq. (4.1).

Harter et al. [5] based their theory on the parametric
amplification of the Rabi sidebands. They observed that
the fields E and E4 fields are essentially trapped in the
self-focused filaments. Simple Snell's law refraction of
the redshifted field E, at the boundary of the trapped fila-
ments gives

FIG. 7. Simple plane-wave 4WM scheme.

proximations have been made, there is no reason to get
the right answer. Based on the plane-wave assumption,
4WM allows both generated fields to travel off-axis,
which is against experimental evidence. It also neglects
the filamentation due to self-focusing, which proves to be
crucial according to other model studies. Thus, although
there are many different interpretations of the cone, it ap-
pears that most give the same cone angle under the ap-
proxirnation n = 1 and n 4 = 1.

V. CONCLUSIONS

We have verified that a Cherenkov-type mechanism is
also responsible for cone emission. In particular, by vari-
ous model studies we are able to unify many of the previ-
ous simple models, and elucidate the important role of
the long-coherence-length quantum-noise source. The
long controversy between the 4WM and Cherenkov radi-
ation models is resolved. For a two-level atomic medium,
the Cherenkov-type and 4WM sources are in fact corre-
lated, and are intimately mixed in the final observables.
Thus in order to test the theory, different systems should
be employed. We are currently examining both theoreti-
cally and experimentally a three-level A-type system in
which the Cherenkov-type source but not the 4WM
source occurs.

Many experimental studies have employed pulsed exci-
tation. One important parameter that defines the steady-
state limit is yv. , with v. being the duration of the pulse,
and y

' the radiative decay time. If y~ ))1, we are ba-
sically in the steady state. If y~ —1, then the initial con-
dition terins (neglected in the present paper) will also
contribute, and complications due to amplified spontane-
ous emission (ASE) and superfiuorescence (SF) will arise.
These emissions at the pump frequency could be resolved
spectroscopically, and the physics for Cherenkov-type
emission will still be applicable for the generated fields at
a new frequency. Even if y~ ((1 we can still obtain
solutions if we include the initial conditions, since the de-
tuning b, (or Rabi frequency) is large, as long as b,r ))1,
the polarization will depend adiabatically on the inver-
sion, and we could again expect new frequency fields to
occur experimentally. In fact we should expect much the
same physics although with a time-dependent coefficient
due to the instantaneous inversion. On the other hand, if

(1, the physics will probably be dominated by ASE
or SF regimes, and then coherent counterpropagating
waves will also be possible.
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APPENDIX A

From Eq. (2.1) we have

nate p according to

Q(K~, Z)= f e ' Q(p, z)dp,2' A'

P(K~, Z)= f e ' P(p, z)dp .
2K A'

(A3)

Here 3' is the two-dimensional transverse plane across
the cell. 3' is the corresponding plane in momentum
space. We then get the following:

V'T 2ik—o A(p, z) = —aA(p, z)+P(p, z), (Al)
2i—ko Q(K~, Z ) =(K~—a)Q(K~, Z)+/3(K), z),0 a

the solution of which is

(A4)

k=koz+K,
K=Ki+K

(A2)

where the part of the wave number corresponding to the
slowly varying propagation is K. We Fourier transform
the above equation with respect to the transverse coordi-

i [(K —a)/2k ]z
A(K), z) =Q(Ki, 0)e

z i[(K& —a)/2ko](z —z')~+ e P Kg, z dz
0

(A5)

Applying the inverse Fourier transformation, we ob-
tain

with

I i [(K2 a)/2k ]

(2~)2 A

1 —iK& (p —p') z i[(K& —a)/2ko](z —z')

(2~)' 0
(A6)

f i [(K& —a)/2k0](z —z') i K&.(p —p') —(ia/2k0)(z —z') i(Kg /2k0)(z —z') —iK& ~p
—p'~ cos00 e l 0 e iA' 0 0"""'"' ''f " '"""'"' '

(2m)J (E ~p
—p'~)K dE

0
~ 74&+0~ —(i a/2k )(z —z') —i [k ~p

—p'~ /2(z —z')]
e 0 e 0

z —z'

where 8 is the angle between K1 and p
—p'. Thus we obtain the general solution of Eq. (Al)

() —iaz/2ko —i(ko p
—p'[ /2z) ~ikpz= e P P

(A7)

~ 7

ko z —(ia/2k0)(z —z') —i [k0 ~p
—p'~ /2(z —z')] ~+,e e ' P(p', z')dz'dp' .

2m 0 A' z —z' (A8)

APPENDIX B

From Eq. (2.18) we have

The integration over p' can be done first as
I

2ip&p& cosg&

2
—(]+i /7 z')p' +—i(lp, —p',

I

/9' z') z2, —(p&/2, ') 2

A' A' 0
p)dp)d 0)

2 2—i(p)/P, z') —(1+i/7 z')p' P2P1

9,Z

—i( jp —
p& ~

/2 Z) 1 1 —i a z' —i ( ~p&
—p'l

~
/2 z') 2

0, (p, Z) — e ' '
dp) —,e ' e ' ' ' e P dz'dp'1 .

A 0 A'Z
(B1)

e

1+
sz

—
i Pl /(i + 2,z')
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where 8) is the angle between p) and p', . Substituting into Eq. (Bl), we have

0, (p, Z)- f e
' ' ' 'dp) f '

e
' "exp[ —ip)/(i+7, z')]dz'.

A 0,+ l
(B3)

Changing the order of integration, we see that the p) integration can be explicitly performed as in Eq. (B2)

—i(~P —
Pl~ /P, Z) —iPl/(i+9', z')

e ' ' e ' ' dp, =
1 l

1 i P,z—' V, Z

—i(p /V, Z). e ' exp p

(V,Z) . , +
1 i,—z'

(B4)

We have then

)( Z)
—i(P /P, z) ) 77

0
exp —ia,z'— p

(&,Z)'
, +i 9,Z

1 i,z—'

dz' . (B5}

This integration cannot be done explicitly. However, the polynomial term

(B6)

is slowly varying, as Z ))z'E [0, 1]. Then we obtain

—i(p2/V, Z) 1

exp —ice,z'—
0

+
p

(&,Z)'
, +iP, z

1 i,z'—

dz', (B7)

where eE [0, 1]. For the terms in the exponent,

(O', Z) ))P Z,
1 i,z'—

and we can then approximate

(B8}

exp p
(O', Z)

, +iP, z
1 i,z'—

= exp p
(P,Z)'

1 i V,z'—
(1 i V, z') —

p= exp
(P,Z)' (B9)

Finally we obtain

) —ia, z' —()—iv, z')p /(v, z), —p /(P, z);( /p) 2 sin(ri/2)dz'=e ' e
0 7l

with

P p

(V,Z)

(B10)

(Bl 1)

APPENDIX C

From Eq. (2.22) we have

(P, (p, )P, (p', '))-&(p —p')&( —')

so that

(C 1)
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—(
—

) —(+)
1,(p, z)-(h, (p, z)n, (p, z) &

I p, —p' I'
I p&

—
p) I'

A A Vzz zz 0 z) A' Vz) 9z z

2pi
e dP1

(C2)

The integration over p) and pz can be done as in Eq. (B2). Thus

I 2

f
—&(lp —

p&l /g, z) —
~(lp&

—
p&I /P, z', )

A
dP1

1
l

9zZ 9 Z

exp

&2

. P . P1
l l
9zz 9 z

exp i

P P1

9z Z

1 1

9Z vz
(C3)

~(lp —
p2l &, i(lp2 —p)l /9 z) )

A

le 2 '2

exp i +i. p . p)

zZ 9zz )

exp —i

I 2

P P1

9zz 9 z)

Substituting into Eq. (C2), we obtain

I, (p, Z) —f, dz', f0Z1 A

2p). 2e ' dP',

dZ
1z' 1' 9Z+7,

773 72Z

2(1+z)
(C4)

APPENDIX D

From Eq. (2.25) we have

(
~ ~ g, , )

—()/3~))p —p') —()/3~~) z —z'
(D1)

We find

I, (p, Z) —f f exp i +i— dp)dpi'
Ip

—p) I' Ip
—p21'

s s

X
0 O Z1Z2

p~ P2 I ~i) Ip~
—

p2I
I2 I2 I I I I

sZ1 sZ2

(D2)

The integration over p, and pz is given in Eq. (C3). Substituting into Eq. (D2), we obtain
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I,(p, Z)- f f e * ' ' 'dzIdzz

I (1/k~)Ip~p2) —(1 /i~~)jz&
—z2X dp', dpze (1+z', /Z)(1+z2/Z)

p'—p'— .p& 2p&'p ( 1/ )p .P2 2pz'p (z2/Z)p
Xe ' ' exp —i exp i-

&,(Z+z', ) V, (Z+z,')

Since z,
' « Z, we can put 1+z,'/Z = 1, to obtain

s 1+ sz2 i p /9 Z )zi ' p 9sZ')z2 (1/X~l)lz~ —z

(D3)

p
2 pI 2 P 1

—2P 1 PX e ' ' exp —i~

~

A' A' PsZ

I2 I
.P2 2P2'P —() l&~)lpI —

p2I

S

(D4)

where
t I2 I

P1
—2P1.P

e ' ' exp —i
~

~

A' A' VsZ

P2 2P2 P
exp i

S

(1/~z) )p& pz~e dP1dP2,

1 1 —i(a —p /7 Z )(z' —z' ) —(1/A. )Jz' —z'
J I Idz'dz'

0 0 1 2

Changing the integration variable in R from p2 to p'=p2 —p'„we get

(D5)

—p", —
Ip +p', I' P) IP +P) I

e ' '
exp —i

A' .z
—2i (p p'IP, Z) —(1/A. &)p'

e 8 dP1dP (D6)

The integration over p', is the same as in Eq. (84), and gives

—p, —Ip'+p&l .P1 lP +P1~
A' PsZ

1 1 exp i dpI exp
2

1 — p' exp —i+ p'
$Z S

(D7)

On substitution back into Eq. (D6), we obtain

N —f exp — 1 — p' exp — i +l I2 . 1

A' V~Z 9~

"-p — 1- ' p'- + '
0 0 S S

'2
—2i(p p'IP Z) —(1/A, ~)p'p' e ' e ' dp'

z

2 —2&(pp' cos8'/2 Z) —(1/Ai)p'
p' e e ' p'd p'd 8'

'2i,2 . 1=2m. exp — 1 — p' — i+ p' Jo 2 e
0 S S S

—(1/~~ )p', )pdp (D8)
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