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Phase properties of real field states:
The Garrison-Wong versus Pegg-Barnett predictions
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A comparison is made of predictions for the phase variances and the phase distribution functions
obtained from the Garrison-Wong and Pegg-Barnett formalisms for real field states that include
number states, coherent states, and squeezed vacuum states. It is shown that both approaches lead
to qualitatively diferent phase distributions. The Garrison-Wong approach predicts an anisotropy
of the phase distribution that is inconsistent with the symmetry of the Wigner and Q functions.

PACS number(s): 42.50.Dv

I. INTRODUCTION

The problem of correct definition in quantum theory
of an operator corresponding to the phase of a one-mode
quantum field has a long history and has provoked many
discussions and controversies. There have been numer-
ous attempts to solve this problem, and the best known
solution is that of Susskind and Glogower [1] who intro-
duced the cosine and sine operators of the phase (see also

[2])
In 1970 Garrison and Wong [3] constructed the self-

adjoint operator, canonically conjugated to the number
operator on the dense set of the state vectors in the
Hilbert space. Later on, a family of similar phase oper-
ators was proposed by Popov and Yarunin [4], Damask-
insky and Yarunin [5], as well as Galindo [6]. These op-
erators, however, have not attracted much attention be-
cause of their rather complex structure that made them
impractical.

Recently, Pegg and Barnett [7-9] have suggested an
alternative approach using the states of a well defined

phase as a starting point. To construct the Hermitian
phase operator they restrict the state space to a finite

(s + 1)-dimensional state space 4 spanned by the first
s+1 number states. The main idea of this approach is to
calculate all relevant physical quantities such as means,
variances, etc. in this finite-dimensional state space first,
and only after all calculations were performed s is allowed

to tend to infinity. The Pegg-Barnett phase formalism
has been widely applied to calculate the phase proper-
ties of a number of single- and two-mode field states (see
[10] and papers cited therein). The predictions of the
Pegg-Barnett formalism for the phase fIuctuations were
compared with the existing measurements [11,12] (modi-
fied by Nieto [13])of the phase fluctuations of a coherent
laser beam exhibiting good agreement with the experi-
mental data [14—16].

After the successes of the Pegg-Barnett approach, the
Garrison-Wong phase operator, which is equivalent to the
Popov —Yarunin and Galindo phase operators, was com-
pared with the Pegg-Barnett operator by Bergou and En-

glert [17] and Popov and Yarunin [18]. In both the latter
papers one can find statements that the Pegg-Barnett
phase operator is an "approximation" to the Garrison-
Wong phase operator. Both approaches give the same
results for highly excited states, but there are essential
differences for the states with few photons. These dif-
ferences have definite physical implications and raise the
question: which approach gives a more acceptable phys-
ical interpretation? The definite answer to this question
can be supplied by the experiment, but the predictions
based on the two approaches can be confronted with the
information available from other sources (like the Wigner
or Q functions).

In this paper we compare the Garrison-Wong (GW)
and Pegg-Barnett (PB) phase approaches. In Secs. II
and III we briefly review both approaches and explain
the main differences between them. In Sec. IV we calcu-
late the phase variances and the phase distributions from
the two alternative approaches for the number states, co-
herent states, and squeezed vacuum states. We show that
the polar plots of the phase distributions for the number
states and the squeezed vacuum states obtained from the
GW formulas have asymmetric shape which is inconsis-
tent with the symmetry of the Wigner function and the

Q function for such states. The distributions obtained
according to the PB approach do not suer from such
asymmetry. For large numbers of photons predictions
from both formalisms, as expected, are indistinguishable.

II. THE GARRISON-WONC PHASE
OPERATOR

(gl&Gwlf) =
8P

d8g*(e '
) 0 f(e 's),

for any g, f C H, where H is the Hilbert space in the
unit disk of the complex plane, and 00 is arbitrary. Here,

Garrison and Wong [3] constructed the phase operator

Paw using the relation

8p+27r
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(~If)= f «g'(~ ')f(~ *').
8p

(2)

The boundary value of f is given by a convergent Fourier
series

we have changed the sign with respect to the original GW
paper and introduced arbitrary 8p. The inner product in
82 is defined by

8p+27r

From Eq. (9) we have

Hp+2x

(glfGWIf) = f «(gle)()(elf)
Hp

If we take the field states
I f) in the form

If)= ) f In)
n=O

we then have

(io)

which does not contain coefficients f„with negative n.
Subsequently, Popov and Yarunin [4] established the

connection of this operator to the Susskind and Glogower
[1] "exponential" phase operators Ey, which has the form

PGw = Hp + vr + i ln(1 —e' ' E+) —ln(1 —e ' ' E )

(4)

The operators E and E+ ——(E )t are defined by the
annihilation and creation operators a and at of the mode

(Hlf)= f(e ')= ).f e '"'
n=O

(12)

which has the same form as Eq. (3), and we can consider
the phase operators (1) and (4) as equivalent. However,
we should keep in mind that the GW phase operator is
defined on the dense set of the state vectors which, for
mathematical consistency and the requirement that the
number-phase commutator should be i, imply f—(—1) =
0.

Since the states (6) are not orthogonal, we have

E =u(du)-'~',
E+ —(d.) '~'a, -
[E,E+] = IO)(OI,

where IO) is the vacuum state.
Let us consider the "phase states"

8p+27r

Paw 8 f «~"le)(~l (» ')
Hp

and for the expectation values

Hp+2m

(13)

1
IH) = ) exp(inH) In),

27r
(6)

(8I E+ ——exp( —i8) {8I.

The states (6) are not orthogonal but they allow for the
resolution of the identity operator

Hp+2m

d8 IH)(HI =1

which are the right and left eigenstates of the operators
E and E+,

E IH) = exp(iH) IH),

(f14'Gwlf) W dH 8"l(Hlf) I' (» 1) (14)
8p

This means that the quantity l{8lf)l cannot be inter-
preted as a phase-distribution function. To find the
Garrison-Wong phase-distribution function we have to
calculate the quantity

00 2

PGw(8) = IGw{Hlf)l = ).f Gw{HIn)
n=O

where the vector IH)Gw is the eigenvector of the GW
phase operator. The function Gw(Hln) has a quite com-
plex structure [3,4, 18], but it can be found from the re-
cursive formulas given by Garrison and Wong [3], which
are

Applying Eqs. (7) and (8) to the operator (4) we can
rewrite it into the form Gw(Hln) = —»n

I I 4 (8)
1 . (8 —Hp&

(16)

QGw = 8() + vr + x

Hp+2~

d8 I8)(HI (in[1 —e 'i 'i]

Hp

where, for n & 1,

—in[1 —e'(8 '1])
Hp+2~

Hp+2vr

Hp

18 009.
p„(8) = — d8' ln I8' —8I e'"

2'
8p

Since the states (6) are not orthogonal, they are not the
eigenstates of the GW phase operator.

1 inHp + inH

2n -'
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and

yp (8) —e
—7o (s)

S

4PB = ) .8"
IH ) (8 I

m=o
(26)

pp(8) = —
2 + —[(27r + Hp —8) 1n(2ir + 8ii —8)4'

+(8 —Hp) ln(8 —Hp)]. (20)

~ . exp[i(n —n')8p] In)(n'IGw= p+rr+ g .
( I)

n, ra~

(21)

We shall use formulas (16)—(20) to calculate the GW
phase distribution for some real states of the field.

Substituting (6) into (9) and performing the integra-
tion over 8 yields the following number-states expansion
for the Garrison-Wong phase operator:

and the expectation value of the kth power of the phase
operator can be calculated as

S

(fl4PBlf) = ) .8" 1(8 If) I'
m=o

(27)

where the quantity (8ml f) I
gives a probability of being

found in the phase state IH ).
When "physical states, " according to their definition

by Pegg and Barnett [8, 9], are considered, we can sim-
plify the calculation of the sum in Eq. (27) by replacing
it by the integral in the limit as s tends to infinity. Since
the density of phase states is (s + 1)/2n, we can write
Eq. (27) as

which leads to the number-phase commutator

[~'a, 4Gw] = —i (1 —IHo)(Hpl), (22)
(fl&PBlf) =

8p+2m'

dH 8"PPB (8), (28)

and for the states for which (8plf) = 0, the second
term on the right-hand side vanishes giving the value
demanded by Garrison and Wong.

where the continuous-phase distribution PPB(8) is intro-
duced by

P B(8) = lim „ l(8 If)l' (29)

III. THE PEGG-BARNETT PHASE FORMALISM

Pegg and Barnett [7-9] introduced the Hermitian phase
formalism, which is based on the observation that in a
finite-dimensional state space the states with the well-
defined phase exist [19]. Thus, they restrict the state
space to a finite (s + 1)-dimensional space @ spanned
by the number states IO), Il), ... , Is). In this space they
define a complete orthonormal set of phase states by

1
IH ) = ) exp(in8 ) ln), m =0, l, ..., ss+1 (23)

where the values of 8 are given by

27rm
Hm =Hp+ s+1 (24)

The value of Hp is arbitrary and defines a particular basis
set of (s+ 1) mutually orthogonal phase states. The
Pegg-Barnett (PB) Hermitian phase operator is defined

S

&PB = ).8 IH )(8 I.
m=o

(25)

Of course, the phase states (23) are eigenstates of the
phase operator (25) with the eigenvalues 8m restricted to
lie within a phase window between 8o and 8o + 27'. The
Pegg-Barnett prescription is to evaluate any observable
of interest in the finite basis (23) and only after that take
the limit s —+ oo.

Since the phase states (23) are orthonormal,
(8 IH ) = b, the kth power of the Pegg-Barnett
phase operator (25) can be written as

and 8 has been replaced by the continuous-phase vari-
able 8,

Recent studies of phase properties of the fields gener-
ated in nonlinear optical processes show that the phase
distribution (29) or the joint phase distribution (for the
two-mode field) are new representations of the quan-
tum state of the field, alternate to the Q function or
the Wigner function, and they carry quite a bit of es-
sential information characterizing the quantum state of
the field. For example, when the field is a superposi-
tion of well-separated coherent states the phase distri-
bution splits into separate peaks clearly indicating the
components of the superposition [20], the phase distribu-
tion splits into separate peaks when the transition from
the second-harmonic generation to the down-conversion
regime takes place [21], the multiplicity of the phase dis-
tribution in the multiphoton down conversion indicates
clearly the multiplicity of the process [22], etc.

Inserting (23) and (24) into (25) allows for getting the
explicit number-state representation of the PB phase op-
erator, which has the form [9]

P S7C
WpB Hp + s+1

+ 2m . exp[i(n —n') 8p] In) (n'I

s + 1 -, exp[i (n —n')2vr/(s + 1)] —1
nylon'

It is easy to see that if the limit s —+ oo is taken in the
PB phase operator (30) one obtains the GW phase oper-
ator (21). Despite this relation, the two approaches lead
to quite diferent predictions. The source of the diEer-
ences is the noncommuting character of the operations of
taking the limit s ~ oo and taking the expectation value
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(f(»m 4»~)) A»m (f(4FB)), (31)

IV. A COMPARISON OF THE
GARRISON-WONG AND PEGG-BARNETT

PREDICTIONS

To make the differences between the GW and PB
approaches more explicit we shall calculate the vari-
ances and the phase-distribution functions, using both
approaches, for the number states, the coherent states,
and the squeezed vacuum. To calculate the variance of

I

where the left-hand side represents the Garrison-Wong
term, the right-hand side, the Pegg-Barnett term, and

f(P) is any function of the phase operator. Depending on
which order we perform these two operations, we obtain
different results. In the next section we compare the
predictions of the two approaches for several examples of
the field states.

OO n

&Gw =
6

+ ) ln)(nl). ~,
n=l k=1

( 1)n-n' t'

+
n —n' (n —n'

n&n'

x (ln)(n'I+ ln')(nl).

kik=n'+1 /

(32)

Let us consider a field state with the number-state ex-
pansion

If& =) .b e*"'ln)

where b„ is real. In this state the GW variance is given
by

the GW operator we can use the form (21) of the opera-
tor (we assume later on Hp = —x) to calculate the square
of this operator,

oo n —1 "-"'
(&4 )'=(4" ) —(4 )'=

6
+ ) b'). Z. + 2).

n=i A, =l n)n'
) — b„b„,

k=n'+1
(34)

(+PFB) = lim [(NFB) (WpB) 1

~2 ( 1)II= —+4), , b„b„
n&n'

(35)

Even superficial inspection of formulas (34) and (35)
shows that the phase variances calculated according to
GW and PB prescriptions are different.

For the number state In), for which only b„= 1 is
nonzero, the variance (34) is

7r2
"

1
(&Pew)' = —+ ) .~„

k=1
(36)

where we put y = 0 for simplicity.
For the same state (33), the phase variance calculated

according to the Pegg-Barnett prescription, which says
that the expectation value should be taken before the
limit s -+ oo is taken, is given by [9]

and we have different values of the phase variance for
different n in the GW approach: for the vacuum (n = 0)
it is vrz/6 and it becomes m2/3 in the limit n -+ oo. This
is in a marked contrast with the PB approach which gives
the value m /3 for any number state In). So, in the PB
approach all number states are states with random phase,
while in the GW approach the phase of any number state
(also vacuum) is not random. In Fig. 1 we show the phase
variances predicted by both approaches for number states
versus the photon number n. The GW phase variance
asymptotically approaches the value n z/3 for large n

For the coherent states, we have

b„=exp(—lnl /2) (37)

where n = lnl is the mean photon number [n
lnl exp(iP), and we set P = 0 later on). In Fig. 2 the
phase variances for coherent states are plotted against
the mean photon number n. It is seen that as the mean
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2.0,' 1.0
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n
3.0 4.0

FIG. 1. Plot of the phase variances (DPps) (solid line)
and (&Paw) (dashed line) vs n for the number states

FIG. 2. Plot of (b,/ps) (solid line) and (Draw)
(dashed line) vs the average photon number n for the coherent
states.
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number of photons increases the difference between the
two variances decreases. This means that for n )) 1 the
two-phase approaches give indistinguishable results, but
for n & 1 the differences are visible.

One more example we consider here is the squeezed
vacuum for which the coefficients b„are defined by [23]

0.3

0.0 '
-3.14

n=O

0.2
Qi

0
0.1

/

0.0 '

-3 14 -1 57

n=l
1.57 3.14~, (—tanhr) "~, n even

+gosh r (n/2)! 2

0, n odd.
(38)

0.3 0.3

0

The variances for the squeezed vacuum are plotted
against the squeeze parameter r in Fig. 3. Asymptoti-
cally, for large r, both variances approach the value m /4,
but they start from difFerent values for r = 0 (the vac-
uum). Generally, it is clear that the GW phase variance
is smaller than the PB phase variance. This means that
the uncertainty in the GW phase measurement should
be smaller than the corresponding uncertainty for the PB
operator. Why is it so? To answer this question we study
the phase distributions obtained from both formalisms.

The phase distribution for the number states that is
obtained from the GW formalism can be calculated from
formulas (15)—(20), and examples of such distributions
were given in the Garrison and Wong paper [3]. In Fig. 4
we show some examples of the GW phase distributions
for the number states. As Garrison and Wong [3] con-
cluded, their phase distributions show oscillations with
n+ 1 peaks for the n-photon state. Even for the vacuum
the distribution is peaked. This means that the vacuum
is anisotropic, i.e., there is a preferred phase even for the
vacuum. The reason for this is the vanishing of the GW
phase distribution at the ends of the phase window, which
in turn is the consequence of the requirement that the
number phase commutator should be —i [i.e. , f (—I) = 0].
So, forcing the phase operator to obey this commutation
relation introduces anisotropy to the phase distribution.
In the PB approach the phase of all number states is
distributed uniformly and there is no anisotropy in the
phase distribution. To visualize better this anisotropy we
show in Fig. 5 the polar plots of the phase distribution for
several number states. The anisotropy of the GW phase
distribution is clearly seen. The PB phase distribution
is, of course, isotropic. If one compares the symmetry of
the phase distribution with the symmetry of the Wigner
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FIG. 4. Graphs of the phase distributions Pps(g) (solid
line) and PGw(e) (dashed line) for the number states with
n = 0, 1, 2, 4 in the rectangular coordinate system.
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and Q functions (which for the number states are sym-
metrical with respect to the origin), one notices that the
symmetry of the GW phase distribution is inconsistent
with the symmetry of the Wigner and Q functions. Is the
anisotropy a mathematical artifact, or has it a physical
meaning? We leave this question open.

In Fig. 6 the phase distributions for a few coherent
states with different mean numbers of photons are shown.
Again it is seen that the GW phase distribution is nar-
rower than the PB distribution, but the differences be-
tween the two rapidly disappear as the mean number of
photons increases. In the case of coherent states the dif-
ferences between the two approaches are less pronounced,
because the phase peak in the center appears in both ap-
proaches and the fact that the GW phase distribution is

4.0
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FIG. 3. Plot of (AgpB) (solid line) and (APGw)
(dashed line) vs the squeeze parameter r for the squeezed
vacuum.
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FIG. 5. Same as Fig. 4, but in the polar system.
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FIG. 6. Graphs of Pps(8) (solid line) and Pow(8) (dashed
line) for the coherent states with n = 0.25, 2 in (a) the rect-
angular coordinate system and (b) in the polar system.

FIG. 7. Same as Fig. 6, but for the squeezed vacuum
states with r = 0.1, 1.

zero at the ends of the window has less effect.
The phase distributions for the squeezed vacuum state

are shown in Fig. 7. The two-peak structure of the phase
distribution develops in both approaches, and asymptot-
ically when the squeeze parameter r tends to infinity
both GW and PB distributions approach two b func-
tions located at 8 = km/2. However, if one considers
the symmetry of the phase distribution, which is more
visible from the polar plots presented in Fig. 7(b), one
sees that the GW exhibits the asymmetry which is in-
consistent with the elliptic shape of the contours of the
Q function for such states. In Fig. 7(b) we have delib-
erately expanded the scale along the horizontal axis to
emphasize this asymmetry. The PB phase distribution
exhibits twofold rotational symmetry which is consistent
with the symmetry of the Q function for the squeezed
vacuum [23—25].

The above few examples show that the Garrison-Wong
approach always gives the phase distributions that are
narrower than the corresponding distributions obtained
from the Pegg-Barnett approach. This also means that
the GW phase variances will be smaller than the PB
variances. The reason for this narrowing is the require-
ment that the number-phase commutator should be —i,
which in effect leads to the condition PGw(+x) = 0, and
because PGw(8) should be normalized, there must be
a phase peak even for the vacuum states. This require-
ment introduces an anisotropy to the phase distributions,
which is inconsistent with the phase information that one
would expect from the Wigner and Q functions.

V. CONCLUSIONS

In this paper we have compared predictions of two
quantum phase formalisms: the Garrison-Wong formal-
ism and the Pegg-Barnett formalism. The phase vari-
ances and the phase distributions have been calculated
for the number states, coherent states, and the squeezed
vacuum state. We have shown that the Garrison-Wong
phase distribution is narrower than the Pegg-Barnett dis-
tribution, although for real physical states the quantita-
tive differences between the two can be irrelevant. There
is, however, one important qualitative difference between
the GW and PB formalisms. The GW formalism intro-
duces the anisotropy into phase distributions, and even
the vacuum is anisotropic. This anisotropy is a conse-
quence of their requirement that the number-phase com-
mutator should be —i, i.e., the requirement that the num-
ber and phase operators are a Heisenberg pair. This in
turn gives zero values of the phase distribution at the
ends of the phase window, and since the distribution is
normalized the phase peak must appear even for the vac-
uum state. This striking anisotropy of the phase dis-
tribution is best visible when polar plots of the phase
distribution are made. Such asymmetry is inconsistent,
however, with the symmetry of the Wigner and Q func-
tions of Beld states.

The Pegg-Barnett formalism does not suffer from any
"symmetry-breaking" problem. The symmetry of the PB
phase distribution is consistent with the symmetry of the
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Wigner and Q functions. So, there is a qualitative dif-
ference between the two formalisms in predicting phase
properties of optical fields. This difference has its origin
in a di8'erent understanding of the canonically conjugate
variables [26], and it has basic character.
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