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This paper presents a general theory for a continuous quantum-nondemolition measurement of
photon number. This theory treats a time-distributed measurement as a sequence of measurements
in which at most one photon can be detected in an infinitesimal time, and shows that the average
number of photons remaining in the measured Geld increases when a photon is detected and decreases
when no photon is detected. The state of the measured system evolves nonunitarily and reduces
continuously to a number state whose eigenvalue is uniquely determined by the average rate of pho-
todetection and whose probability distribution coincides with the initial photon-number distribution.
Applying the general theory to typical quantum states —coherent, thermal, and squeezed states—
shows that the continuous-state reduction towards a number state depends strongly on the initial
photon statistics. Despite the nonunitarity of state evolution, an initially pure state keeps its purity:
the initial density operator becomes diagonalized only if the readout information is discarded.

PACS number(s): 42.50.Ar, 03.65.8z, 42.50.Dv

I. INTRODUCTION

State reduction in quantum measurement is one of the
enigmas that has haunted physicists since the dawn of
quantum mechanics. According to von Neumann's quan-
tum theory of measurement [1],the measurement process
is divided into two fundamentally difFerent stages. In
the first stage, quantum correlation between the mea-
suring apparatus and the measured system is established
through a unitary interaction; in the second stage, the
apparatus meter is read out, causing nonunitary state
reduction.

This picture, however, cannot be applied to continu-
ous measurements such as photon counting because in
them the apparatus meter (e.g. , a sequence of photo-
electric pulses) is read out continuously and the above
two stages therefore proceed simultaneously [2]. To cope
with this diKculty, Davies and his co-workers developed
an operational theory [3—5] that has been successfully
applied in several examples [6—9]. This approach has
recently been extended to cover the continuous-state re-
duction of single-mode [10—12] and correlated [13]photon
fields, leading to the prediction of such novel phenomena
as measurement-induced Fano-factor oscillations [14] and
the generation of the Schrodinger-cat state [15].

This paper proposes a general theory for continuous
quantum-nondemolition (QND) measurement of photon
number [16,17]. This theory simulates a continuous mea-
surernent as a sequence of infinitesimally weak measure-
ments. By infinitesimally weak, we mean that at most
one photon can be detected within an infinitesimal time

period. A brief sketch of this idea has been presented in
Ref. [16],where computer simulation was used to demon-
strate that the measured photon state reduces continu-
ously to a number state. The present paper proves this
analytically and substantiates the general theory in some
examples.

This paper is organized as follows. Section II provides
a microscopic model for continuous QND measurement
of photon number. Section III develops formulas that
let us use the continuous-readout information (referring
measurement) to keep track of state reduction, and shows
that the average number of photons remaining in the
measured field increases upon photodetection and de-
creases otherwise. Furthermore, it will be shown that an
initially pure state keeps its purity during the measure-
ment process even though the state evolution is nonuni-
tary. Section IV applies the general formulas derived
in Secs. II and III to typical quantum states —coherent,
thermal, and squeezed states. Section V shows that al-
though the physical condition does not appear to differ
between situations in which the readout information is
used to renormalize the initial density operator and situa-
tions in which the detector is switched on but the readout
information is not used, the state evolves differently in
these two kinds of situations. When the readout informa-
tion is not used, the state collapses into a mixture of num-
ber states. Section VI proves that the state continuously
reduces to a number state whose eigenvalue is uniquely
determined by the average rate of photodetection and
whose probability distribution coincides with the initial
photon-number distribution. Section VII shows results
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of computer simulation. Section VIII discusses how our
proposed measurement scheme preserves the initial pho-
ton statistics and thus ensures that the photon number
is a QND observable. Section IX summarizes the main
results of this paper.

II. MICROSCOPIC MODEL
FOR CONTINUOUS QND PHOTODETECTION

P.-.(At) = Up. (o) 8 P.(o)U' (2.1)

A continuous measurement can, in general, be con-
structed as follows. A measurement time is divided into
infinitely many infinitesimal intervals. In each interval,
the system to be measured is coupled to the measuring
apparatus by means of a unitary interaction and the ap-
paratus meter is read out after the interaction. Depend-
ing on the readout, the projection is made on the mea-
sured system using the probability-operator measure [18],
thereby making the system evolve nonunitarily. This cy-
cle is repeated for each infinitesimal interval, and in each
measurement, the apparatus is initially prepared in a pre-
scribed state. A continuous measurement is constructed
as a sequence of these infinitesimal processes.

A previous paper [19] showed that this procedure cor-
rectly reproduces the Srinivas-Davies model for photon
counting [5] if the Jaynes-Cummings Hamiltonian is used
as the interaction Hamiltonian. The present paper starts
from a Hamiltonian that permits the photon number to
be a QND observable and constructs a continuous QND
measurement of photon number.

Suppose that the system and apparatus evolve accord-
ing to an interaction Harniltonian H;„&. After an inter-
action time At, the coupled system-apparatus density
operator p, (At) becomes

where U = exp( —iH~„&At/h), and p, (0) and p (0) are the
initial density operators for the system and apparatus.
The projection is made using the probability-operator
measure p~" ~ which is related to the readout value X
of the apparatus meter by pi" ~l = 1,8~X), (X ~, where

1, is the identity operator for the system and ]X) is an
eigenvector for the apparatus observable X . The system
density operator p, (At) immediately after the measure-
ment is given by [18]

-
( )

Tr [P- (At)P ]

T - [p - (At) p'""'] ' (2.2)

P, (0) ~ p, (At; X) = Mx(Up, (0) 8 p~(0)U~), (2.3)

where we explicitly write the readout X because the re-
sulting state depends on it.

The continuous measurement is constructed as a se-
quence of these infinitesimal processes. The time evo-
lution of the system density operator after a finite time
t = Ndt is obtained by making N successive measure-
ment cycles:

where Tr and Tr, , denote traces over the apparatus
and over the system and the apparatus. We assume here
that in each infinitesimal process the initial state of the
measuring apparatus is reset to a prescribed initial state.
Thus in each infinitesimal time we repeat the following
cycle: (i) initialize the measuring apparatus to p, (0), (ii)

A

use U to couple the measuring apparatus to the mea-
sured system during a time At, and (iii) apply Eq. (2.2)
to extract the postmeasurement density operator of the
measured system from the total density operator. For
convenience in later discussions, we denote this measure-
rnent cycle as

p, (NAt) Xy, Xz, . . . ) Xx) = Mw( Ma(UMi(UP, (0) 8P~(0)U") 8P",(0)U ) 8 ), (2.4)

H;„~——hgaia(o + o~), (2.5)

where g is the coupling constant between the system and
the measuring apparatus, a~ and a are the creation and
annihilation operators of the photon field, and o. repre-
sents an operator that makes a bistable degenerate device
transit from one state to the other. A good example here
is a molecule with two degenerate potential wells; the

where Xq, Xq, . . . , X~ denote the readout values for each
cycle. If we take the limits At —+ 0 and N ~ oo with
Ndt fixed at t, the sequence of readouts Xq, X2, , X~
becomes a function of time, which we denote as X(t).
The nonunitary state evolution of the system depends
on both the initial state p, (0) and the readouts X(w) for
0 & ~ & t. The time evolution of the system density
operator can therefore be expressed in a functional form
as p, (t, X) = f [X(7) (0 & 7 & t), p, (0)].

Now let us calculate this functional for the interaction
Hamiltonian

I

transition from the left valley to the right, or vice versa,
is caused by a photon, but the photon is not absorbed.
We will henceforth call this device simply an "atom. " It
is easy to show that the Hamiltonian (2.5) satisfies the
QND conditions for the photon number [20]:

(a) [n(o), n(t)] = o

(b) [H;„&(t),n(t)] = 0,

() [H;„,(t), (t)]No,
(d) H;„q(t) should be a function of n(t),

(2 6)

where n(t) = ai(t)a(t) is the interaction-picture repre-
sentation of the photon-number operator. Condition (a)
shows that the photon number is a QND observable,
and condition (b) ensures that the interaction Hamil-

tonian (2.5) is of the "back-action evading" type. The
time evolution of the coupled density operator can be
described as
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I pm g t g

p(t) = p(to) + ) . I
—.

I
"ti d4' dtm[Kna(ti)~ [%De(4)i [KDa(tm)~ p(to)] ]],

m=1
(2.7)

where

P(to) = Pf(to) I&) .(~I (2.8)

is the initial density operator for the system and the atom [21]. Here the subscript f stands for the photon field, and
I indicates that the atom is initially prepared in the "left" valley. Substituting Eqs. (2.5) and (2.8) into Eq. (2.7) and
keeping the terms up to the second-order in At gives

p(to + ht) = p(to) + igbt[pf (to)A ]l),(r] —Apf (to) ~r), ,(l ~]

+
2 ([pf (to)A + n Pf(to)l @ Il) (ll 2APf (to)A Ir) (rI)' (2.9)

where

+[Pf(to)]
T f(&[pf(to)])

' (2.10)

J'[pf (to)] = g~bt Apf (to)n. (2.11)

For the no-count process, p~"~d&(to) is given by if g
~l), ,(L~. Using Eqs. (2.2) and (2.9), we obtain

where

~~ [Pf(to)]
T (~ [P ( )])' (2.12)

where r indicates that the atom is in the "right" valley. If
the atom is found in the right valley after the interaction,
one photon has been detected; if the atom is found in the
left valley, no photon has been detected. We will refer to
these processes as the one-count process and the no-count
process.

For the one-count process, P~" dl(to) is given by lf
~r), ,(r[. Substituting this p~"~& and Eq. (2.9) into
Eq. (2.2), we obtain

I

Since the coupling constant A is proportional to b,t, the
probability of more than one photon being detected can
be neglected in the limit dd -+ 0.

III. STATE EVOLUTION IN A REFERRING
MEASUREMENT PROCESS

In the preceding section we obtained two super-
operators, g and 8, that describe the one-count and
no-count processes. As we shall see, these superopera-
tors give both the probability for each process and the
state immediately after the process. In the following two
subsections we examine the effects of one-count and no-
count processes on the state change of the measured field,
and we formulate continuous measurement as a time se-
quence of these two processes. We also show that the
measured state reduces continuously to a number state
rather than a mixture of number states. Since we treat
only the photon field in the following, we will henceforth
omit the subscript f, which stands for the photon field.

A. One-count process

~&&[Pf(to)l = Pf(to) 2 [Pf(to)n + n Pf(to)]
(g&t)'-

gsAt „s= exp — A b.t pf (to)
2

x exp — A 6t +O((ht) ).
2

N successive operations of Eq. (2.13) yield

(2.13) P(J)dt = Tr[gp(t)]d't = A(n (t))dt,

where

(3.1)

The super-operator P gives both the probability for
the one-count process and the state of the photon field
immediately afterward. We use Eq. (2.11) to express
the probability P(3)dt that the one-count process occurs
within a time dt as

( . gala)8 [Pf(to)] = exp
~

i u — —
~

A~r Pf(to)

g~At )x exp
~

ice —
~

A~r (2.14)

A:—g Lt. (2.15)

where v = NLt, and we have transformed the expression
of the superoperator to the Schrodinger picture. The fac-
tor g~6t in Eqs. (2.11) and (2.14) represents the magni-
tude of coupling between the 6eld and the detector, and
in the following discussion we will use the symbol A for
this quantity. That is,

(3.2)

is the kth photon-number moment just before the one-
count process. The superoperator J' also gives the den-
sity operator immediately after the one-count process in
terms of the premeasurement density operator. Combin-
ing Eq. (2.10) with Eq. (2.11) yields

J'p(t) Ap(t)A

Tr[&P(t)] (n'(t)) '

where t+ denotes a time in6nitesimally later than t. The
average photon number immediately after the one-count
process is thus given as
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( (t ))-=T((t )".]='"'"
(n'(t))

(3.4)
TABLE I. Change in the average photon number by the

one-count process.

( (t+)) ( (t))
(n (t)) (n (t))(n(t))

( '(t)) (3.5)

This equation shows that the average photon number of
the postmeasurement state depends on higher-order rno-
ments of the premeasurement photon statistics. The dif-
ference between the average photon numbers before and
after the one-count process is therefore given by

Initial value

(n)

After one-count process

(n)

(n) + 2 —(„)'+,

3( ) + 3(mI+1

States

number

coherent

thermal

If the field is not in a number state, it is easy to verify that
(ns(t)) ) (n2(t))(n(t)). This means that after the one-
count process, the average number of photons remaining
in the field is increased even though the photon was nei-
ther absorbed nor emitted by the detector atom. If the
field is in the number state, however, the photon num-
ber does not change during the one-count process. This
feature is characteristic of a nondemolition measurement
of the photon number. Table I lists, for typical initial
states, the change in the average photon number for the
one-count process.

B. No-count process

P(S ) = Tr[8 P(t)]. (3.6)

The superoperator 8 also gives the density operator im-
mediately after the no-count process. Using Eqs. (2.14)
and (2.15), we express this operator as

The no-count process is characterized by the super-
operator 8 . The probability P($ ) of no count being
registered in the interval from t to t + 7 is given by

Srp(t) exp[ —(in+ A/2)n w]p(t) exp[(iur —A/2)n2y]

Tr[8. (t)] Tr[p(t) exp( —An2v )]
(3.7)

Expanding the exponentials of Eq. (3.7) with respect to
small Aw yields a differential equation describing the time
evolution of the density operator during the no-count
process:

—p(t) = —(i~ + A/2) n P(t) + (i(u —A/2) p(t) n
dt

+ A(n'(t)) p(t). (3.8)

From this immediately follows the time evolution of the
average photon number during the no-count process:

d ( (t)) = -A ( (t)) —( (t))( (t)) (3 9)

C. Continuous measurement

Having characterized the one-count process and the
no-count process, we are now in a position to describe
the time evolution of the photon field when QND pho-
todetection is being carried out continuously throughout
the measurement period. We refer to such a process
as continuous quantum nondemolition (COND) photode-
tection. Suppose that the measurement process started
at t = 0 and ended at t = T, and that rn photons
were registered at times w~ (j = 1, 2, . . . , m) with no

Since (ns(t)) ) (n (t))(n(t)) (except for number states),
we find that the average photon number decreases in time
even though the photon number is nondestructively mea-
sured. For the number state, though, the photon number
remains the same during the no-count process. Again,
this preservation of photon number for number states is
a characteristic feature of nondemolition measurement.

ST ZS -,2 ZS—,p(0)
)3.10

Tr [ST, &8,J &8,p(0)]
'

where p(0) is the initial density operator of the pho-
ton Geld. The denominator here is sometimes called
the probability distribution of forward recurrence times
(PDF) [10, 22]. This distribution gives the probabil-

ity per (unit time), P " '
(w»~2, . . . , ~~, O, T), that

from time 0 to T, one-count processes occur only at times
t, (j = 1, 2, . . . , m):

p(forward)
(Ty t2 7. 0T).

= Tr(ST gS,g QS, p(0)]. (3.11)

Equations (2.11) and (2.14) can be used to show that

ST J'8, J' 8,p(0)

Al
A exp — in+ —~n T

2)

x n p(0)n exp
~

iu ——~n T .(.
2)

Substituting Eq. (3.12) into Eq. (3.10) yields

(3.12)

further photons registered during the measurement pe-
riod. Then, the density operator of the photon field,

p (71, ra, . . . , 7;O, T), immediately after the mea-
surement process is given by [10]

-COND (~i, ~z, , ~~;o, )
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exp[—(i~+ z)nzT]A p(0)A~exp[(i~ —2)A~T]
(3.13)

This equation gives the nonunitary time evolution of the
photon density operator during the COND measurement
of the photon number. Since the right-hand side (rhs)
of this equation does not depend on the times at which
photons were detected, we may denote the quantity on
the left-hand side of Eq. (3.13) simply as Pc~~ D(T).
On the other hand, the PDF is given if we substitute
Eq. (3.12) into Eq. (3.11):

P(forward)( r . 0 T)

Tr[p(0)A exp( —AA T)]. (3.14)

The rhs of this equation, too, does not depend on the
times of photocount registration. This is in sharp con-

I

I

trast to conventional photon counting, where the PDF
depends explicitly on the times of photocount registra-
tion [10]. In conventional photon counting, the photon
field attenuates over time [2] and the PDF therefore de-

pends on times of photocount registration. In COND
photon counting, however, the photon field does not at-
tenuate, and the PDF therefore does not depend on times
of photocount registration.

In an actual experiment, we are often interested only in

the total number of photocounts registered during a mea-
surement period. We shall refer to this kind of process
as the quantum photodetection process for the number of
counts (QPN) [10). Since the information concerning the
times of photodetection is discarded, the superoperator
A'z (rn) describing the QPN is given by

JV~(m) = d7m d7m-1
T2

dri 87 g8, J'8, . (3.15)

Substituting Eq. (3.12) into Eq. (3.15) yields

(AT) (. Al ~ . . (. Al .~
JVz(m)p(0) = exp —

~

i~+ —~A T A p(0)A exp
~

iu) ——~A T .
m! q 2) q 2y

(3.16)

The probability P(m; 0, T) of rn counts being registered
in an interval [O, T) is given by

P(m; 0, T) = Tr[JVg(m) j(0)]. (3.17)

Substituting Eq. (3.16) into Eq. (3.17), we have

P(m; 0, T) =, Tr[P(0)A2™exp( —AA T)].
AT

(3.18)

The density operator pR (T) immediately after the
QPN is therefore given by

qpN
( )

JUT' (m) p(0)
Tr[Ag(m) j(0)]

' (3.19)

Substituting Eq. (3.16) into Eq. (3.19) yields

PQPN(T)

exp[—(ku+ z)A T]n j(0)A~exp[(ku —2)A T]
Tr[p(0)A ~ exp( —PA~T)]

(3.20)

This result is identical to Eq. (3.13). That is, with re-
spect to the postmeasurement state, the COND and QPN
give the same result.

D. Purity preservation

According to a conventional theory of measurement,
which is categorized as Pauli's first-kind measurement,
the measured state instantaneously collapses into a mix-
ture of states corresponding to all possible readouts.
Even if the initial state is pure, its purity is, in general,
not preserved by the measurement process. When, how-
ever, a specific value of the readout is known, an initially
pure state collapses into a pure state.

This feature can be generalized to our theory of con-
tinuous measurement, in which the measurement process
proceeds continuously. The final state of a continuous
measurement process is a mixed state if we do not keep
the readout of the continuous measurement. If, however,
we know the readout of the continuous measurement and
use it to renormalize the initial density operator, the state
evolves in a totally different way. If the initial state is
a pure state, it does not collapse into a mixture but re-
mains pure as long as we utilize all readout information to
renormalize the initial density operator, that is, as long
as we are considering the referring measurement process
[10—12]. In fact, if the initial state is pure, it can be
written as j(0) = ~Q) (@~. Then the square of the density
operator after the COND photodetection is given by

(T)]' =
exp —

~

in+ —
(
n2T n ~@)(@~n e ~" Tn ~g)(/~A exp iw —— n T

2)
(Tr [~@)(Q~A2 exp (—AA2T)] )2

(3.21)
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Since Tr [~Q)(@~n e ""+n
] = (@~n e ""+n ~@), the

photon density operator satisfies the idempotency condi-
tion

[pcclND (Z )]2 pccIND (~) (3.22)

IV. APPLICATIONS TO TYPICAL QUANTUM
STATES

This section uses the general formulas obtained in the
preceding sections to study the nonunitary time evolution
of the photon density operator for three typical quantum
states: coherent, thermal, and squeezed.

for arbitrary time T & 0 and for any number m of pho-
tocounts. Thus we find that, if the initial state is pure,
it keeps its purity during the measurement process, even
though the state evolves nonunitarily. This can be intu-
itively understood as follows: Since we use all readout
information to renormalize the initial density operator,
there is no dissipation of information. We will show in
Sec. V that the density operator becomes diagonalized
only if some of the available information is discarded.

state in the COND is obtained by substituting Eq. (4.1)
into Eq. (3.13). Using the resultant density operator, we
can calculate the time evolution of the initially coherent
state. Since these calculations are straightforward, we do
not write them out, but instead show the calculated fig-
ures. Figures l(a)—1(c) show the time evolution of the av-
erage photon number (n(t)), the photon-number variance
([An(t)] ), and the Fano factor F(t) = ([En(t)]2)/(n(t)),
where the one-count processes are assumed to occur at

{j= 1, 2, 3, 4, 5).
Figure 1(a) shows that the average photon number

does not decrease over the long term, but remains rela-
tively constant. This is because in COND photon count-
ing photons are not absorbed. Figure l(b) shows that the
variance of the photon number decreases monotonically
over time, which results in the monotonic decrease of the
Fano factor as shown in Fig. 1(c). Thus we find that the
initially coherent state continuously reduces to a number
state.

B. Thermal state

The density operator of the thermal state is given by

A. Coherent state

/np) =exp/ —
f ) p [n).

( /crpfz) - erg
(4.1)

The nonunitary time evolution of the initially coherent

The density operator of the coherent state is given by
p(0) = ~a.'p)(ap~, where ~np) is a coherent-state vector
with complex amplitude no. This state can be expressed
in the number-state basis as

(4 2)

where no is the average photon number of the initial
state. The nonunitary time evolution of the initially
thermal state in the COND is obtained by substitut-
ing Eq. (4.2) into Eq. (3.13). Figures 2(a)—2(c) show
the time evolution of the average photon number, the
photon-number variance, and the Fano factor for an ini-
tially thermal state. It is remarkable that the average

no

(b)

(c)
(c)

O
I I I I

I 1 72 73
I

75
71 72 73 74 75

T I M E
TIM E

FIG. l. Time evolution of an initially coherent state: (a)
average photon number (n(t)), (b) photon-number variance

([Dn(t)] ), and (c) Fano factor F(t). One-count processes are
assumed to occur at ~~, v~, . . . .

FIG. 2. Time evolution of an initially thermal state: (a)
average photon number (n(t)), (b) photon-number variance

([En(t)j ), and (c) Fano factor E(t). One-count processes are
assumed to occur at wy, wq, . . . .
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photon number jumps drastically upwards when the first
photon is registered. This can be understood as follows.
The thermal state has a power-law photon-number dis-
tribution, and therefore has a maximum probability for
the vacuum state. This possibility should vanish as soon
as the one-count process occurs. The vanishing prob-
ability is then redistributed over other states when the
density operator is renormalized according to Eq. (3.3),
thus resulting in a drastic increase in the average photon
number. A similar increase in the average photon number
occurs in conventional photon counting [12]. An essen-
tial difference between conventional photon counting and
COND photon counting lies in the time development of
the Fano factor; in the former case the Fano factor ap-
proaches unity, reflecting the fact that the photon state
eventually reduces to the vacuum state, whereas in the
latter case the Fano factor approaches zero, refiecting the
fact that the photon state reduces to a number state.

I I I I

7] 72 73 74
I

75

(c)

T I ME

C. Squeezed state

A squeezed state of light, (o., r), can be generated from
a coherent state

) n) by means of a unitary transformation
[23]:

FIG. 3. Time evolution of an initially squeezed state: (a)
average photon number (n(t)), (b) photon-number variance
([b,n(t)] ), and (c) Fano factor F(t). One-count processes are
assumed to occur at vq, ~2, . . . .

~a, r) —= exp (— a' —(a')' ) ~a)

exp — + —tanhr 1 /t h q
~/zI~I' a'

2 2 . an r
y'coshr „o~n! ( 2 j H„

i i in),(v'sinh 2r )
(4.3)

where r is a squeezing parameter and H„(z)is the nth
Hermite polynomial defined as

[n/2]

) . (-1) n!
(4.4);m!(n —2m)!

with [n/2) = n/2 for n even, (n —1)/2 for n odd. The
nonunitary time evolution of the initially squeezed state
during the COND measurement is obtained by substi-
tuting Eq. (4.3) into Eq. (3.13). Figures 3(a)—3(c) show
the time evolution of the average photon number, the
photon-number variance, and the Fano factor for an ini-
tially squeezed state.

In these Figs. 1—3, the average number of photons re-
maining in the field increases when one photon is de-
tected, whereas it decreases when no photon is detected.
These features confirm the general arguments in Sec. III.
Although each of these states eventually reduces to a
number state, the intermediate-state evolution greatly
difFers from one state to another. Thus we find that the
way the state reduces towards a number state depends
strongly on the initial photon statistics.

V. STATE EVOLUTION IN A NONREFERRING
MEASUREMENT PROCESS

A. General formalism

So far we have considered the situation in which we
use all readout information to renormalize the density

I

operator of the field. On the other hand, there also is
a situation where the detector is switched on but the
readout information is discarded (we shall ref'er to this
kind of process as a nonreferring measurement process)
Is there any difFerence in state evolution between these
two kinds of measurement processes, even though the
physical situation seems to be the same? The answer is
yes, as we shall show in the following.

Although the readout of the apparatus meter (one-
count or no-count) is not referred in the nonreferring pro-
cess, either the one-count process or the no-count process
must occur in each infinitesimal interval dt. The state
evolution in the nonreferring process can therefore be ex-
pressed as a statistical summation of these two possible
processes:

"&+d~P(t+ t) ( ) t~(~ ())+ ( ~~)~(S ()),
(5.1)

where P(g)d& at and P(S&z) are the statistical weights
for the one-count process and the no-count process, and
p(t) is the photon density operator that has evolved from
the initial state p(0) in a nonreferring measurement pro-
cess. By using the formulas in Sec. III for P(J), Jp,

'

P(Sgr), and SgtP, we can rewrite Eq. (5.1) as
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whereas the state in Fig. 5 collapses to a mixture of num-
ber states.

VI. ESTIMATION OF PHOTON NUMBER

Equations (3.3) and (3.7) show that if the initial state
is a number state, that is,

) (0) =
I 0)( o[ (6.1)

the state changes neither at the one-count process nor
at the no-count process. Hence Eq. (3.1) shows that the
one-count process occurs in each infinitesimal interval dt
with the same probability Anode. Denoting by rn(T) the
number of counts that have been registered during the
period from t = 0 to T, we can see from the law of
large numbers that m(T)/T converges to An& as T —+ oo,
and therefore we can estimate the photon number nc by
urn(T)/AT when T is sufficiently large. This suggests
that even for an arbitrary initial state p(0), the quantity

B. Collapse to a number state

The result of the preceding subsection shows that in
each sequence of the measurement process, n"" ~" con-
verges to a natural number np as T + oo, although np
is not predictable at the beginning of each sequence but
distributes stochastically according to the initial photon-
number distribution. In this subsection we show that in
each sequence the state p &z~&(T) reduces continuously

to a number state whose eigenvalue is determined by

no = lim
T~oo

Here we can assume that

(6.6)

p„„„,(0) & 0 (6 7)

because an event of probability 0 can be ignored. Using
Eq. (3.13), we can express the (A,', I)-matrix element of
)()

( ) (T) as

(6.2) (6.8)

can be regarded as an estimate of photon number. We
justify this in the following two subsections by showing
that in the limit of T 1 oo both the probability distri-
bution and the state reduction for the measurement of
n"~'~~~' coincide with those for the first-kind measure-
ment of the photon number. These results reveal that
the measurement scheme proposed in this paper actually
provides a QND measurement of photon number.

where

»(T) = a"& l exp —
~

i~+ —
~

k T .
2)

We now show that if k P no, Eq. (6.6) leads to

»(T)
r~ ~ p„,(T)

(6.9)

(6.10)

A. Probability distribution

This subsection shows that the probability distribution
of n"" "' converges to the initial photon-number distri-
bution as T -+ oo, or equivalently, that the probability
distribution of rn(T)/AT converges to that of n2. We
prove this by using characteristic functions of probabil-
ity distributions [25, 26].

The characteristic function for the variable m(T)/AT
is defined as

»(T)
& .(T)

AT
(k —no) + rn(T) in-k

2 np

(6.11)

It follows immediately from Eqs. (6.7), (6.8), and (6.10)
that lim~ [P~~&&& (T)])p) vanishes unless A,

' = l = no.

The convergence of p ~&&& to ~n()) (n()
~

is thus proved.

For np & 1, we have

Gx(te) = ) exp (etc ) P(ee;O, T)
m=p

Substituting Eq. (3.18) into this yields

(6.3)
Equation (6.6) can be rewritten as

m(T) = ATn() + o(T),

and substituting this into Eq. (6.11) yields

(6.12)

Cx(te) = ) exp(1Te exp (i )
—1 ) p„„(0).

n=p

Taking the limit T ~ oo yields

»(T) = exp[ —AT + o(T)],
apl o

where

A = — (k —no) —no ln
I

—
~

&k')'
2 (, np)

(6.13)

(6.14)

lim Cz(~) = ) exp (in u)) p„„(0), (6.5) From a well-known inequality

which is identical to the characteristic function for the
probability distribution of n2 for the initial state. Thus
we find that the quantity defined in Eq. (6.2) serves as an
estimate of photon number for an arbitrary initial state.

x —1)lnx if x&0 and x/1, (6.15)

it is easily shown that A & 0 if k g no. Thus Eq. (6.10)
is obtained from Eq. (6.13).
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We now consider two cases in which np = 0:
(i) m(T) = 0 for VT, and (ii) 3tp such that m(T) & 1
for VT & tp.

In case (i), we have pp(T) = 1 for VT and
limT pI, (T) = 0 if A: & 1. Thus Eq. (6.10) for np ——0
is verified.

In case (ii), on the other hand, we have

&p(T) =0 for VT & tp, (6.16)

and Eq. (6.10) does not hold for np = 0. Indeed, it can
be shown that in this case Eq. (6.10) holds for np = 1

and hence j (g converges to ll)(ll as T ~ oo. This
might seem to contradict our claim in this subsection,
but case (ii) can be neglected for the following reason.
Equation (6.6) for np = 0 implies that

limT~00

m(T) —m(tp) = 0.
A(T —tp)

(6.17)

According to the result of the preceding subsection, the
probability that this convergence occurs is [j (, ) (tp)]pp,

~ COND

which according to Eqs. (6.8) and (6.16), vanishes in case
(ii).

VII. COMPUTER SIMULATION

In the foregoing analysis, we implicitly assumed that
we know the initial state and that the times of one-count
processes are given. It is, on the other hand, interesting
to simulate the continuous QND measurement process
that we may actually observe.

Figure 6 illustrates some examples of computer simu-
lations for an initially coherent state, where the counting
pulses are produced by a random noise generator accord-
ing to the probabilities of one-count and no-count pro-
cesses given by Eqs. (3.1) and (3.6). The ordinate shows
the photon number estimated according to Eq. (6.2),
where N, „„t(t)is the number of one-count processes that
have occurred from time 0 to t. This number is a value
that can actually be obtained by observation, and can
therefore be used by an observer as an estimated photon

number (because the observer does not know the initial
state).

Each path in Fig. 6 corresponds to a diferent ini-
tial value (seed value) for the random noise generator,
and traces an individual continuous QND measurement
of photon number in the referring measurement process.
This figure shows that the estimated photon number fluc-
tuates immediately after the measurement starts, but
that these fluctuations diminish as the measurement pro-
ceeds. Figures 7(a) and 7(b) show the probability distri-
bution of the photon number at time 0 and at a later
time for one path. We see that the photon-number dis-
tribution becomes narrower, indicating the reduction to
a number state. This result is consistent with the curves
shown in Fig. 1.

The final values of n"" "' become distributed when
we change the initial value of the random noise gener-
ator. This refiects a stochastic nature of light, but the
computer simulations confirm that, as the measurement
proceeds, the distribution of n"" "tends to coincide
with the initial photon-number distribution.

VIII. DISCUSSION

We have shown that in the referring measurement pro-
cess, any initial state eventually reduces to a number
state whose eigenvalue depends on the rate of photode-
tection and difFers from one sequence of measurement to
another. Although these eigenvalues are distributed, we
have shown that their probability distribution coincides
with the initial photon-number distribution.

We have also shown that the average photon number
remaining in the field increaaes when a photon is detected
and decreases otherwise. One may then wonder whether
the scheme proposed here is really a QND measurement

Initial state

Poissonian distribution

I I

0

Initially coherent state

Final state

50

Sub-Poissonian distribution

T I M E

(b)
50

FIG. 6. Computer simulation of the continuous QND
measurement of photon number. Each path corresponds to a
difFerent seed value for the random-noise generator.

FIG. 7. Initial and final photon-number distribution cal-
culated by computer simulation.
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Tr[P(0)Az +"exp( —RABAT)]

Tr[p(0) A2 exp( —AA2T)]
(8.2)

Depending on the number of counts and the measurement
time, these quantities can, in general, be smaller or larger
than their corresponding initial quantities (n (0))~.
However, this contradicts neither any QND condition nor
the conservation laws in quantum mechanics because rn
is a result for a single measurement. The quantities to
be compared in quantum mechanics are those which are
ensemble averag-ed over possible rn The e. nsemble aver-

aging can be carried out using the probability distribu-
tion P(rri; 0, T) in Eq. (3.18), and it can be shown that

of photon number at an intermediate state of measure-
ment. Let us show that the photon number is indeed
nondestructively measured throughout the measurement
process. Let (n"(T))~ be the kth-order photon-number
moment at time T when m photons have been detected.
Since the photon density operator at time T is given by
p & (T), we have

(n" (T)) = Tr[p~~ (T)n"]. (8.1)

Substituting Eq. (3.13) into the rhs of Eq. (8.1) yields

) P(m; 0, T)(n"(T)) = (n" (0)).
m=o

(8.3)

IX. CONCLUSIONS

We have proposed an operational theory for contin-
uous QND measurement of photon number and stud-
ied how the measured photon field evolves during the
measurement process. When the readout information
is used to renormalize the initial density operator, the
average photon number remaining in the field increases
when a photon is detected and decreases when none is
detected, but the state eventually reduces to a number
state whose eigenvalue is uniquely determined by the rate
of photodetection. Although the final state difFers from
one measurement to another and is not predictable, its
probability distribution coincides with the initial photon-
number distribution. Furthermore, if the initial state is a
pure state, it remains pure throughout the measurement
process. The measured state collapses into a mixture
of number states only when the available information is
discarded.

This result shows that photon statistics are conserved
during the nonreferring measurement process.
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