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Adiabatic four-wave mixing in a strongly driven resonant four-level system:
EfFect of pump depletion
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The exact solution of the self-consistent problem of four-wave mixing in a resonant medium of four-
level atoms (molecules) is obtained. The pump depletion, level-population movement, and atomic-
transition saturation are explicitly taken into account. It is shown that (i) in the process of transforrna-
tion the generated pulse is split into a train of subpulses, and their number is strongly related to the
length of propagation; in the case of saturation, this splitting does not occur; (ii) the conversion-efficiency
definition problem is reduced to solution of a third-order polynomial; (iii) by variation of the initial value

of the wave-vector mismatch hko, the processes of conversion may lead to the complete depletion of one
of the pump beams; (iv) a prediction is made of the intersection of quasienergetic terms in the process of
energy transfer; this phenomenon is shown to be responsible for the experimentally observed disruption
of generation.

PACS number(s): 42.65.Ky

I. INTRODUCTION

The standard approach to treating the four-wave mix-
ing problem includes expansion of the medium polariza-
tion as a power series of the field amplitudes of the in-
teracting waves and only terms of lower order are re-
tained [1—12]. Analysis of the propagation effect is usu-

ally made for short lengths of interaction, where the rate
of conversion is so small that one can use the nondepleted
pump beam approach and ignore the atomic level satura-
tion. Such an approach has shortcomings. First, in the
framework of this approach we are limited in the rate of
conversion. Second, it is impossible to define the maxi-
mal value of conversion and optimal length of interac-
tion.

Significant progress has been achieved in a series of re-
cent publications [13—17], where within the framework
of the cubic susceptibility model a strong account of
pump depletion has been considered. However, the
theory developed in these works becomes invalid for the
case of intense field and strong resonance, where all or-
ders of polarization should be taken into account. The
mathematical difficulties that arise are usually insur-
mountable and tend to use either a perturbational ap-
proach or numerical calculations [18].

In the work presented, the process of four-wave mixing
(FWM) in the two-photon resonant four-level systetn, in-
teracting with ultrashort adiabatic intense pump pulses,
is considered. The process evolves according to the
scheme co, +co2=co3+co4, where co, 2 and co3 4 are pumped
and generated photons.

The method enables us to solve the problem explicitly,
taking into account both the pump depletion and
coherent saturation of atomic transitions. The main
difficulty in obtaining a mathematical formulation of this
problem is the absence of explicit dependence of the

atomic polarization on the interacting field's amplitudes.
In order to overcome this obstacle we use the simple and
effective relation [19,34] P= —hBQ/BE between field-
induced atomic polarization P, the field amplitude E, and
quasienergy Q of the dressed state "atom plus fields"
[20]. This relation was initially mentioned by Melikyan
[21] and utilized to build up the exact theory of third-
harmonic generation in a resonant medium [22]. This
mathematical method allows one to solve the problem ex-
plicitly, define all integrals of motion, and reduce the
solution to one differential equation [19] describing the
parametric pendulum oscillations without knowing the
real dependence of P on the amplitudes of the interacting
fields. The basis of such an approach is a very important
integral of motion (12), which is not involved in the tradi-
tional approach.

II. QUASIENERGY AND ATOMIC POLARIZATION

Consider the four-level system (Fig. 1) interacting with
four waves to (j =1,2, 3,4), the frequencies of which
obey the relation co&+u2=co3+co4. The pulse widths
must be shorter than any decay time of the system, and
the interaction is considered to be adiabatic. The field
amplitudes are presented as follows:

EJ(r, t)=E exp( icoj.t)+c.c. —

The wave function describing the system in the rotating-
wave approximation [20] is presented as a superposition
of atomic states 1l„

4
bent y q

n —
1

n=1

where the energy of the ground level is taken to be zero:
(b,o=0); b, &, 52, and 63, are, respectively, one-, two-, and
three-photon detunings:
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~1 ~21 ~1& ~2 ~31 ~1 ~2

A3 6741 Q7
1 CO2 +CO3 CO41 604

(3)

Substituting Eq. (2) into the Schrodinger equation, we ob-
tain the system of equations for a„amplitudes: 1

I4)

—E1d1

—E*,d1

—E2d2

E4d4 a,
Q2

a1

Q2

—E2d2 —E,d, a2
=RA

Q3

—E4d4 —E3d3 653 a4 a4

(4)

where d1=d12, d2=d23, d3=d32 and d4=d41 are the
matrix elements of dipole moment that can be treated as
real values. The quasienergy 0 is defined by the roots of
the determinant of Eq. (4):

FIG. 1. Four-level system interacting with four laser waves

~1~~2~~3~4 ~~1+2 3+~4)~ ~l 21 l~ ~2 ~31 ~1 ~2~
and 53=co4, —co 1

—co2+ co3 = co41
—

co4 are, respectively, one-,
two-, and three-photon detunings. Each wave is supposed to in-
teract with one resonant transition only.

&'&(&—&, )(&—&~)(&—&, )
—&'&(&—&, ) IE2d2I' —&'&(&—~1)IE3d3 I' —&'(&—~2)(&—~3) I&i di I'

&'(& —&i)(& —&2)IF4—d4I'+ I&,F3d)d31'+ IE2E4d2d41' did2d3—d4(E]~2E3E4+c c ) 0 (5)

If the interaction is switched on adiabatically, the non-
perturbed atomic states are the corresponding quasiener-
getic ones, therefore the correspondence of the roots 0„
obey the following relations: Q„~A„, for E ~0. We
presume the system to be in the ground state before the
interaction is switched on. Thus after switching on the
interaction the system will be described by the wave func-
tion of Eq. (2) with amplitudes a„'" being the solution of
Eq. (4) for Q=Q, . It is obvious that the direct substitu-
tion of the a„'" into Eq. (2) in order to calculate the polar-
ization P» = (1(,Id Ig& ) will lead us to the useless expres-
sion nonexplicitly dependent on field amplitudes E . In-
stead we use the method developed previously [21,22],
which does not require knowledge of the explicit a„
dependence on the E amplitudes and is very convenient
for further investigation. We represent the atomic polar-
ization in the 1(r state as

d A 2MNco BQ1
l

dz c
(8)

the phase-matching condition in the transverse direction
with respect to the z axis is met. For perfect phase
matching some amount of buffer gas can be added into
the medium, leading to the additional terms in the refrac-
tive index 5n b. The wave amplitudes are

F. =A e ", Ik,bl=(1+5n, b)co, /c, (7)

where the A are slowly varying functions of the vari-
ables z and ~=t —z/c. The true value of the wave vector
kj is kj=(1+5n b+5nf, )co /c, where 5ni, results from
the interaction with the medium and will be defined in
the process of the problem solution.

The substitution of Eqs. (6) and (7) into the wave equa-
tion leads to the relation

1NP= fi g e ' +c.c. —
QE Q

The basis for this relation can be found elsewhere
[21—23]. We only mention that the matrix Eq. (4) looks
like the stationary Schrodinger equation with the Hamil-
tonian dependent on E and E* as parameters. Taking
this into account and using the well-known relation [29]
for the diagonal matrix element of the Hamiltonian
derivative on the parameter 1,, (i IdH/Bali ) =dH, ;/. BA, ,
we can obtain expression Eq. (6).

III. WAVE EQUATIONS: MOTION INTEGRALS

We consider the propagation process of E- waves in a
medium consisting of four-level systems, filling the sem-
ispace z )0. We solve the one-dimensional problem in
the plane-wave approximation, assuming the input beam
angles to be small relative to the z axis. This means that

where N is the atomic density. The usual approach in-
volves expansion of 0, as a power series of A . Substitu-
tion of the first term of the expansion of Eq. (5) into Eq.
(8) results in the well-known relation for resonant refrac-
tive indices at frequencies coi'

5n„=
2mNd 1

5n2 =5n3 =0, 5n4, =
1

2~Nd 4

(10)

Including the next term of the expansion would lead to
the parametric interaction [1—3], where the effect of
coherent saturation of atomic transitions has not been
considered.

Substituting P polarization in the form of Eq. (6) we
are able to solve the problem explicitly. Equation (8) is
more convenient to rewrite in the terms of intensity I
and phase P,
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Then separating the real and imaginary part we obtain
from Eq. (8)

dI aQi dpj aQ,

Equation (5) for the quasienergy includes the phases P in

the form of one linear combination only: P =P, +P2

p3 p4+5kbz, where Skb =k&b+k2b —
k3b

—
k4b is a

projection of the wave-vector mismatch onto the z
axis. Therefore the following relations become valid:
aQ, /ap, =aQ) /ag = —aQ) /a/3 = —aQ) /ag . Then
Eq. (11) leads to the set of motion integrals for intensities

IV. BASIC RELATIONS

dI aH d$ aH
dz ay

'
dz aI

where

(13)

Equations (12) enable the reduction of four variables I
to one I =I(z},which explicitly characterizes the energy
transfer between waves: I, =I,p

—I I2 =I2p I I3
=I30 +I, and I4 =I40 +I. The initial value of I is
I(0)=0. The canonical transformation of Eq. (11) for
variables I and P results in

H=Q)+5kbI/N . (14)
I&

—I2 =I&0 I20& I3 I4 =I30 I40

I]+I2 +I3+I4 =I]p+I20+I30+I40
(12a} The equation that defines H as a function of parameters I

and P is

and for quasienergy Q, and wave-vector mismatch Skb, F=f cosP, (15)

NQ, +5kb I4 =NQ )p+ 5kb I~), (12b) where

where I 0 are the input beam intensities and Q,p
=Q

&

(z =0). The value Q&o is obtained by substituting into
Eq. (5) the values Ejp. The expression (12a) is the
Manly-Rowe relation, well known in the theory of para-
metric amplifiers [24]. The integral (12b) determines the
quasienergy dependence on propagation distance Q

&

=Q, (z}; the quasienergy becomes the integral of motion
in the case 5kb =0 only.

f=2[y )yzy 3] 4(I)o —I)(I~o —I)(I3o+ I )(I~)+I ) ]
'

and

27TN) d~
y = (j=1,2, 3,4) .

Ac

The left part of Eq. (15) is

(16)

(17)

SkbIF= H— SksI
H —6

N

5kbI SksI
H —6 — H

N N

5kb I 5kb I
y2(I2o I)+—H —~i—SkbI

N
y3(I3o+I )

5kb I
H —62

5kb I
y((I,o I)+y4(I4o+—I) H

5kb I
N

+y]y3(I~o —I)(I3p+I3 )+y2y4(I2p I)(I~+I) . (18)

Equation (15) is obtained from Eq. (5) by the following
substitutions: ~E d

~
+y I A and—Q~H 5kbI/N. —

It is readily noted that Eq. (13) has the same form as
the canonical Hamiltonian equations for one-dimensional
classical motion if the variables I and P are regarded as
the generalized coordinate and momenta, z replaces the
time, and NH is equivalent to the Hamiltonian. There-
fore Eq. (13) can be analyzed by the methods and termi-
nology of classical mechanics. It is seen from Eqs.
(15)—(18) that H has no explicit z dependence. It is con-
sequently the motion integral, i.e., dH /dz =0. It follows
also from Eq. (12b) that H =Q,p+SkbI4p/N.

The fact that H is a motion integral results in two con-
clusions. First, we do not need to find out the explicit po-
larization P dependence on the parameters E and E .*,
which for arbitrary amplitudes is an unsolvable problem.
Second, we do reduce the problem to only one differential
equation for I. Now using Eq. (15) in order to exclude P
from Eq. (13},we obtain

yN( f2 F2 )1/2
dz BH

(19)

The sign in Eq. (19) is that of sinPo, where Po=P (z =0).
Equation (19) describes one-dimensional finite motion, be-
ing the analogy of classical parametric pendulum oscilla-
tion that has been widely investigated in the theory of el-
liptic functions [25]. The allowed range of motion is situ-
ated between S4 and S„where S, is a least positive root,
while S4 0 is the maximal negative root of the equation

f'(I)—F'(I)=0 . (20)

From here on we consider the case I4p =0. In this case
H =Q,p, S4 =0, and I precisely coincides with the wave

co4 intensity and varies within the limits 0 ~I ~S
&
. Then

Eq. (19} describes a periodic in z coordinate process
I(z)=I(z +2l). Thus, within the range 0 ~z ~ 1 the
FWM process develops into the channel
co ]+c02 +c03+604 i.e., intensity transfer from pump
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waves to amplified co34 waves occurs. When z =I, the
magnitude I reaches its maximal value I (z) =Si and the
direction of energy transfer changes sign: within the
range I ~z ~2I the process develops into the channel
603 +c04~co ] + co2 up to the point z =21, where I =0. The
process has an oscillatory character, the spatial period 21
being determined from (19) as

X~ dH
(21)

dI
(f2 F2)1/2

If I~0%0 the lower limit of the integral should be re-

placed by S4. In the case of degeneration of the root S„
I~ oo, i.e., the energy-transfer direction does not change
the sign for any z value. Concluding the formalism
developed, we write down the expression for refractive in-
dex n at the frequency co,.

BF
BI.

O

n. =1+5n b+J gb
(3F

J

(22)

V. STRUCTURE OF GENERATED PULSE

From an applicational point of view, we consider the
most interesting case of strong two-photon resonance, as-

suming the one- and three-photon detunings to be large
~b, , 3~ &&~b,2~, EJ.d/fi. All the situations different from
this one will be pointed out. Thus Eq. (19) takes the form

dI 3/I U ( I)

dz 1+PI (23)

where

U(I) =(Ii0—I)(I&0—I)(I30+I) I (aI+5k0/g), —(24)

and the wave-vector-mismatch dependence on coordinate
is defined by

5k, +2y~I5k=
1+ I (25)

where y is the connection coefficient and 5ko is the initial

It follows from (22) that both n, and k are complicated
functions of the length of interaction. The same holds for
5k =5k(z), which is defined as a projection vector
5k =k ] +k2 k3 k4 onto the z axis. Thus in the future
we will operate with only one value 5k0 =5k(z =0), ini-

tial wave-vector mismatch.
The function F is in common sense the fourth-order

polynomial

4F=QF I
m =1

while its derivative r}F/r}H is a third-order polynomial
with respect to I. Without writing out the coefficients
F =F (H, I,0) we note that F, is proportional to 5k0,
F2 and F3 are proportional to 5kb, therefore for 5kb =0
the order of polynomial F is reduced to 2.

g =
—,'y[IioI20I30(Si ' —S3 ' )]'

1 —S3/S2 S,
1 S3 /S& S3

(27)

Equation (26) describes a periodical function, symmetric
with respect to its maxima; its maximal value is equal to
S, and is reached for z=(2m +1)l, where m =0, 1. The
half-period value I is determined by the expression
l=E(lJ, )/g, where K(p} is the full first-order elliptic in-

tegral. The function K(p) has been tabulated [26,27].
However, the relation of Tricomi [31] allows us to obtain
an extremely convenient estimation for I:

7T

ln ~2gl ) ln
1 —p 1 —p

(28)

Using either the left side of Eq. (28} for 0 ~ p ~ 0.8 or the
right side for 0.8 ~ p ~ 1 allows one to estimate I with rel-
ative error less than 5%. As is seen from Eqs. (27) and

(28), l~ ~ for strong convergence of two or three roots
S (p~l). In the limit p=1 the function I(z) becomes
nonperiodic, and the energy-transfer direction does not
change it sign at all. However, the solution with I = ~ is

extremely unstable, i.e., any small deviation of the input
variables makes the value I finite and for most practical
cases can be estimated by ~/2 ~ gl ~ 12.

Let us consider the temporal structure of the generated
pulse co4. In the adiabatic following regime ~ is included

in the propagation equation as a parameter. Since the
transformation length I depends on the I 0(~), different

mismatch. In order to clear up the meaning of a and P,
we should mention that 5k evolution is related to two fac-
tors. First, it is the population evolution that occurs in

the process of interaction and is taken into account by
the term 2yaI in Eq. (25). Second, it is the exchange of
effective two-photon detuning due to the dynamic Stark
shift described by the parameter (1+PI). The dependen-
cies of the parameters y, 5k0, a, and p on the task pa-
rameters are shown in the Appendix. We should mention
that the form of Eqs. (23)—(25) will be the same either in

the case of weak interaction or in the case of strong one-
or three-photon resonance; only the y, 5k0, a, and p
dependence on the interaction parameters will be
modified. Therefore, the conclusion obtained below can
be applied to these cases also.

For the sake of simplicity, in the present section we
consider the case of PS, ((I, supposing the efficient

two-photon detuning evolution during the FWM process
is negligibly small. Assume that all roots S (j =1,2, 3)
of the equation U(S) =0 are real and can be set up in the
following sequence: S, ' S2 ' & S3 '. (If two roots
S2=S3 are complex the analytical expansion into the
complex variable region should be made. ) Then Eq. (23}
takes the form

2

(26}
1+vcn (gz~p)

where sn(x ~p) and cn(x ~p) are the elliptic Jakobi func-
tions [25—27] of variable x, and the gain g as well as pa-
rameters p and v are defined as
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parts of the temporal pulse profile will have different

lengths of transformation and reach their maximum at
different distances. Therefore, during the evolution the
pulses will acquire a complicated multipeaked structure
[Fig. 2(a)]. Consider the most simple example 5k& =0, as-

suming the pulses at the entrance have the same tem-
poral profile IJ&

=I p(0)exp( r /—rp ) . In this case
1(r)=lpexp[r /rp], where lp is a minimum value of the
transfer length, which corresponds to the maximum in-

tensity. The envelope of the co4 pulse represents in this
case the set of subpulses [Fig. 2(a)). Generation of the A@4

wave starts from the central peak appearance at
z = (2m + 1)l and its disappearance is at z =2mlp, where

m =0.1. . . . For z)210 the number of peaks 2n is

determined by the integer part of the expression
n = [z/2lp]. Appearance of the rth peak is related to the
time momentum v„

r, =+rp[ln(z/2rlp }]'~z, (29)

z lip

where 1 & r & n. The amplitude of peaks drops as
exp j

—r„/rpl. The fact that for z & lp the energy transfer
for different parts of the beam occurs in a different way
shows that it is in principle impossible to perform the en-
tire energy transfer, even in the ideal case of complete
transfer for each separate part of the pulse. The only ex-
clusion is either the case l0= ~, or the case of strong
medium saturation, where l becomes independent of ~.
In both cases the pulse is not broken up into a set of sub-

pulses.

VI. AMPLIFICATION IN THE CASE
OF A WEAK PROBE SIGNAL

Consider the evolution of the FWM process for a weak
probe signal I30 ((I,0, I20. In this case the roots S- are

10 20I I
3 30 2 7

g I10I20 0

I10 +I20 +2a5k0 /P (1+ 1 —M),
2(1—a )

where

4(1 a )(I~pIzp 5kp/y )M=
[I~p +Imp +2a5kp /g]

(30)

(31)

S
& i S3 i

sinh (gz)I=
S, + iS3 ~cosh (gz)

where

g
—1(~2I I 5k2 )I/2

(32)

(33)

For small length of interaction z & I„where
l, =g 'lniS, /S3~, Eq. (32) is reduced to the well-known

expressions (see, for example [2—5]) obtained in the non-
depleted pump beam approach:

In the limit considered we have ~S& z~ &&~S3~, thus the
parameters p and v obey the relations 1&&1—p and
v»1. Since the function I(z) is periodical and sym-

metric about its maximum, we can restrict our analysis of
this function to the half period 0 z &l. Using the
asymmetrical representation of the elliptic functions
[25—27], valid for p~ 1 and substituting it into Eq. (26),
in the case pS& ( 1 we obtain

XI10I20I30I=
z ~sinh (gz) .I10I20 5k 0

(34)

I4~ I~o(0

I.O-

0,5
/ / I I /

~ ~ ~ ~ ~ ~
/ I

g ~ ~ ~-260 I 2 -2-I 0 I 2
(b)

time I/To

FIG. 2. Evolution of the shape of the co4 pulse during the
propagation z/lp. (a) Weak field case. The generated pulse
evolves into the set of subpulses, because of different conversion
length for different parts of pulse. (b) Strong field case, with sat-
uration of two-photon transition. The pulse evolves without
breaking into the subpulses, since now the conversion length is
independent of intensity. (a) and (b) are built up for the optimal
condition Eq. (39) and (41a), respectively, supposing that all the
pulses at the entrance have the same Gaussian envelope with
time duration ~p Ip = I (T=0) I]p(0) =Ilp(7 =0).

The value I, characterizes the length of interaction that
leads to saturation of the conversion. In most cases I, is

practically equal to the period I, therefore Eq. (34) is val-
id for the whole region 0~z ~ l. A significant difference
from the above-mentioned evolution occurs in the case of
strong S& and Sz roots convergence, i.e., iS&

—Szi ~I3p.
In this case l ) l„and the nondepleted pump beam ap-
proach is valid within the range 0 & z & I„where the in-

tensity of the generated waves rises exponentially; for
z & I„ the variable I(z) approaches its maximum value

S1.
Now we consider another limit pS& »1, that corre-

sponds to strong two-photon detuning modification dur-
ing the propagation. In this case the fast exponential in-
tensity growth Eq. (33} may occur for a relatively short
length of interaction for which PI ~ 1. For larger
lengths, the rate of growth falls sharply and is determined
by

I =S,cos~[g, (z —1)]+Seisin [g, (z —I)],
where I is the half period and g, is the efficient gain
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ge

( ~1
—~2~ )'&2

Is, l+s, ' '
4p

(36)

We see that in the case pS, »1, the gain is decreased by
factor P~S, S2 ~', while a half period of transfer is re-
spectively increased by the same factor in comparison
with the case pSi & l. At the same time the conversion
efficiency S, does not depend on parameter p completely.
For intense pump, which saturates the population of the
ground and two-photon excited third levels, the expres-
sions for 5kp, I, g, and g, become independent of pump
intensity. In this case the pulse co4 splitting does not
occur [Fig. 2(b)] leading to the ideal conditions for the
conversion-efficiency optimization.

VII. CONVERSION EFFICIENCY

F(I =I;„)=0 . (37)

Since F(I;„)=0, the value I;„in (37) will be one of the
roots of Eq. (20). If I;„is also the least positive root, it
will automatically mean that FWM process evolution
occurs with maximal rate of conversion S& =I;„,i.e., up
to the complete depletion of one of the pump waves. The
most simple way to provide it is to vary 5kb by modifying
the buffer gas pressure or input wave inclination angles.
The function F is the fourth-order polynomial with
respect to the parameter 5k', . Therefore the optimal
value of 5kb, which provides the complete depletion of
one of the pump waves, is defined as one of the roots of
Eq. (37), being solved with respect to 5kb. Let us illus-

trate this for several of the simplest examples.
(i) Analysis of Eqs. (24) and (25) shows that the optimal

condition is

5kp=O, a=0 . (3g)

In this case, the FWM process evolves in the regime of
permanent phase matching 5k(z) =0 and the energy
transfer into the waves co3 4 will be terminated either for
complete depletion of the co, wave if I,p Izp, or for com-
plete depletion of co& if I&p Ipp ~ Such a situation is avail-
able in the weak (nonsaturable) pump if

~
5 i ~

))
~ 62 i ~. In

this case the conditions 5kp =0 and a=0 correspond to
the following relation:

It follows from Sec. IV that the rate of conversion can
be determined without solving Eq. (19), but simply by
finding the value S& representing the least positive root of
Eq. (20). The optimization of conversion process is thus
reduced to the optimization of S, as a function of the in-

put parameters. It follows from Eqs. (16) and (17) that
S, & I;„=min[I,0,I20], i.e., the energy transfer changes
its direction before the complete depletion of any pump
waves occurs. However in some cases the conversion
efficiency may be optimized up to a limit S, =I;„.In or-
der to provide it we require that the following condition
be met:

In most cases of interest it is impossible to fulfill condi-
tion (38), since the a=O requires frequency detuning
within too wide a range. Thus for example, the analysis
of expressions (Al) and (A2) in the Appendix shows that
in the case of a strong one-, two-, or three-photon reso-
nance it is impossible to realize the regime of permanent
phase matching.

(ii) However, high conversion efficiency can be reached
without permanent phase matching in the regime of vari-
able wave-vector mismatch 5k(z). The optimization pro-
cedure can be successfully performed for definite pump
frequencies by variation of 5k0 (more precisely 5kb ) only.
Consider for example the case of a strong two-photon res-
onance in the limit of weak probe beam I30 « I,0 I20 (let

I20) I,0). The equality U(S)=0 shows that the root S~
as a function of parameter 5kp has no maximum for
5kp=0. The value S& is increased if 5kp increases with
the sign opposite to the sign of a. The wave-vector
mismatch [Eq. (25)] for such a relationship between 5k0
and a is gradually decreased in the process of conversion.
The analysis of Eq. (30) shows that the optimization pro-
cess is determined by the parameter a I,p/Ipp.

(a) In the case a I,0 & I20 we get from Eq. (30)

S) =I)p for 5kp= —ayI}p (40a)

The sign in (40b) is chosen to be opposite to that of a.
We do not use the equality since the gain g in this case
tends to be zero. As we see, for large Kerr nonlinearity

~
a

~
&) 1 the efficiency of the process sharply falls down.

The dependence of the conversion efficiency on 5kp is

shown in Fig. 3. The curves are bounded on both sides,
since for ~5k0 ~

=y+I,0I20 breakdown of generation
occurs. It is seen that with increasing a we decrease the
range of possible 5kp variation, decreasing in turn the
maximally reached conversion efficiency. In the case
5kp=O the period of transfer l reaches its minimum. In
the case of 5kp variation the efficiency becomes higher,
whereas the period I becomes larger (Fig. 4).

(iii) The case 62~0 is of special interest because of
two-photon saturation. In this case, expressions (40) be-

come independent of pump intensity, therefore the op-
timization condition will be uniform for the whole in-

teracting beam profile, excluding the weak pulse wings.
Thus for instance, in the case of degenerated pump
(co, =0i2), Eqs. (40) are reduced to the following:

It is interesting to point out that FWM evolution occurs
with periodical sign exchange of the wave-vector
mismatch. Thus for pI,0«1 it follows from Eq. (25)
that 5k =5kp for z =2ml and 5k = —5kp for
z=(2m+1)t, where m =0, 1. . . .

(b) In the case a Ii0 &I20 the optimal condition being
defined from Eq. (30) looks as follows:

2l ~
l

V'I ioI20 I10 I20S)~
a —1

for 5k0 ~+++Ii0I20 ~ (40b)

Ny4
5kb =

~ ~3X3=~zz4 .
3

(39)
2aNU y, y @3'24

S, =I,0 for 5k0= (41a)
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I.O—

Using the asymptotic representation for the elliptic sine,
we may replace Eq. (43) by the following approximation
(suppose I,p 0.5I2p ):

I =I&psin (nz/21) . (45)
0.5—

In the case I,p~I2p (p~ 1), we have 1~~, so Eq. (43)
becomes

00 i i i r r r r s r

-4 -2 0 2 4 pKD ~x~lo I=Irptanh (gz) . (46)

FIG. 3. Conversion-efficiency dependence on the parameter
5kp/ayI, p for different values of a I,p/I2p. (a) a I~p/I2p = 4.
The optimization may reach the maximal point S

&

=I&p. (b)
a I,p /I2p =4. The maximal value of conversion efficiency is
achieved for a value of 5kp that in turn leads to the disruption
of generation. Both curves are built up for the case
I2p 2I1p»I3p'

rf lal & I, or

The limit I3p + 00 is characterized by the maximal con-
version S, =I&p and its feature is that the gain g is in-

dependent of I&p and 5kp, allowing one to vary 5kp
within wide enough range. The case PI~p))1 differs
from Eqs. (43)—(46) by the increasing of transfer period 1

(approximately by P+I&pI2p times) only. Therefore the
optimization procedure in this case should be reduced to
the minimization of parameter P in order to decrease the
period of transfer. Using Eq. (Al} we can reach P=O, if
the following condition is fulfilled:

2I]p 2NV yry2y3y4
(41b) N(y, +y4) N(y, +y2)

b (47)

I =I,psn (gzlp}, (43)

where the gain g and half period 1 of I (z) are defined as

g= ,'y+I oI, I —=E(P)/g, V=I&p/I2p (44)

I(z) /I]0 I
(

I

l.0—

lO 20 30 40 zg g~&

FIG. 4. Conversion-efficiency dependence on normalized
length zyIlp for different values of initial wave-vector mismatch
6kp =0, —0.8ayI lp, and —ayI lp. An increase of conversion
efficiency is achieved together with enlarging of the conversion
length. For small lengths the conversion is mainly effective in
the case 6kp =O. The curves are built up for the case a & 1,
I2p 2Ilp» I3p.

if lal ) 1. The sign in Eq. (41b) is chosen to be opposite
to that of a, the value of 5kp in the limit considered
(hz —+0) is determined by the expression

5kp =5k'+ 2N(y, d f +y2d2) N(y4d, +y3d~ )
(42)

h, (d +d ) b3(d +d )

Equation (42) is valid for d& &d2; when d2)d& their
values should be interchanged d

&
+—~d 2 ~

(iv) The ideal for conversion process is expected to be
the case of strong Probe wave I3p, when I3p &&I]p I2p,
la5kp/yl. In this limit we have S, =I&p S2 =Imp and
S3=—I3p/(1 —a ). Then, for PI,p &1 we obtain from
(26)

All the expressions from (39)—(47) are valid in the case

I&p & I2p by simply exchanging I&p~I2p.

VIII. QUASIENERGY INTERSECTION:
DISRUPTION OF GENERATION

In this section we consider the phenomenon of quasien-
ergy crossover related to the well-known self-induced res-
onance in a three-level system [28—30].

In some cases the polynomial BF/BH in the denomina-
tor of Eq. (19) may have a positive root g less than S~. In
this case Eq. (19) contains a resonance that becomes im-
portant for the lengths close to the critical length l„
determined by the relation I(l„)=g. It can be easily
shown that the resonance in Eq. (19) for z —+l,„means
physically the intersection of quasienergetic terms of the
coupled system atom in the fields, e.g. , the self-induced
resonance phenomena [28—30]. In other words, for I~g
the Stark shift of atomic levels leads the system to exact
one- or two-photon resonance with the incident field.
This process is followed by strong absorption of the in-
teracting waves. Thus, for z -1„ the conversion process
is practically over, therefore its efficiency is limited by g.
It is evident that the theory becomes invalid for z ~ l„.

We return to the case of two-photon resonance, where
ground and third atomic levels intersect. The effective
two-photon detuning with Stark shift included is
0& —Q3=b,zp(1+PI), where b, 2p is the value of effective
two-photon detuning at z=O (see Appendix). We see
that P=O leads to a constant value of two-photon detun-
ing during the conversion (Fig. 5). For P & 0 the quasien-
ergies diverge, leading to the increase of two-photon de-
tuning. This leads to an increase of the conversion
length. For P & 0, the quasienergies approach each other,
leading to resonant enhancement of the interaction, and a
decrease of the conversion length. It is seen from Eq. (23}
that the results of Secs. V —VII are still valid for
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FIG. 5. Evolution of quasienergetic levels in FWM process
during the propagation. At the entrance the two-photon detun-

ing is determined by 620, which includes the Stark shift of atom-
ic levels. For P=O this value is held constant during evolution

of the process. For P & 0, the levels diverge, increasing b zo. For
P&0 the levels approach each other, leading the system at the
point z =I„to exact two-photon resonance.

PS, ) —1. The intersection of quasienergies and related
saturation of the FWM process is possible for large nega-
tive P (e.g. , for small two-photon detuning), when

PS, & —1. For the last case the generation efficiency is

defined as

1rl= (48)

The critical length value can be estimated either by Eq.
(33) or Eq. (43). Thus, in the case I,o zo ))I3o,

1 1

(g I~oI2o —5ko ) lf3I3o l

(49)

and in the case I3p ))I2p ))I&p,

1 1
l ln

y+I3oI2o l&I io l

(50)

We see from Eqs. (48) —(50) and Eq. (Al) that for P&0
and strong two-photon resonance P-1/bz, we have the
decreasing of both the conversion efficiency and the
length l„.

The sign of P coincides [see Eqs. (Al) —(A3)] with the
sign of b, 2Q, where Q is

&()'&+1'z) &(7'3+ 1'4)
Q =5ks+

1 3

(51)

We see that for b, 2Q )0 the conversion efficiency is deter-
mined by the parameter S, , whose magnitude is indepen-
dent of P, whereas for b,zg &0 the conversion drops to

ted= 1/p, which for b,&~0 is much less than S, . In other
words, the sign exchange of P (e.g. , sign of b, 2Q ) leads to
the disruption of generation. We assume that such phe-

I

32vr Xd
&
d 2d 3d4(&QCl)2ro3Cl)4)

'

a'c'I ~i~20~31

nomena have been observed in the case of frequency
sweeping through the resonance [32] as well as in the case
of buffer gas or alkali vapor pressure variation [33] (in
this case, parameter Q also changes sign).

The maximum resonant enhancement of interaction
and shortening of the conversion length may be achieved
if P~ —(1/S, )+0. [However, the efficient two-photon
detuning b z(1+PS, ) should be held larger than the
width of absorption line. ]

In summary, we should mention that the point
P= —1/S, is the separatrix of the one-dimensional phase
space, where chaotic modifications of the period of
motion as well as the conversion efficiency occur. There-
fore, in the vicinity of such a point the motion acquires
stochastic character [34]. However, this question needs
special consideration.

IX. CONCLUSION

The results enable us to consider the FWM process
with arbitrary rate of conversion, taking into account the
pump beam depletion as well as the effects of coherent
medium saturation, essential for resonant interaction.
Because of the large number of parameters involved, we
have restricted our consideration by applying the general
results to several particular cases. Thus, we did not con-
sider the case where an initially (z =0) weak pump field

co, 2 interaction becomes strong during the evolution and
leads to conversion into the waves co3 4 Such a situation
is typical for small third-photon detuning h3
(lb, 3l « lh, 2l, lE od//h'l ) and is characterized by a low

conversion efficiency. The theory developed will be ap-
plied to the case of sum frequency generation
co

J
+ ro2 +co3 Ifo4 (particularly, for the most interesting

case of third-harmonic generation 3', =co~) by the new

phase P and wave-vector-mismatch definition

PJ +Pp+ f3 f4 and 5k =k& +k2+ k3 —k4. A corre-
sponding exchange of the Manly-Rowe relation should
also be made. Thus for instance, Eqs. (19) and (23) can
describe the process cu, +co2+co3=co4 if the following sub-

stitution I3o+I~I3o I into Eqs. (1—6), (17), and (24) is

made, or the process 3', =co4 if the substitution
I&p I I2p I I3p +I~I ]p 3I is made. After such sub-

stitutions, all the results and conclusions of Secs. V —VIII
will be completely valid for these processes.
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APPENDIX

In the case of strong two-photon resonance the depen-
dence of values a, P, fiko, and y on the input parameters
is as follows:

6kp =6kb+
&(y ~

la ~o I'+ r~l~3o I')

1

&(yglu )o I'+y3la3o I')

b, 3
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ri+r21 2

1

2 N(7', +72) N(Y3+7'4)

N52o 2b, , 2b 3

X3+X4 N'(r tr3+r2X4)
(Al)

where the distance between quasienergetic terms, e.g., the
value of efficient two-photon detuning (including the
Stark shifts) is

03—Qi=h~ o(1 +PI), b,~o=+(So+8'o)'i (A2)

The sign of a and 62p must equal to the sign of 62' App is
the input (z =0) value of efficient two-photon detuning.
The values ~am~ =

—,'[1+1/&I+(] and ~a3o~
=

—,'[1
—I/&I+(] are the coherent populations of atomic lb, 3

states at the entrance (z =0):

8 p E&pE2pd ]d2
Wo =2

5p

IEtpd t
I' —IEzodp

'
5p= 52+

IE3pd3 I'

AA

(A3)

For weak pump field (g((1) kzp=52 a,o=1, a3Q 0,
and consideration reduces to the perturbation-theory ap-
proach. In the opposite case, when g)) 1 the population
of lb, 3 levels become equal: ~a, o ~

= ~a3o ~

=
—,'.
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