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Cone emission from laser-pumped two-level atoms. I. Quantum theory
of resonant light propagation
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This is the first of a series of papers on the theory of cone emission from a laser-pumped two-level
atomic medium. Starting from microscopic quantum theory for both the active medium and the field,
equations for the slowly varying macroscopic quantities are derived. In the steady-state limit, which ex-
perimentally corresponds to cw excitation, we find that the sources for the paraxial fields of interest have
a long coherence length despite the random nature of spontaneous emission. These radiation sources
enter into the equations for the fields in the same form as the source generated by four-wave mixing and
therefore may be considered as a "spontaneous four-wave mixing, " since the photons emitted in the Rabi
sidebands are correlated. This has far-reaching consequences on the physics of cone emission and also
sheds some new light on the fluoresence from strongly driven atomic systems.

PACS number(s): 42.50.Lc, 42.65.—k

I. INTRGDUCTION

Cone emission has been the subject of numerous exper-
iments and theoretical considerations in recent years
[1—8]. In general, to observe the phenomenon from two-
level atoms, the laser beam must be strong enough to
form filaments due to self-focusing, and the frequency of
the laser beam should be close to, but greater than, that
of the atomic resonance transition. The propagating
laser beam leads to emission of other beams separated in
frequency and angular distribution from the original
strong beam (see Fig. 1). Of particular interest is a beam
of lower frequency (redshifted component) which forms a
cone in the far-field intensity distribution. A blueshifted
beam is also formed. The blueshifted component is emit-
ted in the forward direction only, and not as a cone.

Several effects leading to cone emission have been dis-
cussed [2—8], see for example the recent paper by Valley
et al. [2], which is probably the most complete to date.
None of these papers provides a fully satisfactory descrip-
tion. It is believed that the process of formation and
propagation of the three beams is a complicated one and
involves several effects. Each process is simple in princi-
ple; however, in combination, they become quite eompli-
eated. It is questionable whether one simple effect can
adequately describe the complete process. Careful
theoretical analysis is therefore needed. The paper by

atomic vapor cell

FIT+. 1. Typical experimental geometry for observing cone
emission in the far field.

Valley et al. [2] ascribes cone emission to an interplay be-
tween four-wave mixing (4WM) and the effects of
diffractive spreading during propagation. However, oth-
er authors [3] have invoked Cherenkov emission to ex-
plain the phenomenon.

In a recent paper [9], we pointed out that a
Cherenkov-type emission, not considered by Valley et al.
[2], should also be taken into account when discussing
cone emission. This effect relates to the initiation and
generation of the frequency-shifted fields and is intrinsi-
cally quantum in nature. This effect comes from the spa-
tial correlation at different positions of the polarization of
the medium generated by spontaneous emission at the
relevant frequencies, and is in many ways analogous to a
spontaneous four-wave mixing (at least in the absence of
collisions) since the photons emitted in the Rabi side-
bands are correlated. We show by explicit calculation
that due to the interaction with the electromagnetic Geld,
the polarization of the medium has a large correlation
length, contrary to the 5-correlated assumption of Valley
et al. [2). The in-phase polarization of the medium acts
as a Cherenkov-type source of the two beams (blueshifted
and redshifted). Our results show that the source, al-
though quantum in nature, is closer to a coherent source
than to noise. This has far reaching consequences, espe-
cially for the angular distribution of the beams.

In this and the following paper, we provide more de-
tails on the theory we have developed [9]. In this first pa-
per, the formulation of the problem is presented, and the
propagation equation for the slowly varying field opera-
tors are derived. The important source terms coming
from the incoherent scattering of the pump light are
identified, which are shown to have a long coherence
length under the paraxial approximation. In the second
paper we analytically study various models to clarify the
physics of cone emission, and we compare and unify our
results with previous model studies. The 4%'M and the
Cherenkov-type radiation model controversy is resolved.
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We plan to implement numerical simulation schemes
based on our work in a future publication, and we will

then try to make comparisons with available experimen-
tal work.

This paper is organized as follows. We describe the
formulation of the problem in Sec. II, followed in Sec. III
by the derivation of the equations for the collective atom-
ic operators, which are the key to our formulation. In
Sec. IV we solve the atomic operator equations perturba-
tively to first order in the generated weak fields E, and

E4. Section V is devoted to a detailed discussion of the

long coherence length quantum noise. In Sec. VI the field

operator equations are derived, which have the macro-
scopic polarizations as their source terms. We summa-
rize in Sec. VII.

The system under consideration is modeled by the elec-
tromagnetic field and a medium formed by two-level
atoms. The electromagnetic field will be decomposed
into several components (see Fig. 2). One of the fields has

large intensity. It will be called the pump, or laser beam,
and will be treated as a classical quantity, and its interac-
tion with the medium is described semiclassically with all
the efFects due to propagation included. Under the
influence of the strong pump beam the medium responds
by forming two weak beams of different frequencies at the
Rabi sidebands. These two fields will be described by
quantum-mechanical field operators, E, and E4.

It is assumed that the medium has a pencil-like shape
with the Fresnel number close to one or smaller. This as-
sumption allows the description of the propagation of
waves in the framework of the paraxial approximation.
In order to treat correctly the spontaneous emission of
photons by the atoms forming the medium we also have
to include all the modes of the free electromagnetic field.
Although important features of the spontaneous genera-
tion of the fields may be obtained from simple two-mode
models [10], previous work has not considered cone for-
mation. The fields E, and E4 are smoothed macroscopic
fields with the appropriate quantum noise due to spon-
taneous emission as their source. Most of the work re-

garding cone emission has been done under the assump-
tion that the pump beam is self-focused and forms fila-

ments. This assumption is an important one since it al-

lows one to treat the pump field as truly strong, i.e., the

E4

resonant transition in the atoms is saturated. It has also
been shown by Harter et al. [4] that in a self-focused fila-

ment the Rabi frequency is of the order of the detuning.
In this paper we will not discuss the details of the self-

focusing, even though it is also included in the formula-
tion.

II. FORMULATION OF THE PROBLEM

The Hamiltonian of the system is given by

~atom +Hfield +Hint

with

N

= g g A'co„")o„"„',
j=1p=1

H„„~=g)rico„&i&„+ f (E~E„'+B~B~*)dr,
8~ v

In the above, greek letters are used to index the energy
levels, while roman letters denote the atoms. Level 2 is
the excited state, and level 1 is the ground state. N, is the
total number of atoms.

Hfi ld is the Hamiltonian for the total field, the first

term is that of the quantized fields, the operators && and

a& are the creation and annihilation operators of photons
in the mode A, . The second term is the energy of the
strong pump semiclassical field, and can be neglected.

The total field is

f=E~+ g fi, (2.2)

which consists of the classical pump field plus quantized
field. The pump field can be written as

N,

H = —~ —(o''0' ' ''+0 o" ' '')
p pj=1

N,

X X'@&i.oui~&xe ~A) o i2e
j=1

H„, is the Hamiltonian of the free two-level atoms
forming the medium. o„,(t=0)= ~)M)(v~ are the atomic
projection operators in the Heisenberg picture. They
form a Lie algebra,

(2.1)

J2&

Ep
E (r, t)= E'+'(r, t)e ' ' +E~ '(r, t)e

(2.3)

FIG. 2. The energy-level scheme of the two-level medium to-

gether with the sideband field distribution (i.e., the Mollow-

triplet spectrum).

which can have any polarization. However, since we are

using a two-level model system, we will take it to be or-

thogonal to the propagation direction, which we choose
to be along the z axis. As previously mentioned we will

treat the pump field classically. Thus E'+'=(E~ ')* are

not quantum operators. The quantum field part is

y f(+)+ y f(—
) (2.4)

with
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g f~+'(r, t)= gi(2mhcok/V)'~ ee
A.

(2.5)

Here Vis the quantization volume and A, =(k, e); k and e
are wave and polarization vectors, respectively. At t =0,
the quantum field reduces to the vacuum field, the evolu-
tion of which is described by the Heisenberg equation of
motion, and any deviation from the vacuum field is due
to the interaction with the medium. This quantized field
is, in principle, in all directions as is evident from the
above expansion. However, due to the particular
geometry, the modes that correspond to propagation
along the axis are more important. This will become
clearer when we introduce the effective coupling fields.

H;„,is the interaction Hamiltonian between the fields
and the atoms under the local field dipole approximation.
For the pump field part of 8;„,this amounts to using the
pump field at a particular location, with effects due to
propagation included. The rotating-wave approximation
(RWA) has also been used. The dipole moments of the
atoms are assumed to be the same irrespective of loca-
tion, such that d»=dz2=0 (no permanent dipole), and

d12 =d21 ~ The Rabi frequency for the pump field is
defined as

Qp=2d, ~ Ep '/fi,

and the coupling constant as

gk =(2irhcok/V)' d~) e/))t'.
A zero-temperature (T=O) approximation has also been
assumed for both the field and the medium.

In the above, we have separated the field into two
parts, the classical pump Geld and the quantum field.
The quantum field carries all the information about the
statistics of the vacuum fluctuations. The propagation of
the pump Geld is included because important features like
self-focusing, filamentation, etc. have to be taken into ac-
count in order to describe correctly the spatial charac-
teristics of the new frequency fields that are generated.
The generated quantum fields are introduced under a
general rotating-wave approximation (RWA) which gives
rise to three slowing varying components centered at
various frequencies (namely the pump frequency and the
two Rabi sidebands). In this Heisenberg picture formula-
tion, we will use the space-time-dependent operators to
represent the corresponding classical quantities. This is
in contrast to many other systems in quantum optics,
since we do not have a good optical cavity to clearly
define the modes for the Geld. Moreover, we are dealing
with one-way propagation, like a swept gain amplifier
[11],x-ray laser [12],superfiuorescence [13,14], or Raman
scattering [15]. The generated fields very often are not in
resonance with the cavity, and they propagate out of the
cell (no bouncing at the exit mirrors) after generation.
These space-time-dependent operators usually contain
many modes and therefore a single-mode theory will not
be applicable. Despite the considerable amount of work
on quantum optics in recent years, much work remains to
be done on the theory of propagation. Graham and Hak-
en [16] first considered the propagation problem in an in-
teresting series of papers with emphasis on the laser

theory. In the quantum theory of superfluorescence
[13,14], propagation is included and is found to be essen-
tial. Later propagation aspects have also been included
in a quantum theory that unifies Raman scattering [15].
More recently many new investigations on the quantum
theory of light propagation based on various approaches
have appeared [17—20]. Throughout this paper, we will
present our formulation and important findings for near-
resonant quantum light propagating in a two-level atomic
medium. In the companion paper, we find that cone
emission is a direct result of the quantum nature of the
light propagation.

III. ATOMIC OPERATORS EQUATIONS

All the operators obey Heisenberg equations of motion

dO i
[H, O—],dt A'

(3.1)

~~ 21 (() . p l(Ql f k z()~ (/)e w
dt

*e'e "'"w'"

()) ~ ()) ~ ~p —i (co t —k z( )= —iso o +iw e

dw'"
dt

(3.2)

( fI y ( t) l (
p

( k z( )
g ( t)II g I ( c!Pp t kp z

)
)p 12e 21 p e

+ X2(gk~Pi~. e ' '+gk~k&)&e

where normal (antinormal) ordering refers to putting the
dk (&k) to the rightmost, and 8& (it&) to the leftmost posi-
tion of an expression. This is important only when the
formal solutions for Qz and Bz are substituted into a
given expression. In general, the field operator && and
the atomic operator o„''act on different subspaces, and
therefore commute, i.e., [a&(t),&„'~'(t)]=0.However, the
formal solution for a& [see Eq. (3.4)] contains many
terms, and each of these individual terms does not corn-
mute with &„'„',thus we have to be consistent in using a
particular ordering after the substitution.

For the field operator, we have

d&g

dt
'~8k+ X g ko)2e

j=1
(3.3)

%e first write the above field equation in terms of the
integral equations,

where 0 is a generic operator in the Heisenberg picture.
For the atomic operators, with normal ordering for the

field operators, we have
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0

j (Xl) 0

In the above we have represented the fields by three
separate terms. The first term is the free vacuum field,
while the second term is the self-field (the radiated field of
this particular dipole), which in the normal-ordered case,
will be responsible for the radiative damping. The last
term contains a summation over all the other atoms; it is

l

—tk&-r(g (I) (I) + (I) + g(I)~~g e gW —S21 m 21 J (3.5)

where

the dipole field, which is the radiated field due to all the
other dipoles. In the atomic-operator equations, the ap-
propriate E field is that due to all the other atoms,
whereas the field equation describes the total field. The
difference gives the Lorenz-Lorentz corrections. When
we put the above expressions [Eq. (3.4)] into the equation
for the 1th atom, we have

s ' = —g ~g ~ I &'"(t')e ' dt'w "(t)
0

(3.6)

J(l) y e ' k z(g~ (p') '~)(~ (()(t)

We first work out the s2", term, with the Markov ap-
proximation (MA) [21] introduced as (see Appendix A)

(tI )=g(l)(t)e ~2)

We get

where

y= —+id(Cg2)) .——y

(3.8)

(3.9)

~(l)+ ~ (I)+f(l) (3 1P)

where the details are given in Appendix B. Thus we can
rewrite Eq. (3.2) as

g ~(l)
(I) y (I) p t(co t —k z()~ (I)

2 2
=Ia e( ——e —i e

The Lamb shift b, (co2)) is due to virtual processes, and
a renormalization procedure has to be employed to ob-
tain convergence of the integral. We will neglect this
shift in the following.

Similarly we have

( )g
' ). "I+ eggy( ) k ()

the m and f terms have not yet been treated. Now we in-
troduce the collective operators as [11,14]

Q„,(r)= g &„",5(r —r, ),
[I] Ic[I]

(3.12)

g E(rt)0„",'5lr —r()=E(r) g a„'„'5(r—r, )

[I] le[I] [I] Ic[l]

where [I] refers to the 1th coarse-graining volume ele-
ment centered around rl, which has a linear dimension
that is less than a wavelength A, of the pump field, but
large enough to contain at least one atom. This is the so-
called physically small, microscopically large coarse
graining. N[I] is the effective number density of atoms in
this volume element. With this definition, the collective
atomic operators are going to be dimensionless. Under
this collective variable description approximation, we will
limit the discussion to the density regime nA, «1, such
that we can neglect the near-field dipole-dipole interac-
tion and frequencies shifts, i.e., we do not distinguish be-
tween the field at the atom and the total field. This is
consistent with neglecting the Lorenz-Lorentz correction.
We also assume that the field and atomic operators
decorrelate when the field is determined by the far fields
of the other atoms. Then

+m, 2+f,2,(I) (I)

( I)8w w ( I)= —y(w —w())
dt

(3.1 1)

(() i( co —k z( ) ( () „

—i( ru t —k z( )

i
p 21e 21 p e

+ ~(()+f(l)

+m2) +f2(~ (I) (I)

~ ~(l)
~ (I) y (I) - P '~ ' ( (I)= —ice o' ——& +i e» '&

=E(r)Q„„(r).
According to Eq. (3.12), we have

1
Q21(r t ) X ~21(t)5(r r! )

[ I] I e [ I]

Q)2(r t ) y ~12(t)5(r rl )

[I] le[I]

Q(r, t)= g w'"(t)5(r —r(),
[I] IE[l]

(3.13)

(3.14)

We remind ourselves that up to this point we have
been dealing with one particular atom located at rI, and

dQ„(r,t)
dt

ct&
5(r —r, ) .

N[l] I~[I] dt
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The commutation relations for the new collective vari-
able description approximation atom variables take on
the following form [11]:

[Q21 (» Q21(r', )]= Q(r, & )5(r—r')Xr)

[Q21(r, ~ ), Q(r', ~ ) ]= Q„(r,t )5(r—r'),Xr

(3.15)

with the initial conditions at t =0 exactly the same as in
superfluorescence (SF) [12,13], since with ~(ll ) as the state
vector for the system, we have

()11 Q(r, 0)5(r—r')~%') = —(%~A'(r)5(r —r')~%), (3.16)

where 8'(r) is the total number density operator of the
atom, which is a conserved constant.

As indicated above, we evolved our system from a
Hamiltonian, thus the above commutation relations
should be conserved at all later times. Our collective
variable description approximation is consistent with this
so far. In the following, we will attempt to solve the sys-
tem under various other approximations, some of which
might violate these commutation relations. However, as
long as the errors are higher order than the terms we
keep, the physics involved should not be affected. In par-
ticular, when we adiabatically eliminate the atomic vari-
ables, we will be left with a Hilbert space that is spanned
by the field alone. Nevertheless, our important results do
not significantly violate these relations.

Depending on the preparation of the medium and also
the geometry, the time variable t is not necessarily the
most convenient natural choice of an independent vari-
able, as is the case here. Our medium has the shape of a
pencil with the pump propagating along the axis. Under
the approximation that the dispersion of the pump can be
neglected, we can easily see that depending on the loca-
tion of the atom along the axis, the natural choice of time
is the retarded local time r=t —z/c. It is with respect to
this local time that the dynamics of the atoms located at
different positions along the axis wi11 be the same. This is
a crucial point, for each individual atom the above choice
is as good as any other choice. However, after we intro-
duce the collective variable description approximation,
we have to deal with the atomic operator field variables
(we have let the coarse-grained spatial coordinates be-
come continuous). In order to specify these field-variable
envelopes, we have to use a time that is the same for all
the atoms. We will also neglect the linear dispersion of
the nonresonant atoms (background gas), which in prac-
tice, might also contribute. By choosing r=t —z/c [15],
rather than r=t —z/U(co), we are able to handle more
than one spectral component, and for a dilute medium
the nonlinear dispersion is accounted for via the polariza-
tion of the medium, so that the errors will be negligible.

As we mentioned earlier, the m terms (material field)
are proportional to the product of the dipole operators of
all the other atoms with the atomic operators of the one
of interest. It describes the interaction of the fields emit-

ted by all the other atoms with the particular atomic di-
pole. When we go to a collective variable description ap-
proximation, under the decorrelation approximation, the
volume average of the dipole operators of all the other
atoms outside of this particular element will be effectively
described by the electromagnetic field operators, the
spectral components of which, of course, will be deter-
mined by the dynamics of the medium (since this is the
radiation of the medium). The atomic dipole operators
due to atoms inside the same volume element will be
neglected as discussed earlier, thus m terms will give the
generated fields interacting with collective atomic opera-
tors. The exact form of the generated fields depends on
the detailed dynamics of the atomic system, and also on
the geometry when the slowly varying macroscopic quan-
tities are introduced.

If we look at this from a different perspective, by
studying the dynamics of a single atom, we can easily find
the appropriate field operators to introduce. For a single
atom located at r&, we have

21 . ~(l) +~(l) . p '(u 1 —
I ~ (I), &(I)=lap &,— & —l 8 W +

12, ~(!) g~(!)+ . P 1(~ t—kpzt )~ (I—)+ &(I)
21 12 2 12 2

+J 12

(3.17)
(~(l) ~ )+ (II y(l) (

p p I
WO l p 12e

y(l)IIz '(~p! "pz)))+ z (I)

The expectation va)ues of these equations describe a
two-level atom driven by a strong near-resonant field (the
resonance fluorescence Mollow spectrum problem)
[22—24], for which the solutions are well known. After
some time (the characteristic damping time of the atom)
the system will settle down to a steady state, independent
of the initial conditions. This particular atom will end up
spontaneously emitting the Mollow-triplet fields in addi-
tion to the usual coherent Rayleigh scattering. Since we
are dealing with an extended medium rather than a single
atom, these fields wi11 propagate and interact with the
atoms downstream. We can simulate these as three addi-
tional macroscopic fields each centered at one of the
Mollow-triplet positions. We have set up the equations
with the pump field propagating in one direction, and,
consistent with the one-way approximation, we will simu-
late the coherent component of the dipole fields as travel-

E4

Ep+ bE„'

FIG. 3. The description under the paraxial approximation of
the fields emitted by other atoms acting on the atom of interest
are described by the fields indicated, which are classified accord-
ing to their frequency and the direction of propagation.
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ing in the same direction. Of course, the dipole fields are
traveling in all directions according to the angular distri-
bution pattern of the spontaneous radiation, but for our
geometry coherent-phase-matched components are possi-
ble only in the forward direction. (See discussion in Sec.
V, where such source terms are derived from first princi-

ples. ) We will not treat the incoherent background in
this paper although this could also play a role in a realis-
tic comparison with experiments [25]. Under the slowly
varying envelope approximation (SVEA) we can in prin-
ciple approximate the coherent generated fields by (see
Fig. 3) the following:

(3.18)

where [ [ ] ] denotes both a collective variable description
approximation for atomic operators and a SVEA for the
fields. The collective variable description approximation
involves a volume average over a volume element of the
order of interatomic dimensions about rl, which we intro-
duced explicitly in Eq. (3.11). However, the SVEA for
the field is not all that clear here, as it is the polarization
of the medium (via the atomic dipole operators) that will

radiate the field, so that the field will be determined by
the distribution of the polarization, i.e., by the geometry
of medium. The SVEA presupposes a given geometry for
propagation close to the z axis, whose justification can ac-
tually only be made after the problem is solved. If valid,
the SVEA is equivalent to averaging over a volume a
larger than or of the order k, with the corresponding

diffraction angle Od
—1/(k a). To describe the structure

of cone angle 0, correctly we also have to satisfy
a «1/(k, 8, ).

In Eq. (3.18) f, (r, t) denotes the SVEA macroscopic
field with frequency centered around the Mollow-triplet
component to the red side of the pump, and similarly
f4(r, t) denotes the field with frequency centered around
the Mollow-triplet component to the blue side of the
pump, and finally the change associated with the com-
ponent resonant with the pump field is denoted by
5@ (r, t). These fields are to be slowly varying over a
volume of order t) (however, we note that the collective
operators are usually defined over a volume less than A, ').
Then we obtain

[[m 2')']) =

t'(cu, t —k, kzt ) ~( )
t'(cu4t —

k4zt ) ( ) t(cop
pzt ))~( ))0, e2'" 4 e r~7

I

y(j) ) t k' j J' g(j)(t )
0

c(B t k z ) w (+ )
—t(cct, t —)c z, , ~

( )
~ t(cct4t k4zt ) ~ (+ ) t(ct4t k4zct )]=i[Q, Que '

Q2) Qz e * ' ]+'[Q4 ltt)ze Qz) Q4 e

(3.19)

where

5Q' '=25fp ' d)~/fi,
(3.20)

Q,
' '=2k' ' d(2/t)l for j=s,4 .

The f terms describe the vacuum fields interacting
with the atomic operators. Under the collective variable
description approximation for atomic operators and the
SVEA for the field operators, we require this source term

to be consistent with other terms in the equations for the
slowly varying quantities. This implies that the source
can be averaged over a finite volume element ( ~ A, ) but
the final result should not depend on the size of the
volume chosen. At present we will not explicitly evaluate
the vacuum field operators, and only replace the atomic
operators by the corresponding collective ones in the
above expression. The SVEA for the f terms will be car-
ried out later. Thus we have
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(3.21)

We then obtain the following set of equations which
describe quantum mechanically the dynamics of the col-
lective atomic operators:

d7.

= —im2(Q}2 Q12+iQ e +f,2,
(3.22)

= —y(Q (t}0—)+i(Q' 'Q, 2ed7.

—Q2}Q'+'e ~ )+f .

The general Rabi frequency operator is

where 5=co~ —co„co and ~, are, respectively, the center
frequencies of the pump and s fields.

Now we will introduce the RWA for the atomic collec-
tive operators in a manner similar to the field operators.
Thus the RWA is here equivalent to the SVEA for the
electromagnetic field operators. This again involves a
volume average over a size ~ A. , with

lk z+ l co l CO

~12(r t ) Q12(r t )e Q12(r
lk 2 l N l CO '7

+21(r t ) Q21(r t )e Q21(

&(r, t)~Q(r, ~) .

We finally get

d021 . . 0'= —iso — o. —i w+F+

(3.24)

g( —) g +gg( —)+g( —) —i5(t —z/c)+ g( —) i5(t —z/c)
p p s e 4 e

(3.23)

These equations are operator Bloch equations; howev-
er, they are different from the Bloch equations for the
density-matrix elements. Equations (3.25) are for opera-
tors rather than for the c-number elements of the density
matrix. As a result they should preserve the commuta-
tion relations between the atomic operators [Eq. (3.15)].
This is indeed the case in spite of the damping terms in
the equations. This damping is compensated by the
Langevin forces, denoted by I"s. Thus the Langevin
forces are crucial in sustaining the operator character of
the variables.

A similar situation is encountered in the study of elec-
tromagnetic waves in cavities [26]. A mode of elec-
tromagnetic radiation, described by creation and annihi-
lation operators, is damped due to leaking of the radia-
tion from the cavity. The creation and annihilation
operators, however, cannot be damped to zero without
violating the commutation relations. Careful analysis of
the damped mode shows that in addition to damping, a
fluctuating Langevin force exists which drives the annihi-
lation and creation operators in such a way that the com-
mutation relations are preserved. In the atomic case we
are discussing here, the situation is somewhat more com-
plicated. Namely the Langevin forces are not simply ad-
ditive, as in the case of electromagnetic modes in a cavi-
ty, but rather have the form of a multiplicative noise.
This is because, as is clearly seen from Eq. (3.26), the
Langevin forces are proportional to the collective atomic
operators &(r, t) and o(r, t) which themselves depend on
Langevin forces. Because the Langevin forces are not ad-
ditive the complete solution to these equations may be
difficult to find. We will, therefore, in Sec. IV, use a
simplified treatment in which we linearize the Langevin
forces around the steady state (nonfiuctuating) solution
and effectively replace the multiplicative noise by an ad-
ditive noise. This will be a good approximation in our
case since to zeroth order the steady-state elements are
determined by the strong (nonfluctuating) pump field.

IV. PERTURBATIVE SOLUTIONS FOR THE ATOMIC
DYNAMICS

For clarity and convenience we rewrite Eq. (3.25) in
matrix form,

n(+)
=id&}2—+cr}2+i& +F2,d7-

(3.25) =A o +&0+ 98 +0,d7. (4.1)

= —y(& wo)+i(Q—,

' '(7, 2
—o 2}Q' ')+F, ,d7.

with 6 =co —
co2&, the pump detuning, and

with the last two terms 9o and 9' expressed in normal or-
dering, where

(4.2)

(3.26)

8'p= 0

QWp

(4.3)
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—ih—
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—iO*
P

0 0

0

0

iA—
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0

0
E

2

0*
'2

(4.5)

AP, =A, P, , j=1,2, 3 . (4.10)

The cubic equation (comparable to the "Mollow cu-
bic") that determines the eigenvalues is

3

A+ ~ ++ A++ +(~(n ~'+b, ') A++
2 2 2 P 2

+ ~ b, =0. (4.11)
2

This secular equation has all real coefficients, so the
complex solutions must occur in conjugate pairs [27].
With A = —I +i 5, for j=p, s, 4 in the following order:

with

g — '[QQ( )+Q( ) lsT+Q( ) l 15]y2

A =A, = —I —i5,1

A =A = —I +i5, (4.12)

—O~
23 ~13 ~

= —2Q,

A.tF

(4.6)
~=a= —r .

P P

All the eigenvalues contain a negative real part, which
ensures that the atomic operators will damp to around
some stationary value.

We now can solve for the pump field to all orders,
which reduces to the solution of

2 (4.7)
d&s =Ao, +to=0, (4.13)

F1

Essentially the same set of equations is used to describe
the initiation of superfluorescence and Raman scattering
[13—15], but then linearization about steady state corre-
sponds to linearization with respect to the initial ~=0
solutions. Thus in those cases, the initial conditions of
the system are very important, because one is interested
in short-time behavior (compared with the characteristic
time of the system). Here, on the other hand, we are in-
terested in the steady state, long-time limit with all the
initial conditions damped away. This is the regime in
which the dynamics dominate over the initial conditions.

We will now examine the long-time behavior of the
atomic operators. They, of course, do not reach station-
ary values, since the terms proportional to the Langevin
forces lead to fluctuations around their average values. If
both the generated fields and the Langevin forces (vacu-
um fields) are small compared with the pump field, as in
the case studied here, we may linearize our equations.
Essentially the fluctuations in 8' and w due to the
Langevin forces are small compared to their mean values.

First we can find the transformation matrix Y that di-
agonalizes the coefficient matrix A,

5+i
2

0
2

wo

(n /'
g2+ 7

4 2

0*
b, —i+

2 2

+2+
42

(4.14)

Since we want solutions to first order both in weak
fields and in the Langevin forces (which act as the source
of the weak fields), we can linearize the & equations
around the &, as

&21 Z1

&s ~12 0 12 &~12 (4.15)

w w 6w

Then we have

where 8', is the steady-state solution of the above equa-
tion, and as given in Appendix C,

e, = —A )o

A1

T-'A Y=w= 0 A2

0

0

0 0

(4.8)

with

(4.16)

The generic solution is

'7=('P), 9', , P, ), (4.9) P~(r, r) =&'(r, r)fl', +„'(r,r)e
(4. 17)

with 'P), Pz, P3 the corresponding eigenvectors of ma-
trix A. That is,

After the linearization approximation, the normal or-

dering in expressions Qo' and F is not important any
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more, as 0&, and 0(&,) are linear in the field operators.
Transforming into the eigenvector representation

%=V' '&,

5&,(r) =a 5n' '+R~5n'+'+a, n', 'e

+R 0'+'e ' '+ca 0' 'e' '+k 0'+'e'K4 4 e ca4 4 e v, , e

X='7 '&, , (4.18)
where the a's and R's are given in Appendix 13.

(4.22)

we get

(4.19)

The solution is

5X'.(r)=5X'~(0)e ' +I e ' [7 'f'(r')]Jdr'

V. LONG COHERENCE LENGTH QUANTUM NOISE

In the above we have solved the atomic operator equa-
tions by keeping all orders in the strong pump Geld, and
perturbatively to first order in the noise and weak-field
terms. We have found that the solution is just the sum of
the linear responses of both small signals. As detailed in
Appendix D, the linear response due to the Langevin
noise is

+ f e ' [V'Q&, ('r')] dr' .
5&21= Vp+ V, + V4

(4.20)
where

(5.1)

The first term is due to the nonzero initial conditions,
which will of course vanish in the steady-state limit. The
remaining terms are the linear responses due to the
Langevin and weak-field terms. The part due to the
Langevin terms depends on 0, which describes the fluc-

tuations of the electromagnetic vacuum. It is very impor-
tant to realize that the atomic raising operator 50'z, as
written here depends not only on the creation operator

M(+ )0„',,' but also on the annihilation operator Q„',+,'. Sirnilar-

ly the lowering operator 5&,z depends on both the
creation and annihilation operators Q„'—„'.These results
were obtained in the framework of the local-field dipole
approximation and RWA. The mechanism for the cou-
pling between the positive and negative-frequency parts
of the field is provided by the strong pump field. Observe
that the atomic operators depend on the electromagnetic
vacuum Geld via a time integral over times prior to ~.
Therefore not all the frequencies that contribute to the
electromagnetic vacuum will significantly contribute to
the atomic operators. The electromagnetic field is
effectively "filtered" by the atomic system (see Appendix
E). It is only those frequencies of the vacuum spectrum
which are centered around one of the resonances, given
by imaginary parts of A. , and which have a bandwidth
comparable to the real part of A, that significantly con-
tribute to the fluctuations of the atomic operators. This
filtering is crucial to understanding the long correlation
lengths that give rise to the Cherenkov-type emission.
The part of 5&&, that depends on the weak fields is essen-
tially proportional to the y' ', the third-order susceptibili-
ty, which has a form familiar from the theory of 4WM.
In the long-time limit the (Qcr, ) reaches a steady state
and the integrals in Eq. (4.20) are easily performed (see
Appendix D). The solution of 60 2& is then

5&2,(r)=5&~, +5&2, . (4.21)

5o 2& will be discussed in Sec. V, where we will detail its
interesting long correlation length properties. The
linear-response part (stimulated part) of the polarization
due to the weak fields is given by

w( —) w(+}
y,

' =~,' 'n, „„+2),'+'n,„„,
( —)

~( —) (+)~(+)
~s =+s nsvac++s nsvac &

w( —) w(+)
v4=n'4 'n4„„+n,'+'n4„.. .

with

(5 2)

A (V—H}~(y) +ED) T~Jvac e Qvac e d 7'
0

(5.3)

The expressions for the 2)I+—' are given in Appendix D.
As we show in Appendix E, Eq. (5.3) with the damped
kernel is equivalent to a frequency filtering in the spec-
trum. The effective filter is centered at the central fre-
quencies of the three fields we are describing and has a
bandwidth determined by the damping rate. In general
we will have problems of convergence due to large fre-
quencies when we try to evaluate the correlation func-
tions of the above-filtered vacuum. One standard way of
getting rid of the divergence is the Hat spectrum or pole
approximation, which amounts to replacing the density
of continuous modes by a constant evaluated at the
center frequency. This is equivalent to saying that the
filter is sufficiently strong so that it allows only the pass-
band modes to go through.

We have separated expression Eq. (5.1) for the polar-
ization into three parts corresponding to the time varia-

tion part of the resulting polarization. 0'+—„,', is the field
with center frequency at co, and with resulting polariza-

tion at co . Q,'„„'is the field with center frequency at co„
and resulting polarization at co, . 0,(„+„'is the field with
center frequency at co4, and resulting polarization at co, .
04„„'is the field with center frequency at co4, and result-

ing polarization at m4. 0 4„+,', is the field with center fre-
quency at co„and resulting polarization at co4. Thus
terms 0,(„„)and Q 4+„„'behave like spontaneous four-wave
mixing.

A very important comment is in order here. As men-
tioned earlier, the vacuum fluctuations will be partitioned
among the three fields of interest, which are identified by
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the three eigenvalues listed above. However, the pump
field will propagate in the medium as well. It is by no
means a constant plane-wave field; rather, due to self-
focusing, diffraction, etc., it will be a space-time-
dependent quantity, so at different locations in the medi-
um, the generated fields will center at different frequen-
cies co +5 [0 (r)], and will have different widths
I J.[Q~(r)]. Thus the distribution of the pump field
strength will cause the separation of the triplet spectrum
to vary, but as the center of the triplet is always the same
as the pump frequency, and the two sidebands are at least
6 apart, we can usually replace the center frequencies of
the sidebands with that corresponding to the saturated
field strength in the filaments [4]. We then simply assume
that the sidebands are coherent irrespective of the exact
position of the center frequency. These coherent fields
are then additive. If, on the other hand, we also want to

l

look at the spectrum of the generated fields, we have to
be more careful.

Since we are performing our calculations in terms of
normal ordering of the field operators, and we are only
interested in the intensity distribution, the nonvanishing
correlation functions that will contribute to the far-field
normal-ordered intensity are of the following
antinormal-ordered form:

(5.4)

In the above, ( ) represents the quantum-mechanical ex-
pectation value over the state vector ~%(t) ), which is

(5.5)

with

~%'„,M) = ~vacuum), ~'P„, , ) = ~all the atoms in the ground-state level 1) . (5.6)

Before we proceed to calculate the correlation function of the quantum-noise fields, we briefly review the properties
of the vacuum Auctuations, and point out some special cases of interest. For the free vacuum field,

a&(t) =Bi(0)e

Then according to the expansion Eq. (1.2), we get

(E'„,'(r, t )E„',,'(r', t') ) = g(2n. iricoi /V)e

(5.7)

3

=2 d ki (2iririco )e2'

where r+ are defined by

+ )k zdk
mr —r' o

(5.8)

r = r —r'~ (t —t—'), r+ = ~r —r'~+(t t') . — (5.9)

The above integration has been discussed elsewhere [28,29]; it is singular at r+, and can be expressed in terms of the 5
function 5(r+) and its derivatives under proper regularizations. The correlation properties of the vacuum field are such
that two points of space-time which cannot be connected by light signals are not correlated at all. However, as is often
the case for calculations in quantum optics with vacuum fields, we are interested in a limited frequency band, and there-
fore a Hat spectrum may be assumed within that band. In the present case, a limited band around the atomic resonance
is the most important part, so instead of going through rigorous algebra, we will investigate the properties under the Aat
spectrum approximation. Thus

(E„',+,'(r, t )E„',,'(r', t') ) =
„ I (e ' —e ' + )kidki~r —rI o

kz, [2m.5(r ) 2ir5(r+ )], —
~r r —r' (5.10)

where k' =k& —k2, , and we can see that the essential
physics is retained. In terms of the local time ~,

(E'„+,'(r, ~)E'„„'(r',~') )

where

r' = ~r —r'~ —(r—v.') —(z —z')/c,

r'+ = ~r
—r'~+(r ')+r(z —z')/c . —

, kz, [2ir5(r ') 2ir5(r'+ )], —
~ r —r' (5.1 1)

Under the same approximation, we can also discuss the
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following special cases.
At t =t', Eq. (5.8) reduces to

(P„',+, '(r, t)E„',,'(r', t)) =4m6ri2, 5(r—r') . (5.13)

This implies that at the same time the vacuum fields are
indeed white noise in space.

At r =r', we obtain from Eq. (5.8),

(E„',+, '(r, t)l„',,'(r, t')) =46k'„5(t t') —. (5.14)

This approximation has been used in many cases. It im-
plies that the vacuum field is indeed white noise in time if
we are not considering any propagation, and imagine the
interactions occurring at a point.

At r =r', we will have from Eq. (5.11}

function Eq. (5.4) is the same as for the vacuum field case
r =v' of Eq. (5.15). After the interaction is turned on, the
atomic rnediurn acts as a filter, and the spatial coherence
develops in the polarization of the medium at the various
frequencies due to the vacuum fields.

We note that in the transient situation, for example, SF
initiation, it is the 5-correlated [Eq. (5.14)] incident vacu-
um at the entrance plane that is important. We are in-
terested in the other limit, namely the stationary limit,
when the interaction becomes the dominant dynamics
and the initial conditions have all died away. We will
find that in this case, the above correlation is not 5 corre-
lated, but has some typical coherence length 5R. We will
also find that if 5k is the spread in wave vector passed by
the filter, the correlation length 5R is qualitatively given
by 5k5R —1, which is the Heisenberg uncertainty rela-
tion.

In the long-time limit, we get the filtered vacuum

k 2, [2n.5(R ) 2m5(R—+ )], (5.15)
m. r —r'

where R+ are defined by

w(+ ) A (7 7 ) lkg'T
fl,„„(r,~)= g e ' gee ' iti(0)

EN~(H+z/c) lcd T
Xe e ~ dr'

R = ~r —r'~ —(z —z'),
R = Ir —r'I + (z —z') .

(5.16)
ik~ r —icu~z/c i(cj —a)) )r

gee 1'z Oe e

All the above correlation functions are only functions
of the difference variables r —r', t —t', or ~—~'. They are
preserved under the translation r~r+5r, t~t+5t, or
~~~+5r at all times. That is why we sometimes say
that the vacuum field is stationary. But it is not of the
following form:

(P„(f,r )X„(r,r ))4( ' ' )5(r r )5(1 7 )

(5.17)

or any other factorizable form between time and space.
Note, however, that Eq. (5.17) may be a good model for
collisional Langevin-type noise [15],since no propagation
is involved in the collisional process.

In our case, at ~=0, before the interaction is turned
on, the initial condition for the above-defined correlation

X
AJ. l cog+ l cop

(5.18)

~(+)
Since QJ„„(r,r) occurs in the dipole polarization 5&&„

as we will see in Sec. VI, it will be used to determine the
slowly varying envelope of the fields of interest. Thus we
expect that important contributions to the polarization
will also be slowly varying. Since the filtering is centered
around one of the Mollow triplets, we should expect the
contribution from the k& integral to come mainly from
k) -tran /c, with ai, =a)„+Im(A,). This is of course con-
sistent with our SVEA, RWA, and the Hat spectrum
(pole) approximations. This also means that for positive
k&, it is the main source for the copropagating waves,
and for negative k&, the source for the counterpropagat-
ing waves. In Appendix F we find in the steady-state lim-
it,

2 ~ 21~ 77 i+ C () 1 —r (IR /c) ice (R /c) —i .(IR I/c) —i' (R /c)
~2

" & (2mc)' l, ' a(x —x')' ir —r'

The long coherence length is obviously given by

C

J
(5.20)

which is consistent with the Heisenberg uncertainty rela-
tion. This length is, in most cases of interest, longer than
the cell length. Equation (5.18) is not, however, con-
venient for determining the slowly varying fields X', and
E4 since it has a singularity at r=r . The SVEA implies

that it is sufficient to consider as their source the quanti-
ties V, which are averaged over a volume element that is
large compared to A. . Of course, to be consistent, we
should ultimately make sure that our observable does not
depend on the size of the volume element. Alternatively
for angle 8, we require a —1/(k, 8).

Some of these interesting results have already shown
up in a pair of two-level atoms spontaneous-emission and
resonance fluorescence theory, and they are also ultimate-
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ly related to the time delay due to the propagation behav-
ior of the field [30].

VI. FIELD-OPERATOR EQUATIONS
AND PARAXIAI. APPROXIMATION

We now derive the field-operator equations. The polar-
ization

P =d'~'8' '+d'~'0' '
12 12 21 21

P„(r,~) = [[P(r, r }']],„

(6.5)

have to perform a volume average of the source terms,
i.e., those that we have shown in Sec. V to have a long
coherence length. Hence

P(r, t)=Ps(r, t)+P„(r,t)
consists of two parts, where

(6.1)
=N[[d2i&qie +dizo i2e ]],„,(6.6)

Ps(r, r) =Pti~(r, ~)+Ps, (r, ~)+Ps4(r, r) (6.2)

is the induced (nonresonant) polarization of the back-
ground medium (e.g. , buffer gases). The usual linear rela-
tion between the polarization and the field holds, and

( —) ~( —)

Ps (r, r)=go(co )E
~( —

) r( —)

Ps, (r, ~) =go(co, }E,
~( —

) ~( —)

Ps4 (r, i)=go(co4)E4

where yo(t13) is the linear susceptibility at that frequency
with the resonant term omitted, as mentioned in Sec. III,
we will neglect this part. The resonant part of the polar-
ization

(6.7)

then
~(+) ~(+)

[[0„„(r,r)]]„=f dr'0 „„(r',r)u(r —r') .
v

It is easy to work out as

(6.8)

') / —
( a2)i/2 '~k P.

where [[ ]],„represents the appropriate volume average
over size larger than k . We stress again that if the
SVEA is valid, then the final result should not depend on
the specific volume chosen. We choose the volume ele-
ment to be such that it is a sphere centered at position r
with the following weighting function [31]:

u(r)=(ma ) e

P „(r,~) = g P 5 (r —r"') (6.4) (6.9)

is due to the active medium. We have treated this part in

more detail by solving the atomic-operator equations in
Secs. IV and V.

As remarked earlier, we have performed the collective
variable description approximation for the atomic opera-
tors, and both SVEA and RWA have been made for all
the quantities except the polarization terms due to the
vacuum field. Thus to be consistent with the SVEA we

I

so we have

(~a 2)—3/2 I dr1 '"k' '"k —~r —r'I~/a2

V

ik& r —k&a /2+k&k& a /2 —ik&z—e (6.10)

Then we obtain the volume-averaged source due to the
vacuum field, which is in principle slowly varying over a
distance of the order of a,

~(+) ik& r —k&a /2+k&k& a /2 —ik&z i(cu —co&)7
2 2 2

[[0„„(r,r)]]„= a 0

(6.11)

where
ik~. r —k ~a /2+ k~k) a /2 —ik~z i (cu —co~)~

A.z e p

n,„,„.+(r,~)]1„=g g,a„(0)
k )0 A& l &g+l6)&

A, z

ik& r —k&a /2+k&k& a /2 —ik&z i(co —co&)~
A. A, A. A, z p

[[&,...-(r, ~)]].,= y gian(0)
k &0 A l COg+ 1 COp

A, z

(6.12)

We have used + to index the copropagating and coun-
terpropagating waves. As we can see, the above integral
is not only restricted by the filtering function to the
widths of each individual element of the Mollow triplet,
but also the direction is restricted to be mainly along the
z axis (copropagating) or opposite to the direction of the z
axis (counterpropagating). Similar definitions for

w( —)

[[Qj„,+(r, r)]],„also hold. Thus in principle we can

write

[[V (r~)]],„=P~ ++P e ' +P' e

[[V(r r)]],„=P,+e ' '+P, e ' 'e
—2ik z

+/3
I 15P4' (6.13)

ibad i57- ' 4 t isa. '
5[[V4(r,r)]],„=P4+e' '+P4 e' 'e ' +P4 e' 'e
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Written out explicitly, we have

P +(r, r) =2)' '[[Q „„+(r,r)]],„+2)~+'[[Q~„„+(r,r)]],
„

2ik z
Pp (r, r)e ~ =2)p' '[[Q „„(r,r)]],„, (6.14)

—2ik z (+) -(+)
P~ (r, r)e ~ =9~+'[[Q~„„(r,r)]],„,

~( —)

p, ~(r, r)e ' '=2),' '[[Q,„„~(r,r)]],
„

+n', + ~[[Q,„...(r,.)]].„,
p, (r, r)e ' 'e * =BI '[[Q,„„(r,r)]],„,

n(+)
p,' (r, r)e 's'e ' =2),'+'[[Q,„„(r,r)]],„,(6.15)

~( —
)

p4+(r, r)e' '=2)4 '[[Q4„„+(r,r)]],
„

~(+)
+2)4 [[Q~„„~(r,r)]],„,

2ik z
p4 (r, r)e' 'e ' =2)4 '[[Q4„„(r,r)]],„,
P4 (r, r)e' 'e ' =$4+'[[Q4„„(r,r)]],„.(6.16)

p.+(r, r) and p' (r, r) are by construction the slowing
varying amplitudes. However, we cannot get very corn-
pact analytical formulas for them. But we can get the
correlation functions of various kinds, which will then re-
late them to the observable normal-ordered intensity for
the fields. In general, the nonvanishing correlation func-
tion for the copropagating source reduces to

~(+) ~(+ )f
D +(r, r', r.) = [[(Q „„+(r,r)Q „„+(r',r) ) ]],„.(6.17)

The copropagating and counterpropagating sources are
not correlated, because

( Q.„„+(r,r)Q '„„(r',r) )

= ( Q„„.(r, r)QJ'„„+(r,r) ) =0 . (6.18)

In Sec. II we introduced the coherent copropagating
fields E„E4,and 5P, and did not introduce any coun-
terpropagating ones. It is clear from the phase factors as-
sociated with the above source terms, at any position the
spontaneous four-wave mixing is possible irrespective of
the direction, as given by the correlation function

because the resonance fluorescence in the Rabi sidebands
are correlated. However, only in the forward direction is
spatial phase matching satisfied such that the noise
sources from different atoms are still correlated as a spon-
taneous four-wave mixing. The sources of the counter-
propagating waves, on the other hand, are only correlat-
ed at the same position, and the phase factors are not well
matched in an extended medium. Thus no coherent com-
ponents will be generated in the backward direction.
This justifies the choice we made in Sec. II.

In the following we calculate the above correlation
functions under one-way propagation and paraxial ap-
proximations (PA). The D + are proportional to the
correlation functions for the copropagating sources.
They are similar to the correlation functions D ' we have
discussed above and which were found to have a long
coherence length. Under the one-way approximation, the
D + are of the same form, except that no volume average
has been performed in D ', and thus Djj contains sources
for all directions. To be consistent with the SVEA, we
also have to perform an average over the volume as given
in Eqs. (6.12) and (6.13). Then as in Appendix F

(P (r, r)P (r'., r)) =0, (P~ (r, r)P~ (r, r))%0,
(6.19)

2

D +(r, r';r)= —.
3 f f f co3dco3(1 —sin 8cos P)sin8d8dg

n/2 2~ 3'
fi (2~c)3 o o o

[ —ik&(z —z') —k &a ](1—cos8)+ ik&(x —x')sinHcostI5+ ik&(y —y')sin6) sin/

X
(~,—~, —s, )'+r,' (6.20)

As we have seen in Eq. (5.18), the poles are at co&=co +i I With pro. per choice of contour the integrand vanishes on
—r.((~ )/c) —r,.(l~+ I/c)

the semicircle at infinity; this leads to terms like e ' and e ' + as in Eq. (5.19). Hence if the dimensions
of the sample are less than c /r . , which is generally the case (especially if we can ignore collisions), we can then ignore
the I terms in the exponent. [This leads to Eq. (6.20) being a simple function of x —x', y —y', etc.] This paraxial ap-
proximation is equivalent to assuming an infinite correlation length in the z direction. Mathematically, it is the limiting
case of I ~0, since

I.
lim

2
=m6(co —co, ) .

rj- 0 (~—u. ) +I
~

Thus we are left with

2 ~d2i~' ~
DJ+(r, r', r)= —

3 coj f f (1—sin 8cos P)sin8d8dg
A (2~c)3 I, ' o o

[ —ik. (z —z') —k. a ](1—cos8)+ik. (x —x')sinOcosg+ik .(y —y')sinO sing
Xe J

(6.21)

(6.22)
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Now it is easy to see that, due to the rapidly varying phase, the above integral is important for 0-0. %'e can then
put

02
cos0=1—,sin0=0 .2' (6.23)

Since k a ))1, the important angular integration is restricted to 0 « 1, so that we can extend the upper limit of the in-
tegration to infinity. This form shows a very important physical aspect of the paraxial approximation, namely if we are
interested in angle 0 with respect to the z axis, we must have a variation in the transverse direction a such that k a 0- 1,

2 ld»l' ~ [—ik .(z —z') —k. a ]{8 /2}+ik . 8~5p~cosg
D +(r,r';~)=- Hd8dge

~ (2~c) r, o 0

I
—ik. (z —z') —k a ](8 /2)(2~) Jo(k. 6)l&pI }0d0e

trt (2m.c)' r,

4 ld2II' ~'
exp

& (2m.c) r ik (z —z')+k, a

(k, lupi)'

2[ik (z —z') +k a ]
(6.24)

where 5p =p
—p'. In Fig. 4 we plot the above correlation

function. It is easy to see that the spatial average is sirni-
lar to a limit in the high-frequency behavior, which
effectively eliminates the singularity at the locations of in-
dividual atoms. It is straightforward to show that this
approximation will give an intensity expectation value

[[&~„&]].,=[[~;,]].,+[[&»„&]].. . (6.25)

that is real and positive definite. Ultimately, any intensi-
ty calculated with Eq. (6.24) should not depend
significantly on the quantity a in order to be self-
consistent.

We now have the SVEA polarization as follows:

C3

+'

(

. 0

C 0

"I 00—400

C3

O. G

(a)

'iiII I,'I,
"I,, 'jliI

,I!,',I Il ! I
I'!"/i,

I I/II, '

—&00 0 2CO
( ~ —~ ) /(&,~')

(b)

400

[[»»]].„=a,Sn,'- I+~,Sn,'+ I+a,nI-'e-'"
+- g(+) —i6~+- g(+) ibr+- g( —) ib~

v4 4 e I(.. . e a4 4 e

+p +(7)+p, +e ' '+p4+e' '. (6.26)

P „~(r, r) =Ndz, [&z, +a~ 5Q~ '+2~ 50'+ '+P + ]e
~( —) —-(+)
P~, (r, r)=Nd2, [a,n, +i4Q4 +P, +]e
~( —) ~( ) ~(+) — i(a) +6)s
P „4(r, r) =Nd»[a4Q4 +K,n, +P4+ ]e

(6.28)

Then according to Maxwell's equation for the total
smoothed field E with transverse Laplacian VT,

Then from Eq. (6.6)
n( —) ~( —) ~( —) ~( —)P„(r,r)=P„(r,r)+P„,(r, r)+P„4(r,7), (6.27)

with

C)5Q
VT+ — E(r, t)= P(r, t) .

4~ ()

Bz c Bt c Bt
(6.29)

—l QC —50 D 5D
(z —z ) (('~,a')

OQ

FIG. 4. (a) The amplitude of Eq. (6.24); (b) the phase of Eq.
(6.24). Note the coarse-grained noise sources are not singular.
%'e have sealed p (x and y) to a, and z to k, /a .

Now it is clear that the polarization of the medium os-
cillates at approximately three different frequencies (if 6
is large compared to r 's). We therefore assign a distinct
source to each of the three different fields. Presumably
this is a good approximation provided the spread I
around each frequency is negligible compared to the
spacing of the triplet components.

Since the 6Q' ' is always at the same frequency as the
pump field, we cannot distinguish them, so we have to in-
troduce
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n' '=n +en' '.
P P P (6.30) For the copropagating waves in the comoving frame,

we have
Namely we will also take the pump field as a dynamic
variable and study its propagation, including noise. We
then get the following in the SVEA [32]: ~ az

Bz v Bt

c A

VT —2ik, +—— 0,1 8 ( )

Bz v, Bt

4~N~, ldz{I A{ ) A{+)(a,n, +K4Q4 +P, +),
c A

(6.31)

Bz

V T+2ik4 Q„'+'= a4 Q—4+ '+ a.,*Q,' '+P4+,
Bz

where

e»(n, n,'-')
ap=g(co ) 0

V'+2ik, + — n,'+'
Bz v Bt

V'T —2ik
a & a+ — 0 =—
Bz v BtP

4~¹o ld2&l

c R

(-eQ{+)+-en{—)+Pt )
c A

—2ik. z .
We have neglected the terms containing e ' in the

negative-frequency part of the polarization because they
lead to coupling with counterpropagating components.
Note that the zeroth-order solution is determined by
solving the equation for pump field coupled to Eq. (4.14)
for steady-state atomic-operator solutions, i.e.,

ai =g(co. )a for j=s,4,
icj = —g(coj )Ici for j=s,4,

P&~= g(co~)P~—+ for j =p, s,4,
4nNcoj ld2, I

g(~ )=
c2A'

(6.34)

o z&(Q~ ~Q~ ') denotes the steady-state value of o 2, with
0 replaced by O' '. We can easily check that

a 5Q' '+Ic 5Q'+'=5o' = 5Q' '+ 5Q'+'8&2{ ~ c)'&2{

P P 2& one P gn P
P P

(6.35)

&21

w 6+1
Q

26+ +
4 2

(6.32) (taking the variation with respect to the small change of
the fields). Thus

&zi(Q~ )+a~50~ '+le~50'+'=o 2{(Q —+Q' ') . (6.36)

Since in this paper, we are interested in the redshifted s
field only, we are left with

We thus have the steady-state values for the atomic
operators cr, (r) according to Eq. (4.14), from which all

the a, Icj, and p~+ can be obtained. However, Eq. (6.31)
for Q~

' tells us how this, locally strong, field varies with
position, and gets modified by the coherent component of
resonance Auorescence noise at the same frequency. Ac-
cording to our approximations, we have kept all terms to
first order in the generated fields. Thus we can solve Eq.
(6.32) for the final output of the three fields, although the
component centered at the pump frequency is of course
predominately (zeroth-order) pump field.

The linear polarization term yo(co. )Q' ' causes a slight
change in the propagation velocity, i.e.,
U =e/[1+4vryo(co )]'~ =e. (This. is not the velocity of
the wave, because the right-hand side also contains the
nonlinear polarization, which also affects the velocity. In
fact, the velocity of the wave will not be known before we
solve the problem. In the SVEA we are only eliminating
the part traveling at c and leave the deviation from c for
the detailed treatment. ) Since this nonresonant polariza-
tion is small, it and its effects on dispersion wi11 be
neglected.

' az
(6.37)

V T +2ik4 Q4+
' = —a4 Q4+ '+Ic,'0,' '+p4+,az

and boundary conditions under the one-way approxima-
tion are

Q,' '(p', 0, r) =0,
04+'(p', O, r) =0 .

(6.38)

This equation can be formally solved as follows:

Q,' '(p, z, r)= f f E„(p,z;p', z')P, +(p', z', r)dp'dz'
s 0

+f f 'It, 4(p, z;p', z')p4+(p', z', r)dp'dz',
s 0

(6.39)

where the K„(p,z;p', z') and K,4(p, z;p', z') are the corre-
sponding propagators (Green's functions).

The observable normal-ordered intensity for the E,
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field is then related to the following correlations:

&p„(., )p,', (',.)&

~(+) ~(+)t
=(~(~, ) IS~+ ~12[[&Q,„.,(r, r)Q,„., (r', r) & ]],„,

& p4+(r, r)p4+(r', &) &

~( —)f ~( —)

=g'(~4}l&4' 'I'[[&Q4„„(r,r)Q~„„(r',~) &]],„,

~(+) ~(+)4
[[&Q4„„(r,r}Q&„,(r', r) &]],„=D4+(r,r', i),

w( —) t w( —
)

[[&Q,„„(r,r)Q,„„(r',r) & ]],„=D4+(r,r', r),
~(+) ~( —

)

[[& Q4„„(r,r)Q,„„(r',r) & ]],„=D4+(r, r', i),
w ( —)~ w (+ )f

[[&Q,„„(r,r)Q4„„(r',r) & ]],„=D&+ (r, r';~) .

(6.43)

&p, +(r, r)p4+(r', r) &

(6.40) We note here that we are describing the fields emitted
by the atoms only. The total field at any position r and
time t in the medium free region is in fact

~(+) ~(+)t
[ [ & Q,„„(r,r)Q,„„(r',r) & ] ],„=D,+ (r, r'; ~),

w( —) t ~ (
—)

[ [ & Q4„„(r,~)Q~„„(r',~) & ])„=D,+ (r, r', r ),
~{+) ~( —)

[[&Q,„„(r,r)Q4„„(r',r) &]],„=D,+(r, r';r),
r {—)f r {+)f

[[&Q~„„(r,r)Q,„„(r',r) &]],„=D,+(r, r';r) .

(6.41)

A similar solution exists for the E4 field, and its intensity

is related to the following correlation functions:

& p4+(r, r)p4+(r', r) &

r {+) r (+)f
=g'(~, ) I&,"'I'[[«,„..(r, r)Q„..(r', r) &]]„,

&p,', (., )p„(',.)&

~( —)f ~{—
)=g'(~, ) lg 'I'[[ & Q„„(r,r)Q,„„(r',r) & ]],„,

(6.42)

&p„(...)p,.(', }&

~(+) ~( —)

=g(co, )g(co4)2),' '2)~+'[[&04„„(r,r}Q„„(r',r) &]]„,

r {+) ~( —)

=g(co, )g(a)~)Xl,'+'2)~ '[[&Q,„„(r,r)Q4„„(r',r) &]],„,
& p,'.(..)p,'.(',.) &

=g(, }p, )(~,"'n,'-'}*

X[[&Q,'„„'(,)Q,„„(', )&]],„.
The so-called spontaneous four-wave mixing is very clear
here, as the normal-ordered intensity for the E, field is

only connected to the correlation function of the vacuum
modes centered around the co, . (The vacuum modes cen-
tered around the co, are also part of the expression for

p~+. They do not contribute to the normal-ordered in-

tensity, but they play an important role in preserving the
commutation relations for the fields. In contrast, if an
antinormal ordering were used the modes around co,

would determine the intensity. ) The 2)~
—' terms in the

above prefactors are functions of the steady-state atomic
operators w' and &2, (see Appendix D). It is easy to
check that

E(r, t ) =E~(r, t )+E,(r, t )+14(r, t )+E„„(r,t ), (6.44)

which will preserve the appropriate commutator relations
for field operators.

VII. CONCLUSION

BZ

VT —2ik, Q, '= —a, Q,' '+~4Q4 '+p, +,
BZ

+2ik Q'+'= —a*A'+ '+~'0' '+PT 4~ 4 4 4 s s 4+
az

On the right-hand side of the field equations are the po-
larizations of the medium. In addition to the terms due
to the linear response of the weak fields, there are also
quantum-noise terms, which we have proven to be of long
coherence length. These long-coherence-length noise
terms are coming from spontaneous-emission noise, the
statistics of which we have determined from the dynam-
ics of the atomic medium and the vacuum Auctuations.

Of particular interest are the following second-order
correlations under the SVEA and one-way approxima-
tion, which are related to the observable normal-order in-

tensity of the two generated quantum fields E, and E4..

&P, +(r, r)/3, +(r', r) &
=g (co, )IXl,'+'I D, +(r, r', i),

&p4+(r, r)/34+(r', r) & =g'(e~)ll)4 'I'D, +(r, r';~),

In this paper we have investigated quantum mechani-
cally the resonant light propagation in an active medium
based on a two-level atom formulation. In the steady-
state limit, the slowly varying field envelopes for the
copropagating fields obey the following equations:

and

~( —)f ~(+)T
X [[&Q,„„(r,~)Q (4r', ~}&]],„,

&p,
' (r, )p", (r', )&=((co,)g(, )(2),' '2),'+')*

&P, +(r, r)P4+(r', r) & =((~, g'(co~)2),'+~2)4' 'D, +(r, r';~),

&p, (r, r)/J„(r',r)&
=g(~, )g(~, )(2),'+'2),' )*D,+(r, r'; r),
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&P,+(r, r)P4~(r', ~) ) =g'(~4) In~4+) I'D4+ (r, r', r),
& p,'+(r, r)p, +(r', r)) =g'(, )In(-)I'D, +(...', ),

7.3
& P4+(r, r)P, +(r', r) ) =g(co, )g(co4)2),' '2)4+'D4+ (r, r', r),
& p,',(...)p'„(',.) )

=g(co, )g(co4)(2),' '2)4+ ')'D4+ (r, r', ~),
where

changes. A Born approximation is also implied by Eq.
(3.7) since only free evolution during this correlation time
is considered, which again will be valid if yr, and III~ Ir,
are small.

From Eq. (3.7) we have

'f''" "'"' " '

0

I2f
' l. 2)

0

4 Id„l' ~2 1
DJ +(r, r. '; r) =-

& (2nc) I ik (z —z')+k a

«, 15pl)'
Xexp

2[ikj (z —z') +k a 2]
(7.4)

—g Igz I
n5(co)„co2—, )+iP

=++ i b(co~) .),
2

COg N2~

(A 1)

We note that in this formulation, collisional effects
have been neglected, which might prevent us from mak-
ing rigorous comparisons with experiments, since most
experiments to date have been performed in the buffer-

gas broadened cells. The extension via a collisional
Langevin term is straightforward. Also neglected in the
formulation are the Doppler distribution averages, which
in principle could easily be included. However, since we
are basically interested in regimes where the detuning
and on-axis Rabi frequency of the pump are larger than
the Doppler width, we expect this average will not be
crucial.
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APPENDIX A

The summation can be easily done as

g (~g a)(eg b)=a b—(k~ a)(kx.b)

and with
3

1 1
~ ~ ~ fdk,2'

2

y= ",f"f f "cozdco)„(1—cos'8)
A (2~c)' o

X sin8 d 8 dP 5(co)„—coq) )

41d~) I'coz)

3fic

where

y=2 pig I'5(

4m g g(d2) e)„)(d)z&g)co),5(co). co2)—) .
AV k

(A2)

(A3)

(A4)

(A5)

In order to evaluate sz", of Eq. (3.6) we first of all make
the Markov approximation of Eq. (3.7). This is valid be-
cause the sum gz infers a correlation time r, of order
co2)' which is short compared to the time scale (of order
the spontaneous decay time y ') over which o z')'(t)

)=& Ig I'p
COg N2~

(A6)

where P(1/x) represents the principal part of the expres-
sion.

APPENDIX B
From Eq. (3.10) we have

~ 2( 8(l)g '
P. (+ esty(l) '~x''~l

)
~(l)~ m (l)+ ~(l)

with
T

a(l) f 'a(l)(r, )e
~' —' dr, + f 'a(l)(r )e' ~'

(B1)

I ' ' I

( y y 2I I2 y() '). '"x' f'~()( )
' ). ' '

d + '"z' f'p(')( )
' ) ' 'dry(l)

j(W I)

(B2)

f~ )

g 2[g ())(l)Q (0)e ) e ) I +gill/i (0)e ) P(l)e ) I
]
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Under the same Markov approximation,

=4yo 2,'(t)o', 2(t)

(B3)

y(t( —(
( ~~ ~ (I)

)22 2 0 (B4)

APPENDIX C

From Eq. (4.9) we have

"T=(P„P2,P3),

with

0
I ih ———A

2 2

2
—

I, h ———A
2

then

0
lk A(

2 p

0
i ib, ~—A

2 2 2

0
i ib, +—A—

2 3 2

QQ
l

2

0*
l

2
ib, +—A——

1 ib, +—A— —
2 2

2

0*
i —ib, +—A— —

2 2 3

2

4+ +A 1
A'+ +A

2 2 6+ +p
2 3

and

2

id+~ + 'ib, +~ A2+ ih+~ A3+A&A3

—h(A) —A~)(A) —A3)Q

id+~ + ih+~ A&+ ih+~ A3+A&A3

—h(A —A, )(A2 —A3)O

i5++ + ih+~ A)+ iA+~ A~+A)A2

—g(A, —A, )(A, —A, )Q,

A3+ A~A3
2 2 2 2

—~*~(A,—A, )(A, —A, )

'2

I Q ~ A] l 5 A3+ A JA3
2 1

—n,*w(A, —A, )(A, —A, )

ia —~ A, — i~ — A2+A)Az
2 2

—g,'~(A, —A, )(A, —A, )

1

(A~ A2)(A] A3)

1

(A, —A, )(A, —A, )

1

(A, —A, )(A, —A, )
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—ihy+y++
2 2

3—s'r —~—n ~'&
4 P 2
n*2

P

2
3

/n—/'&
4

—Q*h—iQ*+
P P

3-n'} -~—[n /'&
4

0
2
3—n'} —~—fn ['&

4 P 2

in, I'
iay+y&+

2 2
3—s'q —~—fn ['&

4 P 2

—EQ +i+0
P 2 P

3
a'y— ~ /n —/'&

4 P 2

0 0
2 2 2

3—a'q —~—[n f'&
4 P 2

n* n'
6+i

2 '22
3—a'y —~—/n f'&

4 P 2

+2+~
42

3-a'q-~-fn ['&
4 P

APPENDIX D

From Eq. (4.20) we have

5X;(r)=5X,(0)e "+f e ' ' [T 'F(r')];dr'

(D1)

(Qo, ), = —iw'[50' '+Q,' 'e ' '+Q~ 'e' ']/2,

(Q&, )z=iw'[5Q'+'+Q', 'e' '+Q 'e ' ']/2,
(D7)

(Qcr, )3= io' [—5Q'+'+Q'+' ' '+Q'+' ' ']

5o,(~)=T„5&,(r)+ T~ 5X~(r)+ T, 35X (3r)

where

5&$1+5&$1

3 A
5o~, = g T„V'),f e ' P~(~')dr'

j=1
3 I

+ Q TJ T&q f e ' Pq(r')dr'
j=1

3 I

+ g T,,T,3f e ' P, (r')dr'
j=1

=V +V, +V4,
with

~( —)
( —) (+)r(+)

VJ 2)J QJ @+2)J QJ Q

=T).T )N 2T)JTJ3&)g,

QJ = T]JTJ.Jw 2Tlj Tj 3~2.1 &

d '
~( —)

jvac= e vac e
0

A (r—7 )~(y)0 d '
jvac +vac e d V'

0

Then we obtain

(D2)

(D3)

(D4)

(D5)

+i&' [5Q' '+Q', 'e ' '+Q' 'e' '] .

~- g(+) —i5rg —g( ) ib~g- g(+) i57.
K4 4 e a4 4 e K, , e

(D8)

where a's and K's are defined as

a~ =(i(0),
a, =(,(5),
a~=(, ( —5),

w s 3

g, (e)=i g T, .T &(A +ie)
j=1

(D9)

3

i&'„gT—t, T,,(A, +ie)
j=1

Jc =g~(0),

In the long-time limit the field amplitudes reach a
steady state and the integral can be performed adiabati-
cally as

5o (r)=a 5Q' '+Jc 5Q'+'+a Q' 'e
21 p p p p s s

3 I

5o q)
= g T,, 5'.

, f e ' (Q8, ),(r')dr'
0

Jc, =(~( —5),

Jc~ =g~(5),
(D10)

with

3

+ g T,, V;~ f e ' (Q&, )~(7')dr'

3 I

+ g T,,T, f e ' ( Qo, ),( ~' )d r',
0

(D6)

A s 3

gz(e)= i g —'T, T z(A, +ie).
j=1

3

+i o'z, g T„'T,3( A, +ie). .

j=1
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Generically, if

APPENDIX E
U, (co)= f e' 'U, (r)dr=8(co)Q(co),

2%

where

(E4)

where

8~—~'H ~'d~') (E1)

I C970" (co) = e '"'8( r) dr,2'
H(co) = f e'"'H(r)dr .2'

(E5)

A. (w —w')

8(r r')—=e ' e(r —r'),
H(r )=0(r )e(r ),

1 if ~&0
0 'f (0,

the Fourier transform of U is

(E3)

oo (icy+ A)v8(co)= e' '8(r)dr=
277 2' 0

which is centered around —Im(AJ ).

(E6)
277 l CO+ A~

We see that the damped oscillation function 8(r) is an
effective filtering function

APPENDIX F

From Eq. (5.4) we have

r (+) ~(+)f
D '(r, r';r)=(Q „„(r,r)QJ„„(r',r))

0 0

—ik r' ice z'/c —i(co —co )w

Xg 4e A. e ))(, e P

—Aj —l COg +ECO&

A~ + l COg l COp

(cok —
co, ) +I, (F1)

In writing down the 5" in the above expression, we have neglected the overlapping of the wings of the Mollow trip-
let. We choose the dipole moment to be perpendicular to the direction of propagation (z axis), say in the x direction for
simplicity, and then

/I' d~)I = Id~)I (1—
Ikk) x

I

)= Id~)I (1—sin ecos ()))), (F2)

2 I d2)1 ~ ~ 2~
DJJ(r, r', ~)=—

3 f f f cokdcok(1 —sin Ocos (t))sin0d8d8
fi (2~q)' o o o

ik& (z —z')cos0+ik&(x —x')sin0 costt)+ik
& (y —y')sinO sintt)

e —ik(z —z')
X e

(cok —co, ) +I,
The integration over azimuth angle (t) is

a2

a2
=2m 1+

z 2 Jo(kk Ip
—p'Isi»),

k', a(x —x )'

where

ik&(x —x')sin()cosP+ik&(y —y')sin()sing 2n. ik & (p
—p'(sinO cos( P —Po)

1 —sin gcos )d e 1+ d e
0 k', a(x —x )'

(F3)

(F4)

I

y, =tan-) ~
X X

(F5)

The integration over polar angle 8 is
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ik„( —z )'cosag„=f sinodeJo(kz~p —p'~sine)e
0 k~ /r —r')

We then get
—ik (z —z')

eld2] I' 282
D, (r, r', z) =— toqd toq(2m)1. +

z 2 g„& (2nc) co~t)(x —x')' "
(cog —co/)'+ I J

2 2
—Jk&(z —z )

CO c 8
cogd cog 1 +

2 g„
0 co&t)(x —x') (co&—co ) +I

Now it is easy to see that this can be integrated by making the change of variable co=co&—~J,
I

(F6)

(F7)

c 2 c 282

a(x —x')'

C 2g2
CO) +2

a(x —x')'

i(R /c)(a)+co. ) —i(R+ /c)(co+a). )' —e

co +I .
1

ice .(R /c )fX dc' e

cos co +i sin

co +I J

—ice.(R+ /c)
e

cos
R+

co —i sin
c

co +1 J

R+
c

c 2 c 8 1 w —I (IR I/), (R /) ~ —r(~R ~/)—
NJ. + e e e e

i ' t)(» —x')' ~r —r'~ I )

Finally we have

2 21 tr 2+ c 82 1 —r, (lit I/c) i~, (R /c) r. (IR I/c) iso (R /c)—D' r, r', =ri5 '—— N. + e ' e ' —e ' + e" & (2~c)' I", ' g(x —x )' ~r
—r'~

(F8)

(F9)

'Also at Department of Physics, University of Colorado,
Boulder, CO 80309-0390.

tPermanent address: Institute of Physics, Polish Academy
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