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Theory of photorefractive phase-conjugate oscillators. II. Anisotropic four-wave mixing
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This paper is the second in a series describing the theory of photorefractive phase-conjugate oscilla-
tors. We apply the formulation developed in Paper I to study the threshold conditions for self-

oscillation in the phase-conjugate mirror (PCM), the phase-conjugate resonator (PCR), and the phase-
conjugate oscillator (PCO) by considering anisotropic four-wave mixing where the two counterpropagat-
ing off-axis pump beams are orthogonally polarized. We consider the two types of situations for orthog-
onally polarized pump beams corresponding to the two crystal families: one such as the Bi»Si0~0 crystal
family (sillenite family) and the other such as BaTi03 and the strontium barium niobate crystal family.
Degenerate and nondegenerate self-oscillations are shown to occur for both these types for a number of
practically important cases. Threshold conditions for oscillations are derived analytically under the as-

sumption of undepleted pumps for most of these cases. It is shown that for the sillenite family of crys-
tals, the coupling coefficient required for degenerate self-oscillation in PCR is one-half of that for PCM
when the mirror is perfectly rejecting and when the pump beams have equal intensities. For PCO, the
presence of the second mirror, however, increases the threshold value of the coupling coefficient for self-

oscillation by a factor (1+R,R, )/(1 —R lR&), where R
&

and R, are the power reflection coefficients of
the mirrors. For the second type of crystal family, it is shown that PCM also can exhibit self-oscillation.
The coupling coefficient required for degenerate self-oscillation in PCR is one-half of that for PCM when

R2 =m and r =m ', where m and r are the ratios of the coupling coefficients of the backward and for-
ward gratings and intensities of the backward and forward pumps, respectively.

PACS number(s): 42.65.Hw

I. INTRODUCTION

In Paper I of this series [1], we developed a theory of
photorefractive phase-conjugate Fabry-Perot oscillators
assuming that the two counterpropagating pump beams
are parallel polarized [2]. This situation is called the iso-
tropic four-wave mixing. In this paper, the case of aniso-
tropic four-wave mixing, where the two pump beams are
orthogonally polarized [3], will be considered. Here also
we shall consider nondegenerate four-wave mixing. The
matrix formulation [1,4-6] will be employed to obtain
the threshold conditions for self-oscillations in the
phase-conjugate mirror (PCM), phase-conjugate resona-
tor (PCR), and phase-conjugate oscillator (PCO). As de-
scribed in Paper I, a PCO consists of an optical resonator
made up of two plane mirrors (a Fabry-Perot cavity) con-
taining an intracavity photorefractive phase-conjugate
element that is pumped externally by a pair of o8'-axis
counterpropagating orthogonally polarized laser beams
of the same frequency. Phase conjugation of an input
beam of slightly different frequency occurs because of
nondegenerate four-wave mixing. In the absence of the
mirrors the PCO becomes a PCM, and in the absence of
one of the mirrors it becomes a PCR.

Two types of situations for orthogonally polarized
pump beams will be considered in this work. For one
type, the amplitudes af and a& and the phases cpf and y&

of the coupling coeScients for the forward and backward
gratings are related [3] by af =ah and pb =yf +sr. For
the other type, they are related [3] by af Nab and

lpf f b These two types of situations correspond to two
different crystal families. The first type described above
applies to crystals such as Bi,2Si02„, and the second type
applies to crystals such as BaTi03 and strontium barium
niobate (SBN). We show that degenerate and nondegen-
erate self-oscillations are possible in photorefractive
PCM, PCR, and PCO for both these types of situations
when orthogonally polarized pump beams are used. We
present analytical results for the conditions of self-
oscillation in a number of practically important cases.

II. BASIC EQUATIONS

c/3 ) (3 3*+A*A )A*
Z 0

d32 yb+2 Y b +
( + ~ + g g )

dz Io

(la)

The geometry of six waves interacting in the pho-
torefractive medium is shown in Fig. 1 of Paper I. Under
the undepleted pump approximation the pump waves
have constant amplitudes A& and A6. There are four in-

teracting waves with amplitudes obeying the following
equations [3]:
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where

1 —r
+ yb+

and

1 —r
yf+ (4a)

where Io =
~

A 5 ~
+

~
A 6 ~

is the total intensity of the

pump waves. The coupling coefficients in Eq. (1) are
given by

y
1+ihcow

'

lg
y =ia~e

(2a)

(2b)

III. CASE 1

Here we have af =ab and yb =pf +m. . The matrix for-
mulation of Paper I will be applied. The 4X4 matrix K,
which relates the four complex amplitudes [ AJ(L)] to
the four complex amplitudes [ A (0) ] is given by Eq. (8)
of Paper I. The coefficients M+, X+, P+, and Q+ ap-
pearing in the matrix K, listed in Appendix A, are
different from those in Paper I. With the matrix K
known, the phase-conjugate reflection and transmission
coefficients are given by Eqs. (10) to (13) and the self-
oscillation condition is given by Eq. (14) of Paper I. The
coeScients F,~ are listed in Appendix B of Paper I. We
are now ready to investigate oscillation in PCM, PCR,
and PCO for this case.

A. Phase-conjugate mirror (PCM)

where the subscript g stands for forward (f) and back-
ward (b) gratings and as and ys are the amplitudes and

phases of these gratings. For parallel-polarized bump
beams, we have yf =yb, i.e., af =ab and pf =yb. This
situation was considered in Paper I. If orthogonally po-
larized pumps are used [3] in crystals of the sillenite fami-

ly such as Bi,2Si02o (case 1), we have yf = —yb, i.e.,

af =ab and pb =yf+n. . On the other hand, if orthogo-
nally polarized pumps are used in ferroelectric crystals
such as BaTi03 and SBN, we have afAab and q&f =pb
(case 2 ).

In ferroelectrics of case 2, birefringence creates compli-
cations for phase matching. This is because the wave
vector k is different for the extraordinary and ordinary
polarizations of the birefringent crystals. This introduces
the Bragg angle detuning. In writing Eq. (1), we have
neglected this detuning. This is justified [3] for the crys-
tals with large r33 such as SBN. We shall now consider
the two cases described above separately.

(4b)

abL sinyb

1

tanyb

(6a)

(6b)

In the general case r%1 the self-oscillation condition is

r+1
abL sinqb = lnr,

r —1

1he~=-
tanqb

(7a)

(7b)

The conditions (6) and (7) are the generalizations of the
results in Ref. [3). We have seen in Paper I that the PCM
cannot exhibit degenerate self-oscillation for y =m /2
when the pump beams are parallel polarized. The situa-
tion, however, changes when the pumps are orthogonally
polarized for the sillenite family of crystals. Degenerate
self-oscillation is now possible for tpb =n./2 but impossi-
ble for yb =0. For any other value of yb, nondegenerate
self-oscillation is, of course, possible.

B. Phase-conjugate resonator (PCR)

For the PCR, the threshold condition for self-
oscillation is

sinh(S+ L /2)
I

S+L
sinh

2
lnr
2

sinh(S" L /2)

S*L
sinh

2

lnr
2

1

R2

where

(8)

The self-oscillation condition can be obtained by equating
the denominator of Eq. (3) to zero. In the special case of
equal pumps (r =1),

2
yb+L

yb+L +2

Thus the self-oscillation condition is yb+L = —2, from
which

For the PCM, the phase-conjugate power reflection
coefficient R is given by [3]

1 —rS =yb- 1+r
1 —r

yf—

R

S+L
sinh

S+L
sinh

2
1nr

2

(3) yb+Lyb —L

(yb~L+2)(yb L +2)
(10)

For R2 =1, Eq. (10) gives (yb++yb )L = —2, i.e.,

We first consider the special case r =1. The condition (8)
reduces to
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abL sinyb = 1 and 6~~=0. This shows that the coupling
coefficient abL required for degenerate self-oscillation is
one-half of that for PCM when the plane mirror is per-
fectly reflecting .However, nondegenerate self osc-illation
is not possible in this case For R~ (1 and bc@7.=0 (de-
generate case), we have

2siny~+2(Rz —cos p&)'~
cos'y, . (11)

1 —R2

Q 0
abL sinqb ]—r
1+(boor) 1+r

ahL sinyb Ace~
Vp—

1+(b,cow) 1+r

abL cosybAcoz
Q) =

1+(bcow) 1+r

(14b)

(14c)

(14d)

abL sinqb =2, (12a)

For @I,=~/2, a„L =2(1+QR~)l(1—Ri) and for
R, = 1, the solution with minus sign gives ab L = 1.
Equation (11) reduces to a&L sinpt, =2 when
R 2

= cos yb. Thus the presence of a mirror makes it pos-
sible to obtain degenerate self-oscillation at gob other than
~/2. For Rz(1 and b,co~@0 (nondegenerate case), we
have

abL cosyb
V1—

1+( hcow) 1+r
(14e)

It can be verified that for R~=O, Eqs. (13a) and (13b)
reproduce Eqs. (7a) and (7b). Let us now consider degen-
erate and nondegenerate cases separately.

(a) Degenerate case He. re we have hcv~=O The c. ondi-
tion (13b) is automatically satisfied. The condition (13a)
gives

cos pb R22

(EC07.) =
i ) R2 ( cos pb

Sin Pb
(12b)

In the general case r%1 the condition (8) can be
separated into real and imaginary parts and can be ex-
pressed as follows:

4.00

cosvo( coshuo —Rz coshuo)=(1 —Ri) cosv, coshu, ,

(13a)

sinvo( sinhu 0
—Rz sinhuo) = (1—

Rz ) sinv, sinhu, ,

(13b)

where

Qp =Op lnr (14a)
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FIG. 1. Plots of r vs cp& for the case of a PCR using Eq. (15)
when degenerate self-oscillation takes place. The values of R,
taken are Rz =0.25, 0.5, and 0.75. The value of a&L =4.0. Re-
sults apply to the sillenite family of crystals.

FIG. 2. (a) Plots of r vs Ace~ for the case of a PCR when non-

degenerate self-oscillation takes place. The values of R& taken
are Rz =0.25, 0.375, and 0.5. The value of a&L =4. Equations
(13a) and (13b) are used for calculations. The results apply to
the sillenite family of crystals. (b) Plots of y~ vs Ace~. Every-
thing is same as in (a).
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—1 1 —rr =exp —cosh R cosh a L sing2 b b 1+

1 —r+(1—Rz) cos abL cosy~ 1+r

1 —r—abL sinyb 1+r (15)

This is a transcendental equation for r that requires a nu-
merical solution. It may be noted that Eq. (15) can be
satisfied only when r ~1. The solution r =1 is a trivial
solution of Eq. (15). Self-oscillation conditions for r =1
have been already obtained earlier. Here we are interest-
ed in the solution of Eq. (15) when r%1. In Figure 1, we
have plotted r versus yb for Rz=0.25, 0.5, and 0.75,
keeping abL =4.0. It can be seen that r decreases when

yb is increased. There is a finite range of yb for which
the solution r%1 exists, and this range is reduced when

Rz is increased. For Rz=1, this range reduces to zero,

and we get r =1 for all yb.
(b) Nondegenerate case. Here we have b,coo.AO. The

conditions (13a) and (13b) are to be simultaneously con-
sidered. Here also we are interested in r%1. The Eqs.
(13a) and (13b) are solved numerically. In Figs. 2(a) and
2(b) we have plotted r and pb versus bcor, keeping
abL =4 and Rz =0.25, 0.375, and 0.5. The plots in Fig.
2(a) show a minimum for hcor=O and two maxima equal-
ly spaced from bco~=O. The plots in Fig. 2(b) show the
central maximum at hcor=0. Here also, r values are
different from 1 only for a certain range of Ace~ values.

C. Phase-conjugate oscillator (PCO)

The self-oscillation conditions in this most general case
are complicated and can only be determined numerically.
The situation is considerably simplified in the special case
of equal intensity pumps r =1. The self-oscillation condi-
tion is then

2+R)Rqcos+(yb+L+2) (yb L+2) +4[(yb+L+2)(yb L+2)

+R,R~(yb+L 2)(y~ —L 2) yb—+Ly—b L(R, +R~)]=0, (16)

where %=2kd, k =
—,'(k++k ), and d is the total length

of the resonator. For %=(2p+1)n/2 where p is an in-

teger, the condition (16) can reduce to

R, yb+Lyg L+2Rb(yt, +L+yq L)+4R, =0,
where

(17)

R, =(1—
R i)(1—R~),

Rb —1 —R)R~,

Rc =1+R)R

(18a)

(18b)

(18c)

For R
&
=0, condition (17) coincides with condition (10).

For Rz =1, Eq. (17) gives abL sinter~ =(1+R, )/(1 —R, )
and htor=O For R&.,Rz (1 and htor=O (degenerate
case), we have

I

trix formulation of Paper I has been applied. The
coeScients M+, N+, P+, and Q+ appearing in the 4X4
matrix K are again different and are now listed in Appen-
dix B. The phase-conjugate reflection and transmission
coeScients can be obtained by using Eqs. (10) to (13) of
Paper I and Appendix B of this paper. The self-
oscillation condition is given by Eq. (14) of Paper I. We
now investigate self-oscillation in PCM, PCR, and PCO
under these conditions for this case.

A. Phase-conjugate mirror (PCM)

For PCM, power reflection coefficient R is

2

S+L
sinh

2

2Rb
abL = sin/lb+ sin lpb—

R,
R R0 C

Rb~
(19)

R =m

cosh
S+L lnmr+

2 2

(21)

2R,
abL slngb

Rb
(20a)

For sin q&b
=R,R, /R bz, Eq. (19) reduces to

a&L sing&=2R, /Rb For R, , Rz .(1 and b,cur@0 (non-
degenerate case), we have

where

ab
m =

af

+ 7b+

(22a)

(22b)

R R RbSin gb
(b,co~) =

Rb sin pb
(20b) (22c)

IV. CASK 2

In this case af Nab and yf =yb. This situation occurs
in crystals such as BaTi03 and SBN. Here also, the ma-

The oscillation condition is obtained by equating the
denominator of Eq. (21) to zero. Comparison of Eq. (21)
with Eq. (15a) of Paper I for R suggests that to obtain
the oscillation condition one may replace y+, a, and r of
Paper I by S+, abT, and mr, respectively. One obtains
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the following self-oscillation conditions:

abL = 1+r
F] r

exp(n. F2 /F, )1+( her) 1+ exp(nFz/F, )

where

afL = ( I+r)[1+(beer) ]f 1+ exp(vrF2/F, )

(23a)

(23b)

sinh(S+ L /2)

S+L lnm
cosh +

2 2

sinh(S* L /2)

cosh
S*L lnmr2+ 2

(26)
2

where

B. Phase conjugate resonator (PCR)

The self-oscillation condition for the PCR is

and

F, =
~
cosy+(Acor) sing&~ (23c)

yb (m -'+r )
S = =yb T .1+r (27)

F2= sing —(beer) cosy . (23d)

1+r
abL coscp=me

1+mr (24a)

1
r =—exp(m tang) .

m
(24b)

For r =1, one obtains

Here y =
pb =yf. The conditions (23) can be also ex-

pressed in terms of m. For example, for b,roe=0 (degen-
erate case), we obtain

R21+
m

cos(abLT cosy) .

Cotnparison of Eq. (26) with Eq. (21) of Paper I suggests
that one may replace y+, y, a, r, and R2 of Paper I by
S+, S, ab T, mr, and R2/m, respectively, to obtain con-
dition (26). Now, we shall consider the degenerate and
nondegenerate cases separately.

(a) Degenerate case. Here b,ror=O. The self-oscillation
condition becomes

R2r= —'exp cosh ' ' cosh(abLTsiny)

abL = 2rr exp(vr tang)
cosy 1+ exp(m. tang&)

(25) +abLT sing (28)

In Ref. [3], it is stated that self-oscillation is not possible
for the case of PCM under consideration. Our results are
in contradiction with this assertion.

25

20

This is a transcendental equation for r requiring numeri-
cal solution. Let us consider some special cases.

(i) q&=0. From Eq. (28), we have cos(abLT)
—

( m —R 2 ) /( m +R 2 ). This suggests that
vr/2~abLT m. For R2=0, abLT=~ and for R2=m,
abLT ~/2. Thus the smallest value of abLT is one-half
of the value for PCM with mr = 1. For
abLT=m —cos '[(m —R2)/(m+R2)], we have mr = l.
For large m, abLT =~.

(ii) y = m /2. We must have abLT ~ cosh '[(R 2

+2m)/Rz]. For R2=0, self-oscillation is impossible.
For R2 =m, we have abLT ~ 1.763 and mr 5.828.
Thus for y=rr/2, the presence of a mirror (R2%0)
makes self-oscillation possible.

(iii) y= —m/2. For R2=0, the situation is the same
as that for the case with y=~/2. For R2=m, we have
abLT ~ 1.763 and mr ~ 0. 172.

I

—0.5

FIG. 3. Plots of r vs y for the case of a PCR using Eq. (28)
when degenerate self-oscillation takes place. The values of m
taken are m =0.4, 0.6, and 0.8. The values of R2 and abL are
R& =0.75 and abL =3.0. Results apply to the family of crystals
such as BaTi03 and SBN.

abLT=vr[1+(bror) ],
r =—[mo+(m o

—1)' ],=1
m

(29a)

(29b)

In Fig. (3), we show the plots of r versus qr for various
values of m at Rz =0.75 and abL =3 using Eq. (28). For
m ) 1, the solution for r does not exist.

(b) Nondegenerate case. Here hro~&0 Let us con. sider
some special cases.

(i) &p=0. The self-oscillation conditions are given as
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R2
mo= 1+

m

R2
cosh( m Ate~) +

m
(29c)

Ecol
cosh abLT

1+(b,d'or)

as

n.[1+(b,cor) ]

r =—exp 2 sinh
1 —1

m

1/2
2

cosh
26$7

(30a)

(30b)

For mr = 1, we have r =R z 'tanh (n. /2b, toe).

(ii) tp=+m. /2. The self-oscillation conditions are given
R2

(1—mR ) 1—
1 m

R2
(1+mR, } 1+ +4+R &Rz

m

(33)

The + and —signs apply for p even or odd. Equation
(33) cannot be satisfied since the right-hand side is less
than 1. Therefore, self-oscillation is not possible for these
cases. For tp=+m/2, the self-oscillation condition for
2kd =p~, where p is an integer, is

C. Phase-conjugate oscillator (PCO)
(b,cur) cosh

R2
(1+mR, ) 1+ +4+R,Rz

The self-oscillation condition for the PCO is, in gen-
eral, complicated and can only be determined using nu-
merical methods. The situation is highly simplified in the
special case mr =1. The self-oscillation condition then
can be compared with that for the PCO of Paper I. In
fact, if we replace y+, y, a, R, , and R2 of Paper I by
S+, S, ab T, mR t, and Rz/m, respectively, the oscilla-
tion condition for the PCO here coincides with that for
PCO of Paper I. Let us consider the degenerate and non-
degenerate cases separately.

(a) Degenerate case We ha. ve btor=O. For y=O and
2kd =pm, where p is an integer, the self-oscillation condi-
tion can be written as

R2
(1—mR } 1—

1 m

(b,toe) cosh

R2
(1+mR, ) 1+

R2
(1—mR ) 1—

m

(35)

(34)

The + and —signs apply for p even or odd. For
2kd = (2p + 1)n./2, the self-oscillation condition is

(1—mR&) 1—R2
In Eqs. (34) and (35) r must satisfy the inequality
R, &r &R2 '.

cos(abLT) =—
R2(1+mR, ) 1+ +4(/ R,R zm

(31)

The + and —signs apply for p even or odd. For
y=+n/2, the self-oscillation condition is given by

cosh(abLT)

R2
(1+mR, ) 1+ +4+R,Rz cos(2kd)

(1—mR, ) 1—

(32)

Since the numerator of Eq. (32) is always positive, the
denominator must be negative. This implies that r should
not be between R1 and R 2 ', i.e., r (R, or r & R 2

'. The
interesting point to note here is that unlike the parallel-
polarized case, self-oscillation here is possible for
y =+~/2.

(b) ¹ndegenerate case. Here we have btor&0. For
pe=0 and 2kd =pa, where p is an integer, the self-
oscillation condition becomes

V. CONCLUSIONS

In this paper, we have applied the theory of pho-
torefractive phase-conjugate Fabry-Perot oscillators
developed earlier [1] in Paper I to the case when the off-
axis counterpropagating pump beams are orthogonally
polarized instead of parallel polarized. Two cases were
considered in this paper. For the first case, which applies
to the sillenite family of crystals such as Bi,2Si02O, the
amplitudes of the coupling coefficients for forward and
backward gratings are the same but the phases differ by

For the second case, which applies to the family of
crystals such as BaTi03 and SBN, the amplitudes of the
coupling coefficients are different but they have the same
phases. The self-oscillation conditions for the phase-
conjugate mirror, phase-conjugate resonator, and phase-
conjugate oscillator were obtained for both these cases.

In the first case, the PCM was earlier [3] shown to ex-
hibit degenerate self-oscillation for yb=m/2. We have
shown in this paper that for yb&0 and m/2, PCM can
exhibit nondegenerate self-oscillation. It is also shown
that when the pump beams have equal intensities the
presence of a mirror in PCR makes it possible to obtain
degenerate self-oscillation at yb other than ~/2. The
coupling coefficient abL required for degenerate self-
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oscillation is one-half of that for the PCM when the mir-
ror is perfectly reflecting. However, for a perfectly
reflecting mirror, nondegenerate self-oscillation is impos-
sible. For nondegenerate self-oscillation to occur, the
mirror reflection coefficient R2 must be less than cos yb.
For the PCO, presence of two mirrors in fact increases
the value of the coupling coefficient abL required for
self-oscillation by a factor (1+R&Rz)/(1 —R&Rz). The
self-oscillation condition for the PCO depends on the
reflection coefficients R, and R 2 of two mirrors, the cavi-

ty length d, the wavelength A. of the pump waves, and
linear refractive index n0 of the photorefractive material
at A, .

For the second case, the results are quite similar to
those in the isotropic mixing. In fact, the results of Paper
I are special cases of the results obtained for the second
case of anisotropic mixing. When the ratio of the cou-
pling coefficients m =yb/yf is unity, results for the iso-

tropic and anisotropic mixing coincide. The PCM for the
second case can exhibit self-oscillation except when
y=m/2. For the PCR, self-oscillation is possible for
y=m. /2 in the presence of a mirror. The coupling
coefficient abL required for degenerate self-oscillation in

PCR is one-half that for PCM when R2 =m and r = 1/m.
For the PCO, degenerate self-oscillation is possible when
y=+~/2, which was not possible in the isotropic mixing
(see Paper I). However, as in the isotropic case, PCO
cannot exhibit nondegenerate self-oscillation for q=0.

For both crystal types considered in this paper with
anisotro pic mixing, the self-oscillation conditions for
PCO do not depend upon the position of the photorefrac-
tive crystal inside the cavity.

1 —r 1 —r
+ Vb+ 1+ 7 f+

1 —r
Cx+—

S+L
sinh

2

lnr

2

1+r
+

sinh(S+ L /2 )
T

S+L
pb+ slnh

2

lnr
2

and

I,=
I A I'+ A, I',

r =
I
A

I /I Asl

APPENDIX B

ca+ 0

1N+=
Q+

exp(S+ L /2 ),

ff+
P+ = exp(S+L/2) As AsP+

CX+ 0

= 1 Vb+
Q+ = exp(S+L/2) A, A6P+

a+ I0

In this appendix, we give the matrix elements of the
matrix K for a family of crystals such as BaTi03 and
SBN:

APPENDIX A

In this appendix, we give the matrix elements of the
matrix K for a sillenite family of crystals:

where

S+ =yb+T,

m '+r
1+r

M+ = „exp( —S+L/2) tt+' — '
I Asl'I Asl'p+'

0

1+mr S+L lnm
a+ = sech +

2 mr

1N+=
e+

exp( S+L /2), —

Vb+
exP( S+L/2) —As A6P+

I0

where

1 ~b+
exp( S+L /2) A—, A 6P+

a+ I0

and

1+rp+=&m V'r

I,=
I
A I'+

I
A I'

m =ab/af .

sinh(S+L /2)

S+L lnmr
b+ cosh +

2
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